# mediapipe **Repository Path**: sweeneysw/mediapipe ## Basic Information - **Project Name**: mediapipe - **Description**: MediaPipe is a cross-platform framework for building multimodal applied machine learning pipelines - **Primary Language**: C++ - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-08-27 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![MediaPipe](mediapipe/docs/images/mediapipe_small.png?raw=true "MediaPipe logo") ======================================================================= [MediaPipe](http://mediapipe.dev) is a framework for building multimodal (eg. video, audio, any time series data) applied ML pipelines. With MediaPipe, a perception pipeline can be built as a graph of modular components, including, for instance, inference models (e.g., TensorFlow, TFLite) and media processing functions. ![Real-time Face Detection](mediapipe/docs/images/realtime_face_detection.gif) ## ML Solutions in MediaPipe * [Hand Tracking](mediapipe/docs/hand_tracking_mobile_gpu.md) * [Face Detection](mediapipe/docs/face_detection_mobile_gpu.md) * [Hair Segmentation](mediapipe/docs/hair_segmentation_mobile_gpu.md) * [Object Detection](mediapipe/docs/object_detection_mobile_gpu.md) ![hand_tracking](mediapipe/docs/images/mobile/hand_tracking_3d_android_gpu_small.gif) ![face_detection](mediapipe/docs/images/mobile/face_detection_android_gpu_small.gif) ![hair_segmentation](mediapipe/docs/images/mobile/hair_segmentation_android_gpu_small.gif) ![object_detection](mediapipe/docs/images/mobile/object_detection_android_gpu_small.gif) ## Installation Follow these [instructions](mediapipe/docs/install.md). ## Getting started See mobile and desktop [examples](mediapipe/docs/examples.md). ## Documentation [MediaPipe Read-the-Docs](https://mediapipe.readthedocs.io/) or [docs.mediapipe.dev](https://docs.mediapipe.dev) Check out the [Examples page](https://mediapipe.readthedocs.io/en/latest/examples.html) for tutorials on how to use MediaPipe. [Concepts page](https://mediapipe.readthedocs.io/en/latest/concepts.html) for basic definitions ## Visualizing MediaPipe graphs A web-based visualizer is hosted on [viz.mediapipe.dev](https://viz.mediapipe.dev/). Please also see instructions [here](mediapipe/docs/visualizer.md). ## Community forum * [Discuss](https://groups.google.com/forum/#!forum/mediapipe) - General community discussion around MediaPipe ## Publications * [MediaPipe: A Framework for Building Perception Pipelines](https://arxiv.org/abs/1906.08172) ## Events [Open sourced at CVPR 2019](https://sites.google.com/corp/view/perception-cv4arvr/mediapipe) on June 17~20 in Long Beach, CA ## Alpha Disclaimer MediaPipe is currently in alpha for v0.6. We are still making breaking API changes and expect to get to stable API by v1.0. ## Contributing We welcome contributions. Please follow these [guidelines](./CONTRIBUTING.md). We use GitHub issues for tracking requests and bugs. Please post questions to the MediaPipe Stack Overflow with a 'mediapipe' tag.