1 Star 0 Fork 0

tangming12345/yolov4-tiny-keras

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
get_dr_txt.py 4.47 KB
一键复制 编辑 原始数据 按行查看 历史
Bubbliiiing 提交于 2020-07-01 22:01 +08:00 . Add files via upload
#----------------------------------------------------#
# 获取测试集的detection-result和images-optional
# 具体视频教程可查看
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
from yolo import YOLO
from PIL import Image
from keras.layers import Input
from keras.applications.imagenet_utils import preprocess_input
from keras import backend as K
from utils.utils import letterbox_image
from nets.yolo4_tiny import yolo_body,yolo_eval
import colorsys
import numpy as np
import os
class mAP_YOLO(YOLO):
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
self.score = 0.05
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# 计算anchor数量
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
# 否则先构建模型再载入
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
self.yolo_model.load_weights(self.model_path)
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
# 打乱颜色
np.random.seed(10101)
np.random.shuffle(self.colors)
np.random.seed(None)
self.input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
num_classes, self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_id, image):
f = open("./input/detection-results/"+image_id+".txt","w")
# 调整图片使其符合输入要求
boxed_image = letterbox_image(image, self.model_image_size)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
# 预测结果
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
for i, c in enumerate(out_classes):
predicted_class = self.class_names[int(c)]
score = str(out_scores[i])
top, left, bottom, right = out_boxes[i]
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
f.close()
return
yolo = mAP_YOLO()
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/detection-results"):
os.makedirs("./input/detection-results")
if not os.path.exists("./input/images-optional"):
os.makedirs("./input/images-optional")
for image_id in image_ids:
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
# 开启后在之后计算mAP可以可视化
# image.save("./input/images-optional/"+image_id+".jpg")
yolo.detect_image(image_id,image)
print(image_id," done!")
print("Conversion completed!")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/tangming12345/yolov4-tiny-keras.git
git@gitee.com:tangming12345/yolov4-tiny-keras.git
tangming12345
yolov4-tiny-keras
yolov4-tiny-keras
master

搜索帮助