# RL_Algorithms **Repository Path**: uvCut/RL_Algorithms ## Basic Information - **Project Name**: RL_Algorithms - **Description**: 强化学习经典算法复现 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-21 - **Last Updated**: 2025-02-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RL_Algorithms Practice of some basic algorithms of reinforcement learning - [x] Model Based Environment - [x] Dynamic Programming(Value \ Policy Iteration) - [x] Monte Carlo Basic(MC Basic \ MC Exploring Starts \ MC Epsilon-Greedy) - [x] Temporal Difference(Sarsa \ Expected Sarsa \ Q-Learning On-Policy \ Q-Learning Off-Policy) - [x] DQN(Deep Q Network) - [x] Policy Gradient(REINFORCE) - [x] A2C(Advantage Actor-Critic) - [x] PPO(Proximal Policy Optimization) - [x] DDPG(Deep Deterministic Policy Gradient) - [x] TD3(Twin Delayed Deep Deterministic Policy Gradient Algorithm) - [x] SAC(Soft Actor Critic) - [ ] IPPO(Independent Proximal Policy Optimization) - [ ] VDN(Value-Decomposition Networks) - [ ] QMIX(Monotonic Value Function Factorisation) - [ ] MADDPG(Multi-Agent Deep Deterministic Policy Gradient) - [ ] MAPPO(Multi-Agent Proximal Policy Optimization) ## Code practices for the MathFoundationRL project ### Basic algorithm theory learning https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning ### Basic algorithm theory learning notes https://blog.csdn.net/qq_42828479/category_12665114.html?spm=1001.2014.3001.5482 ### Basic algorithm practice https://blog.csdn.net/qq_42828479/category_12774316.html?spm=1001.2014.3001.5482 ### Reference Projects https://github.com/boyu-ai/Hands-on-RL https://github.com/datawhalechina/easy-rl https://github.com/jwk1rose/RL_Learning ### Prof. Shiyu Zhao YYDS