# 因果推理课程 **Repository Path**: titzp/Introduction-to-Causal-Inference ## Basic Information - **Project Name**: 因果推理课程 - **Description**: Introduction to Causal Inference - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2022-05-07 - **Last Updated**: 2022-05-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 最新因果推理课程在线学习,附课件、PPT、书籍和文献资料 因果推理导论 2020年秋季 你已经找到了在线因果推理课程页面。 # 课程主页 https://www.bradyneal.com/causal-inference-course#course-textbook 这门课程由 Yoshua Bengio 高徒 Brady Neal 主讲,主要讲述因果推理相关知识。尽管课程文本是从机器学习的角度编写的,但这门课程是为任何有必要的先决条件,谁对学习因果关系的基础感兴趣的人。我尽我最大的努力整合来自许多不同领域的见解,利用因果推理,如流行病学、经济学、政治学、机器学习等。 # 课程安排(初步) 关于幻灯片,请注意:它们目前不能很好地与Adobe Acrobat协同工作,尽管它们似乎可以与其他PDF查看器协同工作。 | Week | Topics | Lecture | Readings | Reading Group Paper | | :----------- | :----------------------------------------------------------- | :----------------------------------------------------------- | :------------------------------ | :----------------------------------------------------------- | | August 31 | Motivation Course Preview Course Information | [Video](https://www.youtube.com/watch?v=CfzO4IEMVUk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=1) [Slides](https://www.bradyneal.com/slides/1 - A Brief Introduction to Causal Inference.pdf) [Info](https://www.youtube.com/watch?v=xj-tzrm5Src&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=6) | Chapter 1 of ICI | None | | September 7 | Potential Outcomes A Complete Example with Estimation | [Video](https://www.youtube.com/watch?v=q8x9aetyok0&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=8) [Slides](https://www.bradyneal.com/slides/2 - Potential Outcomes.pdf) | Chapter 2 of ICI | [Does obesity shorten life? The importance of well-defined interventions to answer causal questions (Hernán & Taubman, 2008)](https://www.nature.com/articles/ijo200882) | | September 14 | Graphical Models | [Video](https://www.youtube.com/watch?v=Go4EkHN_PcA&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=19) [Slides](https://www.bradyneal.com/slides/3 - The Flow of Association and Causation in Graphs.pdf) | Chapter 3 of ICI | [Does Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes (Pearl, 2018)](https://ftp.cs.ucla.edu/pub/stat_ser/r483-reprint.pdf) | | September 21 | Backdoor Adjustment Structural Causal Models | [Video](https://www.youtube.com/watch?v=dB8r4Afmobo&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=28) [Slides](https://www.bradyneal.com/slides/4 - Causal Models.pdf) | Chapter 4 of ICI | [Single World Intervention Graphs: A Primer (Richardson & Robins, 2013)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.1881&rep=rep1&type=pdf) | | September 28 | Randomized Experiments Frontdoor Adjustment *do*-calculus Graph-Based Identification | [Video](https://www.youtube.com/watch?v=z91LnTDyhtI&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=37) [Slides](https://www.bradyneal.com/slides/5 - Identification.pdf) | Chapters 5-6 of ICI | [On Pearl’s Hierarchy and the Foundations of Causal Inference (Bareinboim et al., 2020)](https://causalai.net/r60.pdf) | | October 5 | Estimation [Susan Athey](https://athey.people.stanford.edu/) Guest Talk - Estimating Heterogeneous Treatment Effects (Oct 8th at 3 - 4 pm EDT) | [Video](https://www.youtube.com/watch?v=YzcOYU-s2t4&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=42) [Slides](https://www.bradyneal.com/slides/6 - Estimation.pdf) [Guest Talk](https://www.youtube.com/watch?v=oZoizsX3bts&list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&index=7) | Chapter 7 of ICI | [Adapting Neural Networks for the Estimation of Treatment Effects (Shi, Blei, Veitch, 2019)](https://arxiv.org/abs/1906.02120) | | October 12 | Unobserved Confounding, Bounds, and Sensitivity Analysis | [Video](https://www.youtube.com/watch?v=IXNMYqUsBBQ&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=47) [Slides](https://www.bradyneal.com/slides/7 - Unobserved Confounding.pdf) | Chapter 8 of ICI | [Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding (Veitch & Zaveri, 2020)](https://arxiv.org/abs/2003.01747) | | October 19 | Instrumental Variables | [Video](https://www.youtube.com/watch?v=Mco16tUSA-U&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=53) [Slides](https://www.bradyneal.com/slides/8 - Instrumental Variables.pdf) | Chapter 9 of ICI | [Deep IV: A Flexible Approach for Counterfactual Prediction (Hartford et al., 2017)](http://proceedings.mlr.press/v70/hartford17a.html) | | October 26 | Difference-in-Differences [Alberto Abadie](http://economics.mit.edu/faculty/abadie) Guest Talk - Synthetic Control (Oct 29th at 10 - 11 am EDT) | [Video](https://www.youtube.com/watch?v=tT8xLRS_cRQ&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=58) [Slides](https://www.bradyneal.com/slides/9 - Difference-in-Differences.pdf) [Guest Talk](https://www.youtube.com/watch?v=nKzNp-qpE-I&list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&index=11) | Chapter 10 of ICI | [Regression Discontinuity Designs in Economics (Lee & Lemieux, 2010)](https://www.princeton.edu/~davidlee/wp/RDDEconomics.pdf) | | November 2 | --- Break Week - No Lecture --- | None | Past Readings | None | | November 9 | Causal Discovery from Observational Data [Jonas Peters](http://web.math.ku.dk/~peters/) Guest Talk (November 13 at 10 am EST) | [Video](https://www.youtube.com/watch?v=lVE-4deFe7c&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=62) [Slides](https://www.bradyneal.com/slides/10 - Causal Discovery from Observational Data.pdf) | Chapter 11 of ICI | [Inferring causation from time series in Earth system sciences (Runge et al., 2019)](https://www.nature.com/articles/s41467-019-10105-3) | | November 16 | Causal Discovery from Interventions | [Video](https://www.youtube.com/watch?v=de2ODel8F1k&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=69) [Slides](https://www.bradyneal.com/slides/11 - Causal Discovery from Interventions.pdf) | Chapter 12 of ICI (Coming soon) | [Permutation-based Causal Inference Algorithms with Interventions (Wang et al., 2017)](https://arxiv.org/abs/1705.10220) | | November 23 | Transfer Learning Transportability | [Video](https://www.youtube.com/watch?v=JNq4oCV9C5k&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=77) [Slides](https://www.bradyneal.com/slides/12 - Transfer Learning and Transportability.pdf) | Chapter 13 of ICI (Coming soon) | [A causal framework for distribution generalization (Christiansen et al., 2020)](https://arxiv.org/abs/2006.07433) | | November 30 | [Yoshua Bengio](https://yoshuabengio.org/profile/) Guest Talk - Causal Representation Learning (Dec 1st at 1 - 2:30 pm EST) | [Guest Talk](https://www.youtube.com/watch?v=rKZJ0TJWvTk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=80) [Slides](https://www.bradyneal.com/slides/Yoshua_Bengio_Guest_Talk_Towards_Causal_Representation_Learning.pdf) | None | [Invariant Risk Minimization (Arjovsky et al., 2019)](https://arxiv.org/abs/1907.02893) | | December 7 | Counterfactuals Mediation | [Video](https://www.youtube.com/watch?v=f8PEpthLlN4&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=81) [Slides](https://www.bradyneal.com/slides/14 - Counterfactuals and Mediation.pdf) | Chapter 14 of ICI (Coming soon) | [Identifiability of Path-Specific Effects (Avin, Shpitser, & Pearl, 2005)](https://ftp.cs.ucla.edu/pub/stat_ser/r321-ijcai05.pdf) | # 视频地址: https://www.youtube.com/watch?v=CfzO4IEMVUk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=1 # 课程教材 该课程的配套教材选用了 Brady Neal 编写的 《Introduction to Causal Inference》。需要说明的是,前10章草稿(在整个课程中不断更新新的章节): 教材地址:https://www.bradyneal.com/Introduction_to_Causal_Inference-Aug27_2020-Neal.pdf 上述教材你也可以在如下码云仓库进行查看 # 论文阅读清单 1. Motivation and Preview - No reading group 2. Potential Outcomes - [Does obesity shorten life? The importance of well-defined interventions to answer causal questions (Hernán & Taubman, 2008)](https://www.nature.com/articles/ijo200882) - [Does Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes (Pearl, 2018)](https://ftp.cs.ucla.edu/pub/stat_ser/r483-reprint.pdf) 3. Graphical Models and SCMs - [On the Interpretation of do(x) (Pearl, 2019)](https://www.degruyter.com/view/j/jci.2019.7.issue-1/jci-2019-2002/jci-2019-2002.xml) - [Quantifying causal influences (Janzing et al., 2012)](https://arxiv.org/abs/1203.6502) - [Trygve Haavelmo and the Emergence of Causal Calculus (Pearl, 2014)](https://ftp.cs.ucla.edu/pub/stat_ser/r391.pdf) 4. Randomized Experiments, Frontdoor Adjustment, and do calculus - [Single World Intervention Graphs: A Primer (Richardson & Robins, 2013)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.1881&rep=rep1&type=pdf) - [The Paper of How: Estimating Treatment Effects Using the Front-Door Criterion (Bellemare & Bloem, 2019)](http://marcfbellemare.com/wordpress/wp-content/uploads/2019/08/BellemareBloemFDCAugust2019.pdf) - [On Pearl’s Hierarchy and the Foundations of Causal Inference (Bareinboim et al., 2020)](https://causalai.net/r60.pdf) 5. Estimation and Conditional Average Treatment Effects - [Estimating individual treatment effect: generalization bounds and algorithms (Shalit, Johansson, & Sontag, 2017)](https://arxiv.org/abs/1606.03976) - [Adapting Neural Networks for the Estimation of Treatment Effects (Shi, Blei, Veitch, 2019)](https://arxiv.org/abs/1906.02120) - [Generalized Random Forests (Athey, Tibshirani, Wager, 2019)](https://arxiv.org/abs/1610.01271) - [Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning (Künzel et al., 2017)](https://arxiv.org/abs/1706.03461) (caution: not about meta-learning in the ML sense) 6. Sensitivity Analysis - [Making sense of sensitivity: extending omitted variable bias (Cinelli & Hazlett, 2019)](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12348) - [Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding (Veitch & Zaveri, 2020)](https://arxiv.org/abs/2003.01747) - [An Introduction to Sensitivity Analysis for Unobserved Confounding in Non-Experimental Prevention Research (Liu, Kuramoto, & Stuart, 2013)](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800481/) - [Sensitivity Analysis of Linear Structural Causal Models (Cinelli et al., 2019)](http://proceedings.mlr.press/v97/cinelli19a.html) 7. Instrumental Variables, Regression Discontinuity, Difference-in-Differences, and Synthetic Control - [Improving Causal Inference: Strengths and Limitations of Natural Experiments (Dunning, 2007)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.883.6034&rep=rep1&type=pdf) - [Alternative Causal Inference Methods in Population Health Research: Evaluating Tradeoffs and Triangulating Evidence (Mattay et al., 2019)](http://paa2019.populationassociation.org/uploads/190202) - [Deep IV: A Flexible Approach for Counterfactual Prediction (Hartford et al., 2017)](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf) - [Regression Discontinuity Designs in Economics (Lee & Lemieux, 2010)](https://www.princeton.edu/~davidlee/wp/RDDEconomics.pdf) - Synthetic Controls (there are several different Abadie papers; message me, if you’re interested in this topic) 8. BREAK 9. Causal Discovery without Experiments - [Inferring causation from time series in Earth system sciences (Runge et al., 2019)](https://www.nature.com/articles/s41467-019-10105-3) - [Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks (Mooij et al., 2016)](https://jmlr.org/papers/v17/14-518.html) - [Do-calculus when the True Graph Is Unknown (Hyttinen, Eberhardt, Jarvisalo, 2015)](https://www.cs.helsinki.fi/u/mjarvisa/papers/hyttinen-eberhardt-jarvisalo.uai15.pdf) - [Review of Causal Discovery Methods Based on Graphical Models (Glymour, Zhang, & Spirtes, 2019)](https://www.frontiersin.org/articles/10.3389/fgene.2019.00524/full) - [Causal inference by using invariant prediction: identification and confidence intervals (Peters, Bühlmann & Meinshausen, 2016)](https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12167) - [Nonlinear causal discovery with additive noise models (Hoyer et al., 2008)](https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf) - [Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes (Huang et al., 2020)](https://arxiv.org/abs/1903.01672) 10. Causal Discovery with Experiments - [Experiment Selection for Causal Discovery (Hyttinen, Eberhardt, Hoyer, 2013)](https://jmlr.csail.mit.edu/papers/v14/hyttinen13a.html) - [Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Hauser & Bühlmann, 2012)](https://arxiv.org/abs/1104.2808) - [Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions (Yang, Katcoff, & Uhler, 2018)](https://arxiv.org/abs/1802.06310) - [Joint Causal Inference from Multiple Contexts (Mooij, Magliacane, & Claassen, 2020)](https://www.jmlr.org/papers/volume21/17-123/17-123.pdf) 11. Transportability and Transfer Learning - [External Validity: From Do-Calculus to Transportability Across Populations (Pearl & Bareinboim, 2014)](https://ftp.cs.ucla.edu/pub/stat_ser/r400-reprint.pdf) - [A causal framework for distribution generalization (Christiansen et al., 2020)](https://arxiv.org/abs/2006.07433) - [Causal inference and the data-fusion problem (Bareinboim & Pearl, 2016)](https://www.pnas.org/content/113/27/7345) - [On Causal and Anticausal Learning (Schölkopf et al., 2012)](https://icml.cc/2012/papers/625.pdf) - [Domain Adaptation under Target and Conditional Shift (Zhang et al., 2013)](http://proceedings.mlr.press/v28/zhang13d.html) - [Multi-Source Domain Adaptation: A Causal View (Zhang, Gong, & Schölkopf., 2015)](https://mingming-gong.github.io/papers/AAAI_MULTI.pdf) - [Invariant Models for Causal Transfer Learning (Rojas-Carulla et al., 2016)](http://www.jmlr.org/papers/volume19/16-432/16-432.pdf) - [Domain Adaptation As a Problem of Inference on Graphical Models (Zhang et al., 2020)](https://arxiv.org/abs/2002.03278) - [Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions (Magliacane et al., 2018)](https://arxiv.org/abs/1707.06422) 12. Counterfactuals, Mediation, and Path-Specific Effects - [Identification, Inference and Sensitivity Analysis for Causal Mediation Effects (Imai, Keele, & Yamamoto, 2010)](https://imai.fas.harvard.edu/research/files/mediation.pdf) - [Identifiability of Path-Specific Effects (Avin, Shpitser, & Pearl, 2005)](https://ftp.cs.ucla.edu/pub/stat_ser/r321-ijcai05.pdf) - [Interpretation and Identification of Causal Mediation (Pearl, 2014)](https://ftp.cs.ucla.edu/pub/stat_ser/r389.pdf) 13. TBD - Overflow Week 14. Causal Representation Learning - [Visual Causal Feature Learning (Chalupka, Perona, & Eberhardt, 2015)](http://www.its.caltech.edu/~fehardt/papers/CPE_UAI2015.pdf) - [Discovering causal signals in images (Lopez-Paz et al., 2017)](https://arxiv.org/abs/1605.08179) - [Invariant Risk Minimization (Arjovsky et al., 2019)](https://arxiv.org/abs/1907.02893)