将满足从数据交换、脱敏清洗、分析挖掘、质量检测、可视化展现、定时调度到数据输出等数据应用开发全流程场景需求。欢迎申请体验demo环境:https://sandbox.webank.com/wds/dss/#/register
Qualitis是一个支持多种异构数据源的质量校验、通知、管理服务的数据质量管理平台,用于解决业务系统运行、数据中心建设及数据治理过程中的各种数据质量问题。 Qualitis基于Spring Boot,依赖于Linkis进行数据计算,提供数据质量模型构建,数据质量模型执行,数据质量任务管理,异常数据发现保存以及数据质量报表生成等功能。并提供了金融级数据质量模型资源隔离,资源管控,权限隔离等企业特性,具备高并发,高性能,高可用的大数据质量管理能力。
数据可视化分析平台,使用Java语言开发,采用浏览器/服务器架构,支持SQL、CSV、Excel、HTTP接口、JSON等多种数据源
🔥🔥🔥📌 规则引擎前端 📌 RuleEngine 基于web可视化配置,简单高效快捷。
数据库文档成成器,根据数据库表DDL生成markdown文档,如果你觉得powerdesigener太重,可以试试这个小工具;目前支持mysql、oracle,如果你有其他需求,可以提issue或者评论
分布式下的日志处理程序 Sweet 的服务端代码。包含收集,存储,查询三部分。
智数通提供了元数据管理、数据标准管理、数据质量管理、主数据管理、数据集市管理、可视化图表看板、流程管理等微服务,是为数字化建设而生的企业级一站式数据治理平台。
DataX集成可视化页面,选择数据源即可一键生成数据同步任务,支持批量创建RDBMS数据同步任务,集成开源调度系统,支持分布式、增量同步数据、实时查看运行日志、监控执行器资源、KILL运行进程、数据源信息加密等。
没有redis也能够支撑"小米在印度把亚马逊搞挂了"事件的秒杀解决方案
随着智能手机的普及,人们更加习惯于通过手机来看新闻。由于生活节奏的加快,很多人只能利用碎片时间来获取信息,因此,对于移动资讯客户端的需求也越来越高。黑马头条项目正是在这样背景下开发出来。黑马头条项目采用当下火热的微服务+大数据技术架构实现。本项目主要着手于获取最新最热新闻资讯,通过大数据分析用户喜好精确推送咨询新闻黑马头条项目是对在线教育平台业务进行大数据统计分析的系统。碎片化、切换频繁、社交化和个性化现如今成为人们阅读行为的标签。黑马头条对海量信息进行搜集,通过系统计算分类,分析用户的兴趣进行推送从而满足用户的需求。
:helicopter::rocket:基于Flink实现的商品实时推荐系统。flink统计商品热度,放入redis缓存,分析日志信息,将画像标签和实时记录放入Hbase。在用户发起推荐请求后,根据用户画像重排序热度榜,并结合协同过滤和标签两个推荐模块为新生成的榜单的每一个产品添加关联产品,最后返回新的用户列表。
打通了多个计算存储引擎如:Spark、TiSpark、Hive、Python和HBase等,对外提供统一REST/WebSocket/JDBC接口,提交执行SQL、Pyspark、HiveQL、Scala等脚本的计算中间件。