# awesome-robotic-programming **Repository Path**: voidwu/awesome-robotic-programming ## Basic Information - **Project Name**: awesome-robotic-programming - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-04-02 - **Last Updated**: 2022-04-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: paper-session ## README # awesome-robotic-programming ## Content - [AI Planning + Reinforcement Learning](#planning_rL) - [Hierarchical Reinforcement Learning](#hierarchical_rl) ## AI Planning + Reinforcement Learning AI Planning and Reinforcement Learning are used to learn robotic programs. | Paper Title | Conference | Year | Link | | ---- | ---- | ---- | ---- | |AI Planning Annotation for Sample Efficient Reinforcement Learning|arXiv|2022|[link](https://arxiv.org/abs/2203.00669)| |AI Planning Annotation in Reinforcement Learning: Options and Beyond|ICAPS|2021|[link](https://prl-theworkshop.github.io/prl2021/papers/PRL2021_paper_36.pdf)| |Symbolic Plans as High-Level Instructions for Reinforcement Learning|ICAPS|2020|[link](https://ojs.aaai.org/index.php/ICAPS/article/view/6750/6604)| |PEORL: Integrating Symbolic Planning and Hierarchical Reinforcement Learning for Robust Decision-Making|IJCAI|2018|[link](https://www.ijcai.org/Proceedings/2018/0675.pdf)| ## Hierarchical Reinforcement Learning Hierarchical Reinforcement Learning (HRL) methods attempt to address this scalability issue by learning action selection policies at multiple levels of temporal abstraction. | Paper Title | Conference | Year | Link | | ---- | ---- | ---- | ---- | |Learning Representations in Model-Free Hierarchical Reinforcement Learning|AAAI|2019|[link](https://arxiv.org/abs/1810.10096v3)| |Data-efficient hierarchical reinforcement learning|NIPS|2018|[link](https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html)| |Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation|NIPS|2016|[link](https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html)|