# LocalTrans **Repository Path**: wangerniu/LocalTrans ## Basic Information - **Project Name**: LocalTrans - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-31 - **Last Updated**: 2024-10-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution Homography Estimation](http://www.liuyebin.com/localtrans/localtrans.html) Ruizhi Shao*, Gaochang Wu*, Yuemei Zhou, Ying Fu, Lu Fang, Yebin Liu [![report](https://img.shields.io/badge/arxiv-report-red)](https://arxiv.org/abs/2106.04067) This repository contains the official pytorch implementation of ”*LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution Homography Estimation*“. ![Teaser Image](assets/teaser.jpg) ## Requirements - pytorch - matplotlib - numpy - cv2 - tensorboard - kornia - imageio ## Pretrained Model We have provided pretrained model under several settings in [One Drive](https://mailstsinghuaeducn-my.sharepoint.com/:f:/g/personal/shaorz20_mails_tsinghua_edu_cn/Et6rFUvWy8VNjC6gDWhpOSoBjZ9ISDTGkaTBumLafQ9asw?e=IQe8Or) ## Training To train localtrans on the COCO dataset in different setting, run the following code: ``` sh train.sh ``` ## Testing Run the following code to test on the COCO test dataset. ``` sh test.sh ``` ## Citation ``` @inproceedings{shao2021localtrans, title={LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution Homography Estimation}, author={Shao, Ruizhi and Wu, Gaochang and Zhou, Yuemei and Fu, Ying and Fang, Lu and Liu, Yebin}, booktitle={IEEE Conference on Computer Vision (ICCV 2021)}, year={2021}, } ```