# hamer **Repository Path**: techwolf/hamer ## Basic Information - **Project Name**: hamer - **Description**: https://github.com/geopavlakos/hamer - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-25 - **Last Updated**: 2025-08-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HaMeR: Hand Mesh Recovery Code repository for the paper: **Reconstructing Hands in 3D with Transformers** [Georgios Pavlakos](https://geopavlakos.github.io/), [Dandan Shan](https://ddshan.github.io/), [Ilija Radosavovic](https://people.eecs.berkeley.edu/~ilija/), [Angjoo Kanazawa](https://people.eecs.berkeley.edu/~kanazawa/), [David Fouhey](https://cs.nyu.edu/~fouhey/), [Jitendra Malik](http://people.eecs.berkeley.edu/~malik/) [![arXiv](https://img.shields.io/badge/arXiv-2312.05251-00ff00.svg)](https://arxiv.org/pdf/2312.05251.pdf) [![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://geopavlakos.github.io/hamer/) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rQbQzegFWGVOm1n1d-S6koOWDo7F2ucu?usp=sharing) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/geopavlakos/HaMeR) ![teaser](assets/teaser.jpg) ## News - [2024/06] HaMeR received the 2nd place award in the Ego-Pose Hands task of the Ego-Exo4D Challenge! Please check the [validation report](https://www.cs.utexas.edu/~pavlakos/hamer/resources/egoexo4d_challenge.pdf). - [2024/05] We have released the evaluation pipeline! - [2024/05] We have released the HInt dataset annotations! Please check [here](https://github.com/ddshan/hint). - [2023/12] Original release! ## Installation First you need to clone the repo: ``` git clone --recursive https://github.com/geopavlakos/hamer.git cd hamer ``` We recommend creating a virtual environment for HaMeR. You can use venv: ```bash python3.10 -m venv .hamer source .hamer/bin/activate ``` or alternatively conda: ```bash conda create --name hamer python=3.10 conda activate hamer ``` Then, you can install the rest of the dependencies. This is for CUDA 11.7, but you can adapt accordingly: ```bash pip install torch torchvision --index-url https://download.pytorch.org/whl/cu117 pip install -e .[all] pip install -v -e third-party/ViTPose ``` You also need to download the trained models: ```bash bash fetch_demo_data.sh ``` Besides these files, you also need to download the MANO model. Please visit the [MANO website](https://mano.is.tue.mpg.de) and register to get access to the downloads section. We only require the right hand model. You need to put `MANO_RIGHT.pkl` under the `_DATA/data/mano` folder. ### Docker Compose If you wish to use HaMeR with Docker, you can use the following command: ``` docker compose -f ./docker/docker-compose.yml up -d ``` After the image is built successfully, enter the container and run the steps as above: ``` docker compose -f ./docker/docker-compose.yml exec hamer-dev /bin/bash ``` Continue with the installation steps: ```bash bash fetch_demo_data.sh ``` ## Demo ```bash python demo.py \ --img_folder example_data --out_folder demo_out \ --batch_size=48 --side_view --save_mesh --full_frame ``` ## HInt Dataset We have released the annotations for the HInt dataset. Please follow the instructions [here](https://github.com/ddshan/hint) ## Training First, download the training data to `./hamer_training_data/` by running: ``` bash fetch_training_data.sh ``` Then you can start training using the following command: ``` python train.py exp_name=hamer data=mix_all experiment=hamer_vit_transformer trainer=gpu launcher=local ``` Checkpoints and logs will be saved to `./logs/`. ## Evaluation Download the [evaluation metadata](https://www.dropbox.com/scl/fi/7ip2vnnu355e2kqbyn1bc/hamer_evaluation_data.tar.gz?rlkey=nb4x10uc8mj2qlfq934t5mdlh) to `./hamer_evaluation_data/`. Additionally, download the FreiHAND, HO-3D, and HInt dataset images and update the corresponding paths in `hamer/configs/datasets_eval.yaml`. Run evaluation on multiple datasets as follows, results are stored in `results/eval_regression.csv`. ```bash python eval.py --dataset 'FREIHAND-VAL,HO3D-VAL,NEWDAYS-TEST-ALL,NEWDAYS-TEST-VIS,NEWDAYS-TEST-OCC,EPICK-TEST-ALL,EPICK-TEST-VIS,EPICK-TEST-OCC,EGO4D-TEST-ALL,EGO4D-TEST-VIS,EGO4D-TEST-OCC' ``` Results for HInt are stored in `results/eval_regression.csv`. For [FreiHAND](https://github.com/lmb-freiburg/freihand) and [HO-3D](https://codalab.lisn.upsaclay.fr/competitions/4318) you get as output a `.json` file that can be used for evaluation using their corresponding evaluation processes. ## Acknowledgements Parts of the code are taken or adapted from the following repos: - [4DHumans](https://github.com/shubham-goel/4D-Humans) - [SLAHMR](https://github.com/vye16/slahmr) - [ProHMR](https://github.com/nkolot/ProHMR) - [SPIN](https://github.com/nkolot/SPIN) - [SMPLify-X](https://github.com/vchoutas/smplify-x) - [HMR](https://github.com/akanazawa/hmr) - [ViTPose](https://github.com/ViTAE-Transformer/ViTPose) - [Detectron2](https://github.com/facebookresearch/detectron2) Additionally, we thank [StabilityAI](https://stability.ai/) for a generous compute grant that enabled this work. ## Open-Source Contributions - [Wentao Hu](https://vincenthu19.github.io/) integrated the hand parameters predicted by HaMeR into SMPL-X - [Mano2Smpl-X](https://github.com/VincentHu19/Mano2Smpl-X) ## Citing If you find this code useful for your research, please consider citing the following paper: ```bibtex @inproceedings{pavlakos2024reconstructing, title={Reconstructing Hands in 3{D} with Transformers}, author={Pavlakos, Georgios and Shan, Dandan and Radosavovic, Ilija and Kanazawa, Angjoo and Fouhey, David and Malik, Jitendra}, booktitle={CVPR}, year={2024} } ```