# GVHMR **Repository Path**: toolkit/GVHMR ## Basic Information - **Project Name**: GVHMR - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-01-18 - **Last Updated**: 2025-04-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GVHMR: World-Grounded Human Motion Recovery via Gravity-View Coordinates ### [Project Page](https://zju3dv.github.io/gvhmr) | [Paper](https://arxiv.org/abs/2409.06662) > World-Grounded Human Motion Recovery via Gravity-View Coordinates > [Zehong Shen](https://zehongs.github.io/)\*, [Huaijin Pi](https://phj128.github.io/)\*, [Yan Xia](https://isshikihugh.github.io/scholar), [Zhi Cen](https://scholar.google.com/citations?user=Xyy-uFMAAAAJ), [Sida Peng](https://pengsida.net/), [Zechen Hu](https://zju3dv.github.io/gvhmr), [Hujun Bao](http://www.cad.zju.edu.cn/home/bao/), [Ruizhen Hu](https://csse.szu.edu.cn/staff/ruizhenhu/), [Xiaowei Zhou](https://xzhou.me/) > SIGGRAPH Asia 2024

animated

## Setup Please see [installation](docs/INSTALL.md) for details. ## Quick Start ### [ Google Colab demo for GVHMR](https://colab.research.google.com/drive/1N9WSchizHv2bfQqkE9Wuiegw_OT7mtGj?usp=sharing) ### [ HuggingFace demo for GVHMR](https://huggingface.co/spaces/LittleFrog/GVHMR) ### Demo Demo entries are provided in `tools/demo`. Use `-s` to skip visual odometry if you know the camera is static, otherwise the camera will be estimated by DPVO. We also provide a script `demo_folder.py` to inference a entire folder. ```shell python tools/demo/demo.py --video=docs/example_video/tennis.mp4 -s python tools/demo/demo_folder.py -f inputs/demo/folder_in -d outputs/demo/folder_out -s ``` ### Reproduce 1. **Test**: To reproduce the 3DPW, RICH, and EMDB results in a single run, use the following command: ```shell python tools/train.py global/task=gvhmr/test_3dpw_emdb_rich exp=gvhmr/mixed/mixed ckpt_path=inputs/checkpoints/gvhmr/gvhmr_siga24_release.ckpt ``` To test individual datasets, change `global/task` to `gvhmr/test_3dpw`, `gvhmr/test_rich`, or `gvhmr/test_emdb`. 2. **Train**: To train the model, use the following command: ```shell # The gvhmr_siga24_release.ckpt is trained with 2x4090 for 420 epochs, note that different GPU settings may lead to different results. python tools/train.py exp=gvhmr/mixed/mixed ``` During training, note that we do not employ post-processing as in the test script, so the global metrics results will differ (but should still be good for comparison with baseline methods). # Citation If you find this code useful for your research, please use the following BibTeX entry. ``` @inproceedings{shen2024gvhmr, title={World-Grounded Human Motion Recovery via Gravity-View Coordinates}, author={Shen, Zehong and Pi, Huaijin and Xia, Yan and Cen, Zhi and Peng, Sida and Hu, Zechen and Bao, Hujun and Hu, Ruizhen and Zhou, Xiaowei}, booktitle={SIGGRAPH Asia Conference Proceedings}, year={2024} } ``` # Acknowledgement We thank the authors of [WHAM](https://github.com/yohanshin/WHAM), [4D-Humans](https://github.com/shubham-goel/4D-Humans), and [ViTPose-Pytorch](https://github.com/gpastal24/ViTPose-Pytorch) for their great works, without which our project/code would not be possible.