# figet-hyperbolic-space **Repository Path**: wangcl_deep/figet-hyperbolic-space ## Basic Information - **Project Name**: figet-hyperbolic-space - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-28 - **Last Updated**: 2024-10-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Fine-Grained Entity Typing in Hyperbolic Space Code for the paper ["Fine-Grained Entity Typing in Hyperbolic Space"](https://www.aclweb.org/anthology/W19-4319) published at RepL4NLP @ ACL 2019 Model overview:

## Citation The source code and data in this repository aims at facilitating the study of fine-grained entity typing. If you use the code/data, please cite it as follows: ``` @inproceedings{lopez-etal-2019-fine, title = "Fine-Grained Entity Typing in Hyperbolic Space", author = "L{\'o}pez, Federico and Heinzerling, Benjamin and Strube, Michael", booktitle = "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)", month = aug, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W19-4319", pages = "169--180", } ``` ## Dependencies * ``PyTorch 1.1`` * ``tqdm`` * ``tensorboardX`` * ``pyflann`` A conda environment can be created as well from the ``environment.yml`` file. To embed the graphs into the different metric spaces the library [Hype](https://github.com/facebookresearch/poincare-embeddings/) was used. ## Running the code ### 1. Download data Download and uncompress Ultra-Fine dataset and GloVe word embeddings: ``` ./scripts/figet.sh get_data ``` ### 2. Preprocess data The parameter ``freq-sym`` can be replaced to store different preprocessing configurations: ``` ./scripts/figet.sh preprocess freq-sym ``` ### 3. Train model The name of the preprocessing used in the previous step must be given as a parameter. ``` ./scripts/figet.sh train freq-sym ``` ### 3. Do inference ``` ./scripts/figet.sh inference freq-sym ``` ## Acknowledgements We thank to [Choi et al](https://homes.cs.washington.edu/~eunsol/papers/acl_18.pdf) for the release of the Ultra-Fine dataset and [their model](https://github.com/uwnlp/open_type). ## License [MIT](LICENSE)