# tidyexplain **Repository Path**: tidyfriday/tidyexplain ## Basic Information - **Project Name**: tidyexplain - **Description**: No description available - **Primary Language**: Unknown - **License**: CC0-1.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-20 - **Last Updated**: 2020-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tidy Animated Verbs Garrick Aden-Buie – [@grrrck](https://twitter.com/grrrck) – [garrickadenbuie.com](https://www.garrickadenbuie.com). Set operations contributed by [Tyler Grant Smith](https://github.com/TylerGrantSmith). [![Binder](http://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/gadenbuie/tidy-animated-verbs/master?urlpath=rstudio) [![CC0](https://img.shields.io/badge/license_\(images\)_-CC0-green.svg)](https://creativecommons.org/publicdomain/zero/1.0/) [![MIT](https://img.shields.io/badge/license_\(code\)_-MIT-green.svg)](https://opensource.org/licenses/MIT) - [**Mutating Joins**](#mutating-joins) — [`inner_join()`](#inner-join), [`left_join()`](#left-join), [`right_join()`](#right-join), [`full_join()`](#full-join) - [**Filtering Joins**](#filtering-joins) — [`semi_join()`](#semi-join), [`anti_join()`](#anti-join) - [**Set Operations**](#set-operations) — [`union()`](#union), [`union_all()`](#union-all), [`intersect()`](#intersection), [`setdiff()`](#set-difference) - [**Tidy Data**](#tidy-data) — [`spread()` and `gather()`](#spread-and-gather) - Learn more about - [Using the animations and images](#usage) - [Relational Data](#relational-data) - [gganimate](#gganimate) ## Background ### Usage Please feel free to use these images for teaching or learning about action verbs from the [tidyverse](https://tidyverse.org). You can directly download the [original animations](images/) or static images in [svg](images/static/svg/) or [png](images/static/png/) formats, or you can use the [scripts](R/) to recreate the images locally. Currently, the animations cover the [dplyr two-table verbs](https://dplyr.tidyverse.org/articles/two-table.html) and I’d like to expand the animations to include more verbs from the tidyverse. [Suggestions are welcome\!](https://github.com/gadenbuie/tidy-animated-verbs/issues) ### Relational Data The [Relational Data](http://r4ds.had.co.nz/relational-data.html) chapter of the [R for Data Science](http://r4ds.had.co.nz/) book by Garrett Grolemund and Hadley Wickham is an excellent resource for learning more about relational data. The [dplyr two-table verbs vignette](https://dplyr.tidyverse.org/articles/two-table.html) and Jenny Bryan’s [Cheatsheet for dplyr join functions](http://stat545.com/bit001_dplyr-cheatsheet.html) are also great resources. ### gganimate The animations were made possible by the newly re-written [gganimate](https://github.com/thomasp85/gganimate#README) package by [Thomas Lin Pedersen](https://github.com/thomasp85) (original by [Dave Robinson](https://github.com/dgrtwo)). The [package readme](https://github.com/thomasp85/gganimate#README) provides an excellent (and quick) introduction to gganimate. ### Dynamic Animations Thanks to an initial push by [David Zimmermann](https://github.com/DavZim), we have begun work toward a packaged set of functions to generate dynamic explanatory animations from users' actual data. Please visit the [pkg branch](https://github.com/gadenbuie/tidyexplain/tree/pkg) of the tidyexplain repository for more information (or to contribute!). ## Mutating Joins > A mutating join allows you to combine variables from two tables. It > first matches observations by their keys, then copies across variables > from one table to the other. > [R for Data Science: Mutating > joins](http://r4ds.had.co.nz/relational-data.html#mutating-joins) ``` r x #> # A tibble: 3 x 2 #> id x #> #> 1 1 x1 #> 2 2 x2 #> 3 3 x3 y #> # A tibble: 3 x 2 #> id y #> #> 1 1 y1 #> 2 2 y2 #> 3 4 y4 ``` ### Inner Join > All rows from `x` where there are matching values in `y`, and all > columns from `x` and `y`. ![](images/inner-join.gif) ``` r inner_join(x, y, by = "id") #> # A tibble: 2 x 3 #> id x y #> #> 1 1 x1 y1 #> 2 2 x2 y2 ``` ### Left Join > All rows from `x`, and all columns from `x` and `y`. Rows in `x` with > no match in `y` will have `NA` values in the new columns. ![](images/left-join.gif) ``` r left_join(x, y, by = "id") #> # A tibble: 3 x 3 #> id x y #> #> 1 1 x1 y1 #> 2 2 x2 y2 #> 3 3 x3 ``` ### Left Join (Extra Rows in y) > … If there are multiple matches between `x` and `y`, all combinations > of the matches are returned. ![](images/left-join-extra.gif) ``` r y_extra # has multiple rows with the key from `x` #> # A tibble: 4 x 2 #> id y #> #> 1 1 y1 #> 2 2 y2 #> 3 4 y4 #> 4 2 y5 left_join(x, y_extra, by = "id") #> # A tibble: 4 x 3 #> id x y #> #> 1 1 x1 y1 #> 2 2 x2 y2 #> 3 2 x2 y5 #> 4 3 x3 ``` ### Right Join > All rows from y, and all columns from `x` and `y`. Rows in `y` with no > match in `x` will have `NA` values in the new columns. ![](images/right-join.gif) ``` r right_join(x, y, by = "id") #> # A tibble: 3 x 3 #> id x y #> #> 1 1 x1 y1 #> 2 2 x2 y2 #> 3 4 y4 ``` ### Full Join > All rows and all columns from both `x` and `y`. Where there are not > matching values, returns `NA` for the one missing. ![](images/full-join.gif) ``` r full_join(x, y, by = "id") #> # A tibble: 4 x 3 #> id x y #> #> 1 1 x1 y1 #> 2 2 x2 y2 #> 3 3 x3 #> 4 4 y4 ``` ## Filtering Joins > Filtering joins match observations in the same way as mutating joins, > but affect the observations, not the variables. … Semi-joins are > useful for matching filtered summary tables back to the original rows. > … Anti-joins are useful for diagnosing join mismatches. > [R for Data Science: Filtering > Joins](http://r4ds.had.co.nz/relational-data.html#filtering-joins) ### Semi Join > All rows from `x` where there are matching values in `y`, keeping just > columns from `x`. ![](images/semi-join.gif) ``` r semi_join(x, y, by = "id") #> # A tibble: 2 x 2 #> id x #> #> 1 1 x1 #> 2 2 x2 ``` ### Anti Join > All rows from `x` where there are not matching values in `y`, keeping > just columns from `x`. ![](images/anti-join.gif) ``` r anti_join(x, y, by = "id") #> # A tibble: 1 x 2 #> id x #> #> 1 3 x3 ``` ## Set Operations > Set operations are occasionally useful when you want to break a single > complex filter into simpler pieces. All these operations work with a > complete row, comparing the values of every variable. These expect the > x and y inputs to have the same variables, and treat the observations > like sets. > [R for Data Science: Set > operations](http://r4ds.had.co.nz/relational-data.html#set-operations) ``` r x #> # A tibble: 3 x 2 #> x y #> #> 1 1 a #> 2 1 b #> 3 2 a y #> # A tibble: 2 x 2 #> x y #> #> 1 1 a #> 2 2 b ``` ### Union > All unique rows from `x` and `y`. ![](images/union.gif) ``` r union(x, y) #> # A tibble: 4 x 2 #> x y #> #> 1 2 b #> 2 2 a #> 3 1 b #> 4 1 a ``` ![](images/union-rev.gif) ``` r union(y, x) #> # A tibble: 4 x 2 #> x y #> #> 1 2 a #> 2 1 b #> 3 2 b #> 4 1 a ``` ### Union All > All rows from `x` and `y`, keeping duplicates. ![](images/union-all.gif) ``` r union_all(x, y) #> # A tibble: 5 x 2 #> x y #> #> 1 1 a #> 2 1 b #> 3 2 a #> 4 1 a #> 5 2 b ``` ### Intersection > Common rows in both `x` and `y`, keeping just unique rows. ![](images/intersect.gif) ``` r intersect(x, y) #> # A tibble: 1 x 2 #> x y #> #> 1 1 a ``` ### Set Difference > All rows from `x` which are not also rows in `y`, keeping just unique > rows. ![](images/setdiff.gif) ``` r setdiff(x, y) #> # A tibble: 2 x 2 #> x y #> #> 1 1 b #> 2 2 a ``` ![](images/setdiff-rev.gif) ``` r setdiff(y, x) #> # A tibble: 1 x 2 #> x y #> #> 1 2 b ``` ## Tidy Data [Tidy data](http://r4ds.had.co.nz/tidy-data.html#tidy-data-1) follows the following three rules: 1. Each variable has its own column. 2. Each observation has its own row. 3. Each value has its own cell. Many of the tools in the [tidyverse](https://tidyverse.org) expect data to be formatted as a tidy dataset and the [tidyr](https://tidyr.tidyverse.org) package provides functions to help you organize your data into tidy data. ![](images/static/png/original-dfs-tidy.png) ``` r wide #> # A tibble: 2 x 4 #> id x y z #> #> 1 1 a c e #> 2 2 b d f long #> # A tibble: 6 x 3 #> id key val #> #> 1 1 x a #> 2 2 x b #> 3 1 y c #> 4 2 y d #> 5 1 z e #> 6 2 z f ``` ### Spread and Gather `spread(data, key, value)` > Spread a key-value pair across multiple columns. Use it when an a > column contains observations from multiple variables. `gather(data, key = "key", value = "value", ...)` > Gather takes multiple columns and collapses into key-value pairs, > duplicating all other columns as needed. You use `gather()` when you > notice that your column names are not names of variables, but *values* > of a variable. ![](images/tidyr-spread-gather.gif) ``` r gather(wide, key, val, x:z) #> # A tibble: 6 x 3 #> id key val #> #> 1 1 x a #> 2 2 x b #> 3 1 y c #> 4 2 y d #> 5 1 z e #> 6 2 z f spread(long, key, val) #> # A tibble: 2 x 4 #> id x y z #> #> 1 1 a c e #> 2 2 b d f ```