# TransTrack **Repository Path**: verigle/TransTrack ## Basic Information - **Project Name**: TransTrack - **Description**: Multiple-Object Tracking with Transformer - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-02-16 - **Last Updated**: 2022-02-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## TransTrack: Multiple-Object Tracking with Transformer [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) ![](transtrack.png) ## Introduction [TransTrack: Multiple-Object Tracking with Transformer](https://arxiv.org/abs/2012.15460) ## Models Training data | Training time | Validation MOTA | download :---:|:---:|:---:|:---: [crowdhuman, mot_half](track_exps/crowdhuman_mot_trainhalf.sh) | 36h + 1h | 65.4 | [model](https://drive.google.com/drive/folders/1DjPL8xWoXDASrxgsA3O06EspJRdUXFQ-?usp=sharing) [crowdhuman](track_exps/crowdhuman_train.sh) | 36h | 53.8 | [model](https://drive.google.com/drive/folders/1DjPL8xWoXDASrxgsA3O06EspJRdUXFQ-?usp=sharing) [mot_half](track_exps/mot_trainhalf.sh) | 8h | 61.6 | [model](https://drive.google.com/drive/folders/1DjPL8xWoXDASrxgsA3O06EspJRdUXFQ-?usp=sharing_) Models are also available in [Baidu Drive](https://pan.baidu.com/s/1dcHuHUZ9y2s7LEmvtVHZZw) by code m4iv. #### Notes - Evaluating crowdhuman-training model and mot-training model use different command lines, see Steps. - We observe about 1 MOTA noise. - If the resulting MOTA of your self-trained model is not desired, playing around with the --track_thresh sometimes gives a better performance. - The training time is on 8 NVIDIA V100 GPUs with batchsize 16. - We use the models pre-trained on imagenet. ## Installation The codebases are built on top of [Deformable DETR](https://github.com/fundamentalvision/Deformable-DETR) and [CenterTrack](https://github.com/xingyizhou/CenterTrack). #### Requirements - Linux or macOS with Python ≥ 3.6 - PyTorch ≥ 1.5 and [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation. You can install them together at [pytorch.org](https://pytorch.org) to make sure of this - OpenCV is optional and needed by demo and visualization #### Steps 1. Install and build libs ``` git clone https://github.com/PeizeSun/TransTrack.git cd TransTrack cd models/ops python setup.py build install cd ../.. pip install -r requirements.txt ``` 2. Prepare dataset ``` mkdir -p crowdhuman/annotations cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_val.json crowdhuman/annotations/CrowdHuman_val.json cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_train.json crowdhuman/annotations/CrowdHuman_train.json cp -r /path_to_crowdhuman_dataset/CrowdHuman_train crowdhuman/CrowdHuman_train cp -r /path_to_crowdhuman_dataset/CrowdHuman_val crowdhuman/CrowdHuman_val mkdir mot cp -r /path_to_mot_dataset/train mot/train cp -r /path_to_mot_dataset/test mot/test python track_tools/convert_mot_to_coco.py ``` CrowdHuman dataset is available in [CrowdHuman](https://www.crowdhuman.org/). We provide annotations of [json format](https://drive.google.com/drive/folders/1DjPL8xWoXDASrxgsA3O06EspJRdUXFQ-?usp=sharing). MOT dataset is available in [MOT](https://motchallenge.net/). 3. Pre-train on crowdhuman ``` sh track_exps/crowdhuman_train.sh python track_tools/crowdhuman_model_to_mot.py ``` The pre-trained model is available [crowdhuman_final.pth](https://drive.google.com/drive/folders/1DjPL8xWoXDASrxgsA3O06EspJRdUXFQ-?usp=sharing). 4. Train TransTrack ``` sh track_exps/crowdhuman_mot_trainhalf.sh ``` 5. Evaluate TransTrack ``` sh track_exps/mot_val.sh sh track_exps/mot_eval.sh ``` #### Notes - Evaluate pre-trained CrowdHuman model on MOT ``` sh track_exps/det_val.sh sh track_exps/mot_eval.sh ``` ## License TransTrack is released under MIT License. ## Citing If you use TransTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entries: ```BibTeX @article{transtrack, title = {TransTrack: Multiple-Object Tracking with Transformer}, author = {Peize Sun and Yi Jiang and Rufeng Zhang and Enze Xie and Jinkun Cao and Xinting Hu and Tao Kong and Zehuan Yuan and Changhu Wang and Ping Luo}, journal = {arXiv preprint arXiv: 2012.15460}, year = {2020} } ```