# A_Reinforcement_Learning_Paradigm_of_Configuring_Visual_Enhancement_for_Object_Detection_in_Underwater_Scenes **Repository Path**: wanghaoupc/RL_Configuring_VisualEnhancment_for_ObjectDetection ## Basic Information - **Project Name**: A_Reinforcement_Learning_Paradigm_of_Configuring_Visual_Enhancement_for_Object_Detection_in_Underwater_Scenes - **Description**: RL_Configuring_VisualEnhancment_for_ObjectDetection - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 1 - **Created**: 2021-08-10 - **Last Updated**: 2023-08-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # A Reinforcement Learning Paradigm of Configuring Visual Enhancement for Object Detection in Underwater Scenes #### Prerequisites 1. Python 3.7 2. CUDA 10.2 #### Compilation Install all the python dependencies using pip: pip install -r requirements.txt #### Data Preparation Prepare the dataset according to https://blog.csdn.net/weixin_48994268/article/details/115282688 and put the data into the corresponding folder as follows: RLVEOD ├── data │ ├── images │ │ ├── train │ │ ├── test │ │ └── demo │ ├── labels │ │ ├── train (1) │ │ └── test (2) │ └── ImageSets │ ├── train.txt │ ├── test.txt │ └── demo.txt └── RL └── img ├── train │ └── labels │ └── test (Same as (1)) └── test └── labels └── test (Same as (2)) #### Model Preparation Prepare the YOLOv5s well-trained object detector by https://github.com/ultralytics/yolov5 and put it into: ./RLVEOD/RL/yolov5s/weights/ #### Train CUDA_VISIBLE_DEVICES=$GPU_ID python main #### Test (Change the default value of --test to True and the default value of --model_path to $model path in ./checkpoints) CUDA_VISIBLE_DEVICES=$GPU_ID python main #### Demo (Change the default value of --demo to True and the default value of --model_path to $model path in ./checkpoints) CUDA_VISIBLE_DEVICES=$GPU_ID python main