# nsfw **Repository Path**: tib/nsfw ## Basic Information - **Project Name**: nsfw - **Description**: 黄图鉴别工具 写在前面:不要找我要训练数据,我是遵纪守法的好公民,训练数据已经删除 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 12 - **Created**: 2019-01-23 - **Last Updated**: 2022-08-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NSFW Model This repo contains code for running Not Suitable for Work (NSFW) classification. [online demo](http://ai.midday.me/) ## Usage #### script ```bash python nsfw_predict.py /tmp/test/test.jpeg ``` result : ```bash {'class': 'sexy', 'probability': {'drawings': 0.008320281, 'hentai': 0.0011919827, 'neutral': 0.13077603, 'porn': 0.13146976, 'sexy': 0.72824186}} ``` can find the meaning of every label at repo [nsfw_data_scrapper](https://github.com/alexkimxyz/nsfw_data_scrapper) #### Deploy by TensorFlow Serving your have to install [Tensorflow Serving](https://www.tensorflow.org/serving/) first start the server ```bash ./start_tensorflow_serving.sh ``` test server ```bash python serving_client.py /tmp/test/test.jpeg ``` ## Train train code at [resnet](./resnet) train a new model 1. convert source to tfrecord user ```convert_image_to_tfrecord.py``` 2. train a model from scratch or fine tune the model code copy from [Tensorflow offical model](https://github.com/tensorflow/models/tree/master/official/resnet) ## Data you can find the detail at repo [nsfw_data_scrapper](https://github.com/alexkimxyz/nsfw_data_scrapper)