diff --git "a/AICore Profiling\345\267\245\345\205\267\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" "b/AICore Profiling\345\267\245\345\205\267\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" new file mode 100644 index 0000000000000000000000000000000000000000..b191438616d46e9637e1c809886202c54d5472a9 --- /dev/null +++ "b/AICore Profiling\345\267\245\345\205\267\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" @@ -0,0 +1,69 @@ +## 1 背景 +(1)模型调测过程中,性能分析是一大块工作,所以一款好用的profiling工具必不可少。 +(2)630之前的profiling工具其实就已经有了,但易用性上直接让人感到反感,这次改版之后,改进很大,数据采集和数据解析在易用性上也有很大提升。 + +## 2 数据采集(训练任务JOB) +其他方式不在这里介绍,这里只介绍设置环境变量的方式,开启profiling功能: +``` +export PROFILING_MODE=true +export PROFILING_OPTIONS='{"output": "./cann_profiling", "training_trace": "on", "task_trace": "on", "aicpu": "on", "fp_point": "", "bp_point": "", "aic_metrics": "PipeUtilization"}' +``` +其中,output指明采集数据的存放目录,需提前创建好目录, aicpu为aicpu算子开关,aic_metrics为aicore算子开关,其他参数见说明[CANN V100R020C10 开发辅助工具指南 (训练) 01](https://support.huawei.com/enterprise/zh/doc/EDOC1100164832/6f4033fd) + +设置好环境变量后,然后执行训练,之后会在./cann_profiling目录下产生profiling数据: +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig1.png) + + +## 3 数据解析 +### 3.1 解析工具 +解析数据必须要用到昇腾软件包的安装目录下的msprof工具,一般默认路径为: +``` +x86路径为: +/usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/msprof.py + +arm路径为: +/usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/msprof.py +``` +以下指令以x86_64环境为例 + +### 3.2 解析profiling数据 +``` +python3.7 /usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/msprof.py import -dir ./cann_profiling/ +``` +其中,./cann_profiling为上面采集数据的保存路径 +执行过程: +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig2.png) + +执行之后会在cann_profiling目录下生成sqlite等数据目录: +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig3.png) + +### 3.3 导出timeline数据 +导出timeline数据,执行如下命令: +``` +python3.7 /usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/msprof.py export timeline -dir ./cann_profiling/ +``` +如果需要指定某一个迭代step,可设置参数:-iteration-id +执行之后会生成timeline文件夹: +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig4.png) + +里面的json文件可以用chrome://tracing查看 +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig5.png) + +### 3.4 导出summary数据 +导出summary数据,执行如下命令: +``` +python3.7 /usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/msprof.py export summary -dir ./cann_profiling/ +``` + +如果需要指定某一个迭代step,可设置参数:-iteration-id +执行之后会生成summary文件夹,里面csv文件就是summary数据,能看到算子名称,算子执行顺序,算子耗时。 +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig6.png) + +csv文件 +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig7.png) + +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/aicore_profiling_fig8.png) + +## 4 展望 +(1)该工具还可以profiling系统性能数据,如PCIE,DVPP,HBM等。 +(2)目前算子的input shape及其dtype、format,output shape及其dtype、format等信息(task_info信息)pytorch场景没有生成,tf场景是有的。因为对于op_based场景,GE没有上报这些信息。已经提了这个需求。 diff --git "a/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\347\246\273\347\272\277\346\216\250\347\220\206.md" "b/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\347\246\273\347\272\277\346\216\250\347\220\206.md" new file mode 100644 index 0000000000000000000000000000000000000000..9856b569707c3e9ae26fafd634a3d94657b3f19d --- /dev/null +++ "b/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\347\246\273\347\272\277\346\216\250\347\220\206.md" @@ -0,0 +1,1476 @@ +# Ascend PyTorch 模型众智文档-离线推理 +- [1 概述](#1-概述) + - [1.1 目标读者](#11-目标读者) + - [1.2 原理与方案](#12-原理与方案) + - [1.3 环境搭建](#13-环境搭建) +- [2 推理指导](#2-推理指导) + - [2.1 推理流程](#21-推理流程) + - [2.1.1 pytorch模型导出onnx](#211-pytorch模型导出onnx) + - [2.1.2 onnx模型转om模型](#212-onnx模型转om模型) + - [2.1.3 数据验证集预处理](#213-数据验证集预处理) + - [2.1.4 离线推理](#214-离线推理) + - [2.1.5 精度统计](#215-精度统计) + - [2.1.6 性能对比](#216-性能对比) + - [2.2 模型转换指导](#22-模型转换指导) + - [2.3 精度调试指导](#23-精度调试指导) + - [2.4 性能优化指导](#24-性能优化指导) +- [3 推理案例](#3-推理案例) + - [3.1 推理案例](#31-推理案例) + - [3.2 Inception-V4端到端推理要点](#32-Inception-V4端到端推理要点) + - [3.3 UNet端到端推理要点](#33-UNet端到端推理要点) + - [3.4 SSD端到端推理要点](#34-SSD端到端推理要点) + - [3.5 maskrcnn端到端推理指导](#35-maskrcnn端到端推理指导) +- [4 附录](#4-附录) + - [4.1 机器申请及使用指南](#41-机器申请及使用指南) + - [4.2 交付标准与规范](#42-交付标准与规范) + - [4.3 深度学习指导](#43-深度学习指导) + + + + +## 1 概述 + +- **[目标读者](#11-目标读者)** + +- **[原理与方案](#12-原理与方案)** + +- **[环境搭建](#13-环境搭建)** + +### 1.1 目标读者 + +本文目标读者为Ascend模型端到端推理开发者,用于指导开发者在onnx框架下,实现模型端到端推理精度性能达标。 + +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +>**说明:** +> +>开发者除编程语言知识外,应对如下基础知识有一定的了解和熟悉: +>1. 深度学习方法(cv, nlp等); +>2. PyTorch写法及其运行原理; +>3. onnx模型细节; +>2. CANN运作流程; + +### 1.2 原理与方案 +- 精度性能要求 + + Ascend PyTorch模型离线推理目标是pytorch模型在npu Ascend 310卡上离线推理的精度与gpu T4卡上推理精度一致,推理性能超过T4。 + +- Ascend PyTorch模型离线推理流程 + + 首先在github上找到PyTorch实现的引用多包含预训练的模型代码仓,参考代码仓预处理模型加载的代码加载pth并转换为onnx模型,再由onnx模型转换为om模型,参考代码仓预训练模型数据预处理代码对用来评价模型精度的数据集进行预处理,使用昇腾benchmark工具执行om模型的离线推理,最后参考代码仓数据后处理代码进行后处理,统计出om模型的推理精度。使用benchmark工具测试om推理性能,对性能不达标的om模型,使用profiling工具分析,通过模型调优,算子开发与算子融合等方法实现达标 + + Ascend PyTorch模型离线推理流程: +![](figures/pyotrch_offline_infer.png) + + +### 1.3 环境搭建 + +**Ascend相关文档与软件发布在华为云[support地址](https://support.huawei.com/enterprise/zh/category/ascend-computing-pid-1557196528909)CANN和A300-3010** + +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> **若使用搭建完成的环境,可跳过此步骤。一般情况下,华为默认会提供搭建完成的环境。** + + +1. Ascend的run包安装。 + - 在Ascend NPU系列设备上部署开发环境,请参考[《CANN V100R020C10 软件安装指南》](https://support.huawei.com/enterprise/zh/doc/EDOC1100164870/59fb2d06)的“获取软件包”和”安装开发环境“章节,完成安装前准备。 + + - 请参考[《CANN V100R020C10 软件安装指南》](https://support.huawei.com/enterprise/zh/doc/EDOC1100164870/59fb2d06)的”安装昇腾芯片驱动和固件“ -\>“安装开发套件和框架插件包”章节,完成安装。 + + >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) **说明:** + > + >安装驱动和固件需要root用户,若使用默认路径安装: + > + > ps. 如升级run包,建议 ./A300-3010-npu-driver\_\{version\}\_centos7.6-gcc4.8.5-x86_64.run --uninstall;rm -rf /usr/local/Ascend;reboot + > + >安装驱动:./A300-3010-npu-driver\_\{version\}\_centos7.6-gcc4.8.5-x86_64.run --full --quiet + > + >安装固件:./A300-3010-npu-firmware-\{version\}.run --full --quiet + > + >安装CANN包:./Ascend-cann-toolkit-\{version\}-linux-x86_64.run --install --quiet + > + >解压Ascend-cann-benchmark_\{version\}-Linux-x86_64.zip,获取benchmark工具与脚本 + > + >若报无HwHiAiUser用户则执行useradd HwHiAiUser,安装固件若报Not a physical-machine, firmware upgrade does not support.则不必安装固件,若报错ls: cannot access '/usr/local/Ascend/ascend-toolkit/5.0.1/x86_64-linux/toolkit/python/site-packages/bin': No such file or directory则export PATH=/usr/local/python3.7.5/bin:¥PATH;export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:¥LD_LIBRARY_PATH。安装驱动需要重启。 + +2. 深度学习框架与第三方库 + +``` +pytorch >= 1.5.0 +torchvision == 0.7.0 +onnx == 1.7.0 +onnxruntime == 1.5.2 +onnxoptimizer == 0.1.1 + +numpy == 1.18.5 +Pillow == 7.2.0 +opencv-python == 4.2.0.34 +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> +> X86架构:pytorch和torchvision可以通过官方下载whl包安装,其他可以通过pip install 包名 安装 +> +> Arm架构:pytorch,torchvision和opencv可以通过github下载源码编译安装,其他可以通过pip install 包名 安装 +> +> 以上为多数网络需要安装的软件与推荐的版本,根据实际情况安装。如果python脚本运行过程中import 模块失败,安装相应模块即可,如果报错是缺少动态库,网上搜索报错信息找到相应安装包,执行yum install 包名安装即可 + +## 2 推理指导 + +- **[推理流程](#21-推理流程)** + +- **[模型转换指导](#22-模型转换指导)** + +- **[精度调试指导](#23-精度调试指导)** + +- **[性能换指导](#24-性能换指导)** + +### 2.1 推理流程 +以EfficientNet-b0为例介绍端到端推理涉及到的所有流程 +#### 2.1.1 pytorch模型导出onnx + - 获取pytorch模型代码与权重文件 + 基于PyTorch框架的EfficientNet模型代码与pth权重文件可以从开源[github网址](https://github.com/lukemelas/EfficientNet-PyTorch)获取 +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> 1.如果Ascend 910训练提供了pytorch模型代码与权重文件,那么优先使用910训练的代码与权重做离线推理,然后om模型精度对齐训练权重的精度 +> 2.否则在github上找到pytorch实现的尽可能是模型作者的或引用量最多的与提供pth权重文件的开源模型代码仓 +> 3.如果开源代码仓提供了多个pth权重文件,使用常用的基础的那个配置的权重文件即可,并且模型支持多任务时只需要针对一个基础的任务做推理 +> 4.如果开源代码仓没有提供pth权重文件,需要暂时使用开源代码仓训练脚本简单训练一个权重,然后om模型精度对齐pth权重在线推理的精度 + + 参考github网址说明安装efficientnet_pytorch +``` +git clone https://github.com/lukemelas/EfficientNet-PyTorch +cd EfficientNet-Pytorch +pip3.7 install -e . +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> 有些模型代码仓没有提供安装脚本,可以在python脚本中通过添加如下代码引用EfficientNet-PyTorch的EfficientNet类: +> sys.path.append(r"./EfficientNet-PyTorch") +> from efficientnet_pytorch import EfficientNet + + [下载pth权重文件](https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth) +``` +wget https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth +``` + +- 导出onnx模型 + - 一般模型代码仓提供导出onnx的脚本,如果没有提供则需要调用onnx的torch.onnx.export接口导出onnx。参考EfficientNet-PyTorch模型预训练加载与导出onnx的代码,写脚本导出onnx。 +``` +def pth2onnx(input_file, output_file): + model = EfficientNet.from_pretrained('efficientnet-b0', weights_path=input_file) + model.eval() + input_names = ["image"] + output_names = ["class"] + dynamic_axes = {'image': {0: '-1'}, 'class': {0: '-1'}} + dummy_input = torch.randn(1, 3, 224, 224) + torch.onnx.export(model, dummy_input, output_file, input_names = input_names, dynamic_axes = dynamic_axes, output_names = output_names, opset_version=11, verbose=True) +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> 目前atc工具支持的onnx算子版本opset_version为11 +> 如上导出的onnx模型使用netron查看其输入节点image的shape是(-1,3,224,224),-1代表onnx模型是动态batch的,当用tensorrt在t4上测onnx的性能时可以指定任意batch的输入(batch,3,224,224),dynamic_axes是动态batch参数,'image': {0: '-1'}表示输入image的第一维是-1即batch维为-1表示动态。 +> 当然像少数模型如shufflenetv1即使设置dynamic_axes实际上导出的onnx也是固定batch的,转换为om时指定的batch size要和onnx的固定batch一样才不会报错 +> 导出onnx出现如下错误Exporting the operator eye to ONNX opset version 11 is not supported,可以参考[issue](https://github.com/pytorch/pytorch/pull/41357)进行修改 + + 目前atc不支持efficientnet-b0模型中自定义pad算子,使用开源提供的模型可视化工具Netron可以看到这部分算子名称与连接关系,使用脚本删除自定义pad并使用卷积中的pad属性实现同样的功能: +``` +import onnx +model = onnx.load("./efficientnet-b0.onnx") +model.graph.node[15].input[0] = 'image' +model.graph.node[34].input[0] = '388' +model.graph.node[66].input[0] = '429' +model.graph.node[98].input[0] = '470' +model.graph.node[131].input[0] = '512' +model.graph.node[163].input[0] = '553' +model.graph.node[196].input[0] = '595' +model.graph.node[228].input[0] = '636' +model.graph.node[261].input[0] = '678' +model.graph.node[294].input[0] = '720' +model.graph.node[326].input[0] = '761' +model.graph.node[359].input[0] = '803' +model.graph.node[392].input[0] = '845' +model.graph.node[424].input[0] = '886' +model.graph.node[457].input[0] = '928' +model.graph.node[490].input[0] = '970' +model.graph.node[523].input[0] = '1012' +delete_id_range = [[0, 14], [19, 33], [51, 65], [83, 97], [116, 130], [148, 162], [181, 195], + [213, 227], [246, 260], [279, 293], [311, 325], [344, 358], [377, 391], + [409, 423], [442, 456], [475, 489], [508, 522]] +modify_ids = [15, 34, 66, 98, 131, 163, 196, 228, 261, 294, 326, 359, 392, 424, 457, 490, 523] +def indelrang(id): + for start, end in delete_id_range: + if id >= int(start) and id <= int(end): + return True +return False +max_idx = len(model.graph.node) +rm_cnt = 0 +for i in range(max_idx): + if indelrang(i): + n = model.graph.node[i - rm_cnt] + model.graph.node.remove(n) + print("remove {} total {}".format(n.name, len(model.graph.node))) + rm_cnt += 1 + else: + if i in modify_ids: + kh = model.graph.node[i - rm_cnt].attribute[2].ints[1] + if kh % 2 != 0: + pad = (kh - 1) // 2 + else: + pad = kh // 2 + model.graph.node[i - rm_cnt].attribute[3].ints[0] = pad + model.graph.node[i - rm_cnt].attribute[3].ints[1] = pad + model.graph.node[i - rm_cnt].attribute[3].ints[2] = pad + model.graph.node[i - rm_cnt].attribute[3].ints[3] = pad + print("adapt pad for", model.graph.node[i - rm_cnt].name) +onnx.checker.check_model(model) +onnx.save(model, "./efficientnet-b0_adaptpad.onnx") +``` +但是由于强行更改了pad没有重新训练会导致精度下降2%,使用如下脚本可以测试onnx模型推理的精度: +``` +import os, sys +from PIL import Image +import numpy as np +import torch +import onnx +import onnxruntime +class ONNXModel(): + def __init__(self, onnx_path): + self.onnx_session = onnxruntime.InferenceSession(onnx_path) + self.input_name = self.get_input_name(self.onnx_session) + self.output_name = self.get_output_name(self.onnx_session) + def get_output_name(self, onnx_session): + output_name = [] + for node in onnx_session.get_outputs(): + output_name.append(node.name) + return output_name + def get_input_name(self, onnx_session): + input_name = [] + for node in onnx_session.get_inputs(): + input_name.append(node.name) + return input_name + def get_input_feed(self, input_name, image_numpy): + input_feed = {} + for name in input_name: + input_feed[name] = image_numpy + return input_feed + def forward(self, image_numpy): + input_feed = self.get_input_feed(self.input_name, image_numpy) + segmap = self.onnx_session.run(self.output_name, input_feed=input_feed) + return segmap +def to_numpy(tensor): + return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() +if __name__ == '__main__': + model_file = sys.argv[1]#'/home/adapt/efficientnet/efficientnet-b0.onnx' + prep_file_path = sys.argv[2]#'/home/adapt/efficientnet/prep_dataset' + output_path = sys.argv[3]#'/home/adapt/efficientnet/infer_onnx_res' + if not os.path.exists(output_path): + os.makedirs(output_path) + net = ONNXModel(model_file) + files = os.listdir(prep_file_path) + for file in files: + img = np.fromfile(os.path.join(prep_file_path, file), dtype='float32') + img = np.reshape(img, (3, 224, 224)) + img = torch.from_numpy(img) + img = img.unsqueeze(0) + output = net.forward(to_numpy(img))[0] + output = np.array(output) + np.savetxt(os.path.join(output_path, file.split('.')[0] + '_1.txt'), output, fmt='%.6f') +``` +实际的解决方法是使用onnxsim去除自定义pad并优化网络: +``` +pip3.7 install onnx-simplifier +python3.7 -m onnxsim --input-shape="1,3,224,224" efficientnet-b0.onnx efficientnet-b0_sim.onnx +``` + + - 这里也总结一些其它模型遇到的问题。导出onnx是需要可以在cpu上执行的脚本,因此可能需要将权重map到cpu。如果gpu训练时使用了DataParallel,map到cpu上时模型结构需要去掉DataParallel,同时删除权重节点名前缀module.: +``` +def proc_nodes_module(checkpoint): + new_state_dict = OrderedDict() + for k, v in checkpoint.items(): + if "module." in k: + name = k.replace("module.", "") + else: + name = k + new_state_dict[name] = v + return new_state_dict +net = DnCNN(channels=1, num_of_layers=opt.num_of_layers) +model = net #model = nn.DataParallel(net, device_ids=device_ids).cuda() +checkpoint = torch.load(os.path.join('./', 'net.pth'), map_location='cpu') +checkpoint = proc_nodes_module(checkpoint) +model.load_state_dict(checkpoint) +``` +而对于910训练出的权重文件,删除前缀module.可能需要修改如下: +``` +def proc_nodes_module(checkpoint, AttrName): +... + for k, v in checkpoint[AttrName].items(): +... +checkpoint['state_dict'] = proc_nodes_module(checkpoint, 'state_dict') +... +model.load_state_dict(checkpoint['state_dict']) +``` + - 可视化工具netron可以查看模型图,[获取可视化工具netron](https://github.com/lutzroeder/netron/releases/download/v4.9.5/Netron-Setup-4.9.5.exe),om模型文件与atc工具dump的.pbtxt中间图模型文件也可以用华为修改后的netron查看,请联系华为方。使用netron可以方便的查看模型结构,权重与算子属性,比如输入节点名与其shape,输出的所有节点名与其shape + + - 有些pytorch算子onnx还不支持,根据开源社区提供的方法等价替换这些算子,如果不能完全等价替换而且npu已经支持该算子,则需要修改模型代码将该算子封装为自定义算子,然后导出包含自定义算子的onnx + + 例如,pytorch代码的adaptive_avg_pool2d目前onnx还不支持,所以导出onnx时报错,解决方案是尝试使用avg_pool2d替换adaptive_avg_pool2d,但当input的最后两维不是output的整数倍时,adaptive_avg_pool2d不能完全等价替换为avg_pool2d,而npu有adaptive_avg_pool2d算子的实现,所以解决方案变为将adaptive_avg_pool2d改为自定义算子导出onnx,自定义算子不需要具体实现代码(因此导出的onnx不能使用onnxruntime进行推理,还需要将pytorch的_check_onnx_proto(proto)改为pass去除导出onnx时进行检查),只要自定义算子返回的输出shape与原算子输出的shape保持一致即可,相当于onnx只包含这个算子的声明(数据类型与属性需要与npu版算子对应),在onnx转为om时,atc工具的onnx插件如果支持该算子,atc工具会根据这个声明找到该算子npu的实现。 + + 在CANN包安装目录的opp下搜索AdaptiveAvgPool2d,查看npu的adaptive_avg_pool2d声明: +``` +REG_OP(AdaptiveAvgPool2d) + .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) + .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) + .REQUIRED_ATTR(output_size, ListInt) + .OP_END_FACTORY_REG(AdaptiveAvgPool2d) +``` +修改模型代码,将adaptive_avg_pool2d改为自定义算子,然后导出onnx,其中output_size_i代表int64类型的算子属性: +``` +class AdaptiveAvgPoolOp(torch.autograd.Function): + @staticmethod + def forward(ctx, x, output_size): + out = torch.randn(x.shape[0], x.shape[1], output_size[0], output_size[1]).to(x.dtype) + return out + @staticmethod + def symbolic(g, x, output_size): + out = g.op('AdaptiveAvgPool2d', x, output_size_i = output_size) + return out +def adaptive_avg_pool_op(x, output_size): + out = AdaptiveAvgPoolOp.apply(x, output_size) + return out +x = F.adaptive_avg_pool2d(input, output_size=bin_size)替换为x = adaptive_avg_pool_op(input, (bin_size, bin_size)) +``` + + - 目标检测类网络nms与roi模块会将包含的许多动态shape小算子引入onnx,但是atc工具暂不支持动态shape的算子,解决方案是使用大颗粒npu的nms与roi自定义算子替换pytorch模型的nms与roi函数(这些小算子可以在转onnx时的verbose打印中找到其对应的pytorch模型代码,从而找到引入这些算子的函数)。参见本文3.5 maskrcnn端到端推理指导-mmdetection框架的maskrcnn + + - 开源detectron2目前仅支持pytorch1.8导出onnx,但是基于detectron2框架ascend 910训练的模型代码依赖华为npu版的pytorch1.5.0,无论cpu,gpu还是npu训练出的权重都是数值,只要保存权重的网络节点结构相同,就可以使用开源的detectron2加载npu训练的权重基于pytorch1.8导出onnx。参见本文3.5 maskrcnn端到端推理指导-detectron2框架npu训练的maskrcnn + + +#### 2.1.2 onnx模型转换为om模型 + - 使用Ascend atc工具将onnx转换为om +``` +CANN安装目录 +export install_path=/usr/local/Ascend/ascend-toolkit/latest +export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH +export PYTHONPATH=${install_path}/atc/python/site-packages:$PYTHONPATH +export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH +export ASCEND_OPP_PATH=${install_path}/opp +export ASCEND_AICPU_PATH=/usr/local/Ascend/ascend-toolkit/latest +将atc日志打印到屏幕 +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 +设置日志级别 +#export ASCEND_GLOBAL_LOG_LEVEL=0 #debug 0 --> info 1 --> warning 2 --> error 3 +开启ge dump图 +#export DUMP_GE_GRAPH=2 +参考命令 +atc --framework=5 --model=efficientnet-b0_sim.onnx --output=efficientnet-b0_bs16 --input_format=NCHW --input_shape="image:16,3,224,224" --log=debug --soc_version=Ascend310 +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> 1.--input_shape是模型输入节点的shape,可使用netron查看onnx输入节点名与shape,batch维值为16,即会生成batch size为16的om模型。无论onnx模型的batch是多少,只要通过--input_shape指定batch为正整数,就得到对应batch size的om模型,om模型虽然支持动态batch,但是我们不使用动态batch的om模型 +> 2.--out_nodes选项可以指定模型的输出节点,形如--out_nodes="节点1名称:0;节点2名称:0;节点3名称:0"就指定了这三个节点每个节点的第1个输出作为模型的第一,第二,第三个输出 +> 3.算子精度通过参数--precision_mode选择,默认值force_fp16 +> 3.开启autotune方法:添加--auto_tune_mode="RL,GA" +> 5.开启repeat autotune方法:添加--auto_tune_mode="RL,GA"同时export REPEAT_TUNE=True +> 6.配置环境变量ASCEND_SLOG_PRINT_TO_STDOUT和ASCEND_GLOBAL_LOG_LEVEL,然后执行命令atc ... > atc.log可以输出日志到文件 +> 7.配置环境变量DUMP_GE_GRAPH后执行atc命令时会dump中间过程生成的模型图,使用华为修改的netron可以可视化这些.pbtxt模型文件,如需要请联系华为方,当atc转换失败时可以查看ge生成的中间过程图的模型结构与算子属性,分析出哪个算子引起的问题 +> 8.如果使用aipp进行图片预处理需要添加--insert_op_conf=aipp_efficientnet-b0_pth.config +> 9.atc工具的使用可以参考[CANN 5.0.1 开发辅助工具指南 (推理) 01](https://support.huawei.com/enterprise/zh/doc/EDOC1100191944?idPath=23710424%7C251366513%7C22892968%7C251168373) +> 10.若模型包含atc不支持的算子,算子问题可以规避的先通过修改模型进行规避,并在modelzoo上提issue或联系华为方 + +#### 2.1.3 数据验证集预处理 +- 参考模型代码仓在验证集上评测精度的推理脚本里的数据预处理代码进行预处理脚本的编写 + + - 请确保预处理脚本的数据集预处理方法与代码仓评测精度的脚本采用的预处理方法保持一致,通常包括减均值除方差,缩放加pad、中心裁剪,除以255,nhwc转换为nchw,rgb转换为bgr等 + + ImageNet官网的5万张验证集图片与标签分别是datasets/ImageNet/val_union与datasets/ImageNet/val_label.txt。预处理有两种方式:不使用aipp的二进制输入即需要编写预处理脚本处理数据集,以获得最佳精度;使用aipp的jpg输入可以直接读取原图即硬件进行预处理,需要使用昇腾开发的DVPP模块和AIPP模块,因为解码、缩放等处理和官网训练预处理有一定区别,最终精度可能会下降0.7%左右。因此本文推荐使用不使用aipp进行预处理,这里给出的使用aipp进行预处理的方法用作学习 + + 1.不使用aipp进行预处理,参考EfficientNet-PyTorch中的预处理代码,通过缩放、中心裁剪,totensor、均值方差归一化,输出为二进制文件: + ``` + def preprocess(src_path, save_path): + + preprocess = transforms.Compose([ + transforms.Resize(256, Image.BICUBIC), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), + ]) + + i = 0 + in_files = os.listdir(src_path) + for file in in_files: + i = i + 1 + print(file, "===", i) + input_image = Image.open(src_path + '/' + file).convert('RGB') + input_tensor = preprocess(input_image) + img = np.array(input_tensor).astype(np.float32) + img.tofile(os.path.join(save_path, file.split('.')[0] + ".bin")) + ``` + ``` + python3.7 imagenet_torch_preprocess.py datasets/ImageNet/val_union ./prep_dataset + python3.7 get_info.py bin ./prep_dataset ./efficientnet_prep_bin.info 224 224 + ``` +预处理后的数据集信息文件efficientnet_prep_bin.info: +``` +0 ./prep_dataset/ILSVRC2012_val_00005654.bin 224 224 +1 ./prep_dataset/ILSVRC2012_val_00033427.bin 224 224 +2 ./prep_dataset/ILSVRC2012_val_00004213.bin 224 224 +... +``` +第一列为样本序号,第二列为预处理后的样本路径,第三四列为预处理后样本的宽高 +2.使用aipp进行预处理,通过DVPP实现解码、缩放功能,输出YUV数据,再通过AIPP进行色域转换及裁剪,最终直接输入网络中进行推理,方便快捷,benchmark工具已集成DVPP功能,只需添加命令行参数-useDvpp=true即开启DVPP。 AIPP功能的开启需要在atc工具转换的过程中通过选项--insert_op_conf=aipp_efficientnet-b0_pth.config添加配置文件,即可与DVPP处理后的数据无缝对接。aipp_efficientnet-b0_pth.config: +``` +aipp_op{ + aipp_mode:static + input_format : YUV420SP_U8 + + csc_switch : true + rbuv_swap_switch : true + + //缩放,中心裁剪,aipp源图大小为16的倍数,偏移与裁剪大小尽量为偶数,若因此导致aipp裁剪图片大小与模型预训练使用的图片裁剪大小有几个像素的差值,使用aipp的端到端推理流程中需要将涉及到模型输入大小的地方调整为aipp裁剪图片大小,使用源图大小的地方调整为aipp源图大小,这可能会引起约0.7%的精度下降 + src_image_size_w : 256 + src_image_size_h : 256 + crop: true + load_start_pos_h : 16 + load_start_pos_w : 16 + crop_size_w : 224 + crop_size_h: 224 + + //均值:255x[0.485, 0.456, 0.406],方差:1/(255x[0.229, 0.224, 0.225]) + min_chn_0 : 123.675 + min_chn_1 : 116.28 + min_chn_2 : 103.53 + var_reci_chn_0: 0.0171247538316637 + var_reci_chn_1: 0.0175070028011204 + var_reci_chn_2: 0.0174291938997821 + + matrix_r0c0: 256 + matrix_r0c1: 0 + matrix_r0c2: 359 + matrix_r1c0: 256 + matrix_r1c1: -88 + matrix_r1c2: -183 + matrix_r2c0: 256 + matrix_r2c1: 454 + matrix_r2c2: 0 + input_bias_0: 0 + input_bias_1: 128 + input_bias_2: 128 +} +``` +``` +python3.7 get_info.py jpg datasets/ImageNet/val_union ImageNet.info +``` +查看ImageNet.info: +``` +0 datasets/ImageNet/val_union/ILSVRC2012_val_00005654.jpeg 500 334 +1 datasets/ImageNet/val_union/ILSVRC2012_val_00033427.jpeg 500 334 +2 datasets/ImageNet/val_union/ILSVRC2012_val_00004213.jpeg 116 87 +... +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) + **说明:** +> +> 这里只给出示例代码,前后处理,配置与评价等脚本来源: +> 1.[gitee benchmark 脚本](https://gitee.com/ascend/cann-benchmark/tree/master/infer/src/scripts) +> 2.[modelzoo案例](https://www.hiascend.com/zh/software/modelzoo) +> + + - 此外对于一些其它模型,pytorch模型支持动态hw的输入,但是onnx模型输入shape的hw维是固定的,因此图片预处理的等比例缩放加pad不会与代码仓的完全一致,但是处理的合理的话对精度影响仅在0.5%之内。如果代码仓导出onnx的脚本或评测精度的脚本推荐了hw,就使用该hw。否则为了对于胖矮型与瘦高型图片不敏感,让预处理后的h与w相同,在评测脚本model推理数据集前添加打印出输入shape的hw维,根据结果为hw选择一个合适的值,或者根据代码仓推理预处理限定的最长边最短边与pad为hw选择一个合适的值,然后将图片按最长边比例将图片等比例缩放到该值,最短边两边补齐pad达到该值。 +以mmdetection框架的maskrcnn预处理为例,由于pytorch模型支持动态hw的输入,参考代码仓转onnx的脚本需要将onnx模型输入h维固定为800,w维固定为1216,通过等比例缩放加pad固定模型预处理后的输入样本的hw维为800,1216: +``` +def resize(img, size): + org_h = img.shape[0] + org_w = img.shape[1] + scale_ratio = min(size[0] / org_w, size[1] / org_h) + new_w = int(np.floor(org_w * scale_ratio)) + new_h = int(np.floor(org_h * scale_ratio)) + resized_img = mmcv.imresize(img, (new_w, new_h), backend='cv2') + return resized_img +def gen_input_bin(file_batches, batch): + for file in file_batches[batch]: + image = mmcv.imread(os.path.join(flags.image_src_path, file), backend='cv2') + image = resize(image, (flags.model_input_width, flags.model_input_height)) + mean = np.array([123.675, 116.28, 103.53], dtype=np.float32) + std = np.array([58.395, 57.12, 57.375], dtype=np.float32) + image = mmcv.imnormalize(image, mean, std) + rh = image.shape[0] + rw = image.shape[1] + pad_left = (flags.model_input_width - rw) // 2 + pad_top = (flags.model_input_height - rh) // 2 + pad_right = flags.model_input_width - pad_left - rw + pad_bottom = flags.model_input_height - pad_top - rh + image = mmcv.impad(image, padding=(pad_left, pad_top, pad_right, pad_bottom), pad_val=0) + image = image.transpose(2, 0, 1) + image.tofile(os.path.join(flags.bin_file_path, file.split('.')[0] + ".bin")) +``` +相应的后处理: +``` +def postprocess_bboxes(bboxes, image_size, net_input_width, net_input_height): + org_w = image_size[0] + org_h = image_size[1] + scale = min(net_input_width / org_w, net_input_height / org_h) + pad_w = net_input_width - org_w * scale + pad_h = net_input_height - org_h * scale + pad_left = pad_w // 2 + pad_top = pad_h // 2 + bboxes[:, 0] = (bboxes[:, 0] - pad_left) / scale + bboxes[:, 1] = (bboxes[:, 1] - pad_top) / scale + bboxes[:, 2] = (bboxes[:, 2] - pad_left) / scale + bboxes[:, 3] = (bboxes[:, 3] - pad_top) / scale + return bboxes +``` +基于detectron2框架的预处理参见3.5 maskrcnn端到端推理指导 + +#### 2.1.4 离线推理 +benchmark工具为华为自研的模型推理工具,支持多种模型的离线推理,能够迅速统计出模型在Ascend310上的性能,支持真实数据和纯推理两种模式,配合后处理脚本,可以实现诸多模型的端到端过程,获取工具及使用方法可以参考[CANN 5.0.1 推理benchmark工具用户指南 01](https://support.huawei.com/enterprise/zh/doc/EDOC1100191895?idPath=23710424%7C251366513%7C22892968%7C251168373) +- 二进制输入 +``` +./benchmark.x86_64 -model_type=vision -device_id=0 -batch_size=1 -om_path=efficientnet-b0_bs1.om -input_text_path=./efficientnet_prep_bin.info -input_width=224 -input_height=224 -output_binary=False -useDvpp=False +``` +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) + **说明:** +> +> -model_type为benchmark支持的模型类型,目前支持的有vision,nmt,widedeep,nlp,yolocaffe,bert,deepfm +> -device_id是指运行在ascend 310的哪个device上,每张ascend 310卡有4个device +> -batch_size是指om模型的batch大小,该值应与om模型的batch大小相同,否则报输入大小不一致的错误 +> -om_path是om模型文件路径 +> -input_text_path为包含数据集每个样本的路径与其相关信息的数据集信息文件路径 +> -input_height为输入高度 +> -input_width为输入宽度 +> -output_binary为以预处理后的数据集为输入,benchmark工具推理om模型的输出数据保存为二进制还是txt,但对于输出是int64类型的节点时,指定输出为txt时会将float类型的小数转换为0而出错 +> -useDvpp为是否使用aipp进行数据集预处理 + + 输出结果默认保存在当前目录result/dumpOutput_device{device_id},性能数据默认保存在result/perf_{vision}_batchsize_{16}_device_{0}.txt。模型只有一个名为class的输出,shape为bs * 1000,数据类型为FP32,对应1000个分类的预测结果,每个输入的输出对应一个{input}_1.bin文件。此外,如果模型有三个输出,则三个输出分别对应{input}_1.bin,{input}_2.bin,{input}_3.bin。 + +- jpg输入 +``` +./benchmark.x86_64 -model_type=vision -device_id=0 -batch_size=1 -om_path=efficientnet-b0_bs1.om -input_text_path=ImageNet.info -input_width=256 -input_height=256 -output_binary=False -useDvpp=true +``` +ImageNet.info为图片信息,注意这里的“input_height”和“input_weight”与AIPP节点输入一致,值为256因为AIPP中做了裁剪,参数-useDvpp=true。 + +#### 2.1.5 精度统计 +- 参考模型代码仓评测精度的脚本,编写后处理统计精度的脚本,然后评测om模型的精度: +``` +python3.7 imagenet_acc_eval.py result/dumpOutput_device0/ datasets/imagenet/val_label.txt ./ result.json +``` +将om输出与数据集标签对比,统计出精度: +``` +{"key": "Top1 accuracy", "value": "76.76%"} {"key": "Top5 accuracy", "value": "93.2%"} +``` +对bs1与bs16的om模型进行精度评测,与pth权重文件的精度相比,下降不超过1%,故精度达标 + +#### 2.1.6 性能对比 +- npu性能数据 + + benchmark工具在整个数据集上推理时也会统计性能数据,但是推理整个数据集较慢,如果这么测性能那么整个推理期间需要确保独占device。为快速获取性能数据,也可以使用benchmark纯推理功能测得性能数据,但是由于随机数不能模拟数据分布,纯推理功能测的有些模型性能数据可能不太准。这里给出两种方式,benchmark纯推理功能测性能仅为快速获取大概的性能数据以便调试优化使用,模型的性能以使用benchmark工具在整个数据集上推理得到bs1与bs16的性能数据为准。 + + 1.benchmark工具在整个数据集上推理获得性能数据 + + batch1的性能,benchmark工具在整个数据集上推理后生成result/perf_vision_batchsize_1_device_0.txt: +``` +[e2e] throughputRate: 243.034, latency: 205733 +[data read] throughputRate: 258.963, moduleLatency: 3.86155 +[preprocess] throughputRate: 258.404, moduleLatency: 3.86991 +[infer] throughputRate: 244.435, Interface throughputRate: 382.328, moduleLatency: 3.35758 +[post] throughputRate: 244.435, moduleLatency: 4.09107 +``` +Interface throughputRate: 382.328,382.328x4=1529.312既是batch1 310单卡吞吐率 +bs1 310单卡吞吐率:382.328x4=1529.312fps/card + + batch16的性能,benchmark工具在整个数据集上推理后生成result/perf_vision_batchsize_16_device_1.txt: +``` +[e2e] throughputRate: 173.173, latency: 288729 +[data read] throughputRate: 174.62, moduleLatency: 5.72673 +[preprocess] throughputRate: 174.357, moduleLatency: 5.73535 +[infer] throughputRate: 173.844, Interface throughputRate: 519.634, moduleLatency: 3.36724 +[post] throughputRate: 10.865, moduleLatency: 92.0383 +``` +bs16 310单卡吞吐率:519.634x4=2078.536fps/card +2.benchmark纯推理功能测得性能数据 + + batch1性能: + 测试npu性能要确保device空闲,使用npu-smi info命令可查看device是否在运行其它推理任务 +``` +./benchmark.x86_64 -round=20 -om_path=efficientnet-b0_bs1.om -device_id=0 -batch_size=1 +``` +执行20次纯推理取均值,统计吞吐率与其倒数时延(benchmark的时延是单个数据的推理时间),npu性能是一个device执行的结果 +``` +[INFO] Dataset number: 19 finished cost 2.635ms +[INFO] PureInfer result saved in ./result/PureInfer_perf_of_efficientnet-b0_bs1_in_device_0.txt +-----------------PureInfer Performance Summary------------------ +[INFO] ave_throughputRate: 374.313samples/s, ave_latency: 2.67914ms +``` +bs1 310单卡吞吐率:374.313x4=1497.252fps/card + + batch16性能: +``` +./benchmark.x86_64 -round=20 -om_path=efficientnet-b0_bs16.om -device_id=0 -batch_size=16 +``` +``` +[INFO] Dataset number: 19 finished cost 30.514ms +[INFO] PureInfer result saved in ./result/PureInfer_perf_of_efficientnet-b0_bs16_in_device_0.txt +-----------------PureInfer Performance Summary------------------ +[INFO] ave_throughputRate: 524.094samples/s, ave_latency: 1.9101ms +``` +bs16 310单卡吞吐率:524.094x4=2096.376fps/card +- gpu性能数据 + + 在装有T4卡的服务器上使用TensorRT测试gpu性能 + + batch1性能: +``` +trtexec --onnx=efficientnet-b0-sim.onnx --fp16 --shapes=image:1x3x224x224 --threads +``` +gpu T4是4个device并行执行的结果,mean是时延(tensorrt的时延是batch个数据的推理时间),即吞吐率的倒数乘以batch +``` +[03/24/2021-03:54:47] [I] GPU Compute +[03/24/2021-03:54:47] [I] min: 1.26575 ms +[03/24/2021-03:54:47] [I] max: 4.41528 ms +[03/24/2021-03:54:47] [I] mean: 1.31054 ms +[03/24/2021-03:54:47] [I] median: 1.30151 ms +[03/24/2021-03:54:47] [I] percentile: 1.40723 ms at 99% +[03/24/2021-03:54:47] [I] total compute time: 2.9972 s +``` +batch1 t4单卡吞吐率:1000/(1.31054/1)=763.044fps + + batch16性能: +``` +trtexec --onnx=efficientnet-b0_sim.onnx --fp16 --shapes=image:16x3x224x224 --threads +``` +``` +[03/24/2021-03:57:22] [I] GPU Compute +[03/24/2021-03:57:22] [I] min: 12.5645 ms +[03/24/2021-03:57:22] [I] max: 14.8437 ms +[03/24/2021-03:57:22] [I] mean: 12.9561 ms +[03/24/2021-03:57:22] [I] median: 12.8541 ms +[03/24/2021-03:57:22] [I] percentile: 14.8377 ms at 99% +[03/24/2021-03:57:22] [I] total compute time: 3.03173 s +``` +batch16 t4单卡吞吐率:1000/(12.9561/16)=1234.940fps + +- 性能对比 +bs1: 310/t4=1529.312/763.044=2.00倍 +bs16: 310/t4=2078.536/1234.940=1.68倍 +性能达标 + +### 2.2 模型转换指导 +参见2.1.1 导出onnx模型 +参见3.5 maskrcnn端到端推理指导 +### 2.3 精度调试指导 + +精度调试:根据推理流程逐步排除引起精度下降的点,由大到小排查,用替换法对比输入输出排查某个修改的或自定子或关键算子的影响,对影响精度的算子改进,可能是算子代码实现问题也可能是算子推理设置的参数没有与训练时用的保持一致。一般github代码仓提供了测评单个样本与整个验证数据集的命令,已此为基准调试精度。 + +1.前后处理与模型参数是否与开源代码仓的推理使用的完全一致 +2.使用开源代码仓提供的测评pth的脚本测试pth在线推理精度是否达标,可以添加算子输出结果的调试打印 +3.如果导出的onnx可以推理,确定onnx精度是否达标 +4.如果是om算子导致精度下降,则模型转换时指定算子为om的输出节点,然后与pth在线推理时该算子(开启verbose导出onnx时会打印算子对应的py文件代码行)的输出对比,查看是否一致 +5.如果某算子导致精度下降问题,尝试是否可以修改模型使用其它方法替换掉该算子,然后看精度是否达标,如果遇到实在规避不了的算子问题则需要在modelzoo提issue + +pytorch模型在线推理支持模型输入的hw维是变化的,而onnx模型仅支持输入固定的hw维,即每个预处理后输入样本的hw都是一样的,为了验证预处理等比例缩放加pad固定样本的hw维对精度的影响,可以修改代码仓精度评测脚本,加载预处理后的样本,然后替换掉model的输入再评测精度,查看精度是否下降。同样为了验om模型输出的结果,可以修改代码仓精度评测脚本,加载om模型输出的结果,然后替换掉model的输出再评测精度,查看精度是否下降。 + +精度对比工具: +https://gitee.com/ascend/tools/tree/master/msquickcmp + +精度调试可以参考3.5 maskrcnn端到端推理指导 + +### 2.4 性能优化指导 +- 性能分析工具profiling + - CANN C20及以后的版本profiling的使用方法: +``` +新建/home/HwHiAiUser/test/run文件,内容如下: +#! /bin/bash +export install_path=/usr/local/Ascend/ascend-toolkit/latest +export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH +export PYTHONPATH=${install_path}/atc/python/site-packages:$PYTHONPATH +export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH +export ASCEND_OPP_PATH=${install_path}/opp +./benchmark -round=50 -om_path=/home/HwHiAiUser/test/efficientnet-b0_bs1.om -device_id=0 -batch_size=1 +然后执行如下命令: +chmod 777 /home/HwHiAiUser/test/run +cd /usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/bin +./msprof --output=/home/HwHiAiUser/test --application=/home/HwHiAiUser/test/run --sys-hardware-mem=on --sys-cpu-profiling=on --sys-profiling=on --sys-pid-profiling=on --sys-io-profiling=on --dvpp-profiling=on +cd /usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/toolkit/tools/profiler/profiler_tool/analysis/msprof/ +python3.7 msprof.py import -dir /home/HwHiAiUser/test/生成的profiling目录 +python3.7 msprof.py export summary -dir /home/HwHiAiUser/test/生成的profiling目录 +``` +其中op_statistic_0_1.csv文件统计了模型中每类算子总体耗时与百分比,op_summary_0_1.csv中包含了模型每个算子的耗时 +profiling工具使用详情请参考[CANN 5.0.1 开发辅助工具指南 (推理) 01](https://support.huawei.com/enterprise/zh/doc/EDOC1100191944?idPath=23710424%7C251366513%7C22892968%7C251168373) + +- 实例 +Inception-V3性能不达标,使用profiling工具分析,可以从输出的csv文件看到算子统计结果 +``` +Model Name OP Type Core Type Count Total Time(us) Min Time(us) Avg Time(us) Max Time(us) Ratio(%) +inception_v3_bs16 TransData AI Core 22 399586.005 20.883 18163 105754.996 46.091391 +inception_v3_bs16 PadV3D AI Core 9 377928.343 14787.287 41992.038 102073.381 43.593226 +inception_v3_bs16 Conv2D AI Core 94 54804.676 201.195 583.028 3338.536 6.321602 +inception_v3_bs16 Pooling AI Core 13 27901.298 411.091 2146.253 4397.026 3.218355 +inception_v3_bs16 Mul AI Core 3 1964.518 572.027 654.839 714.319 0.226603 +inception_v3_bs16 ConcatD AI Core 3 1628.841 253.224 542.947 1111.872 0.187883 +inception_v3_bs16 GatherV2D AI Core 3 1284.729 335.778 428.243 594.11 0.148191 +inception_v3_bs16 Cast AI Core 2 1237.338 20.258 618.669 1217.08 0.142724 +inception_v3_bs16 AvgPool AI Core 1 460.62 460.62 460.62 460.62 0.053132 +inception_v3_bs16 MatMulV2 AI Core 1 126.037 126.037 126.037 126.037 0.014538 +inception_v3_bs16 Flatten AI Core 1 20.415 20.415 20.415 20.415 0.002355 +``` +profiling也会统计每个算子耗时,结合使用netron查看onnx模型结构图,可以看出pad和pad前后的transdata耗时很长,经过分析pad的功能可以由其后的averagepool中的pad属性完成,可以节约大量时间,于是进行padV3D和pooling算子的graph融合。从op_summary_0_1.csv中看出单个TransData算子aicore的耗时已经很短了,本模型TransData算子没有优化空间。 + + +## 3 实例总结 +- **[推理案例](#31-推理案例)** + +- **[Inception-V4端到端推理要点](#32-Inception-V4端到端推理要点)** + +- **[UNet端到端推理要点](#33-UNet端到端推理要点)** + +- **[SSD端到端推理要点](#34-SSD端到端推理要点)** + +- **[maskrcnn端到端推理指导](#35-maskrcnn端到端推理指导)** + +### 3.1 推理案例 + +当前已完成端到端推理模型放在[ModelZoo](https://ascend.huawei.com/zh/#/software/modelzoo),包含模型端到端推理说明,代码与操作完整流程,下面的实例仅给出用于说明问题的代码片段,该页面过滤条件框中搜索atc可以看到这些模型 + +一些典型模型的链接如下 +1. [ResNeXt-50](https://ascend.huawei.com/zh/#/software/modelzoo/detail/1/2ca8ac26aeac461c85e7b04f17aa201a) +2. [Inception-V3](https://ascend.huawei.com/zh/#/software/modelzoo/detail/1/132f32e409b44aac8951f58ca073b780) +3. [Inception-V4](https://ascend.huawei.com/zh/#/software/modelzoo/detail/1/75eb32c2a2d94c4db743983504f83a06) +4. [EfficientNet-b0](https://ascend.huawei.com/zh/#/software/modelzoo/detail/1/75026a6edf604ec0bc5d16d220328646) +5. [YoloV3](https://ascend.huawei.com/zh/#/software/modelzoo/detail/1/36ea401e0d844f549da2693c6289ad89) +... + +### 3.2 Inception-V4端到端推理要点 +1.github开源代码网址 +google搜索或github上找到引用最多且尽量包含预训练的[PyTorch Inception-V4 模型代码仓](https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/inceptionv4.py),预训练模型[pth文件的下载地址](http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth)可以在该代码仓里找到 + +2.参考开源代码仓里预训练模型的加载过程加载pth模型文件,然后转换为onnx,基于开源加载模型仿写的代码如下: +```python +from pretrainedmodels.models.inceptionv4 import InceptionV4 + +pretrained_settings = { + 'inceptionv4': { + 'imagenet': { + 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth', + 'input_space': 'RGB', + 'input_size': [3, 299, 299], + 'input_range': [0, 1], + 'mean': [0.5, 0.5, 0.5], + 'std': [0.5, 0.5, 0.5], + 'num_classes': 1000 + }, + 'imagenet+background': { + 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth', + 'input_space': 'RGB', + 'input_size': [3, 299, 299], + 'input_range': [0, 1], + 'mean': [0.5, 0.5, 0.5], + 'std': [0.5, 0.5, 0.5], + 'num_classes': 1001 + } + } +} + +def inceptionv4(num_classes=1000, pretrained='imagenet', localpath=None): + if pretrained: + settings = pretrained_settings['inceptionv4'][pretrained] + assert num_classes == settings['num_classes'], \ + "num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) + + # both 'imagenet'&'imagenet+background' are loaded from same parameters + model = InceptionV4(num_classes=1001) + if localpath == None: + model.load_state_dict(model_zoo.load_url(settings['url'])) + else: + checkpoint = torch.load(localpath) + model.load_state_dict(checkpoint) + + if pretrained == 'imagenet': + new_last_linear = nn.Linear(1536, 1000) + new_last_linear.weight.data = model.last_linear.weight.data[1:] + new_last_linear.bias.data = model.last_linear.bias.data[1:] + model.last_linear = new_last_linear + + model.input_space = settings['input_space'] + model.input_size = settings['input_size'] + model.input_range = settings['input_range'] + model.mean = settings['mean'] + model.std = settings['std'] + else: + model = InceptionV4(num_classes=num_classes) + return model + +def pth2onnx(input_file, output_file): + model = inceptionv4(num_classes=1001, pretrained='imagenet+background', localpath=input_file) + ... +``` +参考github源码安装pretrainedmodels,执行加载模型转onnx时含单个元素的tensor转化为元素报错,添加.item()的修改如下: +``` +pretrained-models.pytorch/pretrainedmodels/models/inceptionv4.py:adaptiveAvgPoolWidth = features.shape[2].item() +``` +3.参考开源代码仓里预训练使用的预处理方法得到预处理参数 +``` +'inceptionv4': { + 'resize': 342, + 'centercrop': 299, + 'mean': [0.5, 0.5, 0.5], + 'std': [0.5, 0.5, 0.5], +}, +``` +aipp_inceptionv4_pth.config: +``` +aipp_op{ +... + //缩放,中心裁剪,aipp源图大小为16的倍数,偏移与裁剪大小尽量为偶数,使用aipp的端到端推理流程中需要将涉及到模型输入大小299,299的地方调整为300,300,使用源图大小342,342的地方调整为336,336 + src_image_size_w : 336 + src_image_size_h : 336 + crop: true + load_start_pos_h : 18 + load_start_pos_w : 18 + crop_size_w : 300 + crop_size_h: 300 + + //均值:255x0.5,方差:1/(255x0.5) + min_chn_0 : 127.5 + min_chn_1 : 127.5 + min_chn_2 : 127.5 + var_reci_chn_0: 0.007843137254902 + var_reci_chn_1: 0.007843137254902 + var_reci_chn_2: 0.007843137254902 +... +} +``` +### 3.3 UNet端到端推理要点 +1.github上Pytorch-UNet没有安装脚本,在pth2onnx脚本中引用代码仓定义的UNet: +``` +git clone https://github.com/milesial/Pytorch-UNet +//unet_pth2onnx.py脚本添加如下两行 +sys.path.append(r"./Pytorch-UNet") +from unet import * +//unet_pth2onnx.py引用UNet +model = UNet(n_channels=3, n_classes=1, bilinear=True) +``` +2.代码仓里找到的pth文件使用bilinear训练,性能达不到T4标准,因此可以重新训练模型,修改如下: +``` +修改Pytorch-UNet/train.py文件net = UNet(n_channels=3, n_classes=1, bilinear=False) +修改Pytorch-UNet/utils/dataset.py文件newW, newH = 572, 572 +进入Pytorch-UNet执行python3.7 train.py生成权重文件checkpoints/CP_epoch5.pth,返回到上级目录执行cp Pytorch-UNet/checkpoints/CP_epoch5.pth unet_carvana_notbilinear.pth +修改unet_pth2onnx.py文件model = UNet(n_channels=3, n_classes=1, bilinear=False) +执行python3 unet_pth2onnx.py ./unet_carvana_notbilinear.pth ./unet_carvana_notbilinear.onnx +``` +3.使用onnxsim去除atc工具不支持的pad动态shape,onnx-simplifier要求onnxoptimizer == 0.1.1或以上版本 +``` +pip3 install onnx-simplifier +python3.7 -m onnxsim --input-shape="1,3,572,572" unet_carvana_notbilinear.onnx unet_carvana_notbilinear_sim.onnx +``` +去除atc工具不支持的pad常量属性,去除pad值为0的冗余pad以提升性能达到T4标准,不同环境转出来的算子与输入输出名称可能不同,使用Netron工具打开onnx模型文件查看这些与pad相关的实际名称,然后根据情况修改该脚本 +```python +import sys +import onnx +from onnx import helper + +# python3.7 -m onnxsim --input-shape="1,3,1280,1918" unet_carvana.onnx unet_carvana_sim.onnx +input_file = sys.argv[1] +output_file = sys.argv[2] + +model = onnx.load(input_file) + +def GetNodeIndex(graph, node_name): + index = -1 + for i in range(len(graph.node)): + if graph.node[i].name == node_name: + index = i + break + return index + +#remove Pad const value attr +pad97 = onnx.helper.make_node( + 'Pad', + name='Pad_97', + mode='constant', + inputs=['172','235'], + outputs=['237'], +) +pad168 = onnx.helper.make_node( + 'Pad', + name='Pad_168', + mode='constant', + inputs=['254','317'], + outputs=['319'], +) +pad239 = onnx.helper.make_node( + 'Pad', + name='Pad_239', + mode='constant', + inputs=['336','399'], + outputs=['401'], +) + +index_pad97 = GetNodeIndex(model.graph,'Pad_97') +model.graph.node.remove(model.graph.node[index_pad97]) +model.graph.node.insert(index_pad97, pad97) +index_pad168 = GetNodeIndex(model.graph,'Pad_168') +model.graph.node.remove(model.graph.node[index_pad168]) +model.graph.node.insert(index_pad168, pad168) +index_pad239 = GetNodeIndex(model.graph,'Pad_239') +model.graph.node.remove(model.graph.node[index_pad239]) +model.graph.node.insert(index_pad239, pad239) + +# remove Pad that value is 0 to improve perform +index_concat311 = GetNodeIndex(model.graph,'Concat_311') +index_pad310 = GetNodeIndex(model.graph,'Pad_310') +model.graph.node[index_concat311].input[1] = '418' +model.graph.node.remove(model.graph.node[index_pad310]) + +onnx.checker.check_model(model) +onnx.save(model, output_file) +print('Pad nodes revised') +``` +4.性能达到T4标准需要使用repeat autotune,export REPEAT_TUNE=True,添加--auto_tune_mode="RL,GA" +``` +... +export REPEAT_TUNE=True +atc --model=--framework=5 ./unet_carvana_sim_pad.onnx --output=unet_carvana_bs1 --input_format=NCHW --input_shape="actual_input_1:1,3,572,572" --log=debug --soc_version=Ascend310 --auto_tune_mode="RL,GA" +``` +5.后处理脚本,计算mIOU,使用多线程处理数据,可以将标签与输出转换为图片查看预测结果 +```python +# -*- coding: utf-8 -*- +import os +import sys +import numpy as np +from PIL import Image +import torch +import multiprocessing +import time +from Pytorch_UNet.dice_loss import dice_coeff + +gl_resDir = "result/dumpOutput_device0/" +gl_labelDir = "SegmentationClass/" +gl_res_txt = 'res_data.txt' + +def getUnique(img): + return np.unique(img) + +def getIntersection(img, label, i): + cnter = 0 + for h_img, h_label in zip(img, label): + for w_img, w_label in zip(h_img, h_label): + if w_img == i and w_label == i: + cnter += 1 + return cnter + +def getUnion(img, label, i): + cnter = 0 + for h_img, h_label in zip(img, label): + for w_img, w_label in zip(h_img, h_label): + if w_img == i or w_label == i: + cnter += 1 + return cnter + +def getIoU(img, label): + iou = 0.0 + cnter = 0 + uniqueVals = getUnique(img) + for i in uniqueVals: + if i == 0 or i > 21: + continue + intersection = getIntersection(img, label, i) + union = getUnion(img, label, i) + temp_iou = float(intersection) / union + if temp_iou < 0.5: + continue + iou += temp_iou + cnter += 1 + if cnter == 0: + return 0 + else: + return iou / cnter + +def label_process(image, scale=1): + image = Image.open(image) + width, height = image.size + width_scaled = int(width * scale) + height_scaled = int(height * scale) + image_scaled = image.resize((572, 572)) + image_array = np.array(image_scaled, dtype=np.uint8) + return image_array + +def postprocess(file): + mask = torch.from_numpy(np.fromfile(os.path.join(gl_resDir, file), np.float32).reshape((572, 572))) + mask = torch.sigmoid(mask) + mask_array = (mask.numpy() > 0.5).astype(np.uint8) + return mask_array + +def eval_res(img_file, mask_file): + image = torch.from_numpy(np.fromfile(os.path.join(gl_resDir, img_file), np.float32).reshape((572, 572))) + image = torch.sigmoid(image) + image = image > 0.5 + image = image.to(dtype=torch.float32) + mask = Image.open(os.path.join(gl_labelDir, mask_file)) + mask = mask.resize((572, 572)) + mask = np.array(mask) + mask = torch.from_numpy(mask) + mask = mask.to(dtype=torch.float32) + return dice_coeff(image, mask).item() + +def get_iou(resLis_list, batch): + sum_eval = 0.0 + for file in resLis_list[batch]: + seval = eval_res(file, file.replace('_1.bin', '_mask.gif')) + sum_eval += seval + rVal = postprocess(file) + lVal = label_process(os.path.join(gl_labelDir, file.replace('_1.bin', '_mask.gif'))) + iou = getIoU(rVal, lVal) + if iou == 0: # it's difficult + continue + print(" ---> {} IMAGE {} has IOU {}".format(batch, file, iou)) + lock.acquire() + try: + with open(gl_res_txt, 'a') as f: + f.write('{}, '.format(iou)) + except: + lock.release() + lock.release() + print("eval value is", sum_eval / len(resLis_list[batch])) + +if __name__ == '__main__': + if gl_res_txt in os.listdir(os.getcwd()): + os.remove(gl_res_txt) + + gl_resDir = sys.argv[1] + gl_labelDir = sys.argv[2] + gl_res_txt = sys.argv[3] + + resLis = os.listdir(gl_resDir) + resLis_list = [resLis[i:i + 300] for i in range(0, 5000, 300) if resLis[i:i + 300] != []] + + st = time.time() + lock = multiprocessing.Lock() + pool = multiprocessing.Pool(len(resLis_list)) + for batch in range(len(resLis_list)): + pool.apply_async(get_iou, args=(resLis_list, batch)) + pool.close() + pool.join() + print('Multiple processes executed successfully') + print('Time Used: {}'.format(time.time() - st)) + + try: + with open(gl_res_txt) as f: + ret = list(map(float, f.read().replace(', ', ' ').strip().split(' '))) + print('IOU Average :{}'.format(sum(ret) / len(ret))) + os.system('rm -rf {}'.format(gl_res_txt)) + except: + print('Failed to process data...') +``` +``` +//第一个为benchmark输出目录,第二个为数据集配套标签,第三个是生成的文件名 +python3 postprocess_unet_pth.py result/dumpOutput_device0 ./train_masks ./result.txt +``` +6.精度说明 +因为kaggle上没有提供测试集标签,因此精度是在训练集上统计的,om模型推理的泛化精度可以在测试集上将预测结果可视化来评估。若要保存可视化om模型推理预测结果到当前目录,postprocess_unet_pth.py去除标签代码并在postprocess函数末尾添加如下代码: +```python +res = Image.fromarray((mask_array * 255).astype(np.uint8)) +res.save(os.path.join('.', file.replace('_1.bin', '.png'))) +``` + +参考代码仓上预测命令可以查看pth模型推理预测结果: +``` +python3 Pytorch_UNet/predict.py -i train/fff9b3a5373f_16.jpg -o output.jpg --model=unet_carvana_scale1_epoch5.pth --scale=1 +``` + +### 3.4 SSD端到端推理要点 +1.github上pytorch-ssd没有安装脚本,在pth2onnx脚本中引用代码仓定义的create_vgg_ssd,并转换为onnx: +```python +git clone https://github.com/qfgaohao/pytorch-ssd +//vgg16_ssd_pth2onnx.py脚本添加如下两行 +sys.path.append(r"./pytorch-ssd") +from vision.ssd.vgg_ssd import create_vgg_ssd +//vgg16_ssd_pth2onnx.py引用create_vgg_ssd +def pth2onnx(input_file, output_file): + model = create_vgg_ssd(21, is_test=True) + model.load(input_file) + + model.eval() + input_names = ["image"] + output_names = ["scores", "boxes"] + dynamic_axes = {'image':{0:'-1'}, 'scores':{0:'-1'}, 'boxes':{0:'-1'}} + dummy_input = torch.randn(1, 3, 300, 300) + + torch.onnx.export(model, dummy_input, output_file, input_names=input_names, output_names=output_names, dynamic_axes = dynamic_axes, opset_version=11, verbose=True) +``` +2.预处理参数 +``` +'vgg16_ssd': { + 'resize': 300, + 'mean': [123, 117, 104], + 'std': [1., 1., 1.], +}, +``` +3.后处理脚本 +```python +import os, sys +import numpy as np +from PIL import Image +import torch +import pathlib +sys.path.append(r"./pytorch-ssd") +from vision.datasets.voc_dataset import VOCDataset +from vision.ssd.data_preprocessing import PredictionTransform +import vision.utils.box_utils as box_utils +import vision.utils.measurements as measurements +from eval_ssd import group_annotation_by_class, compute_average_precision_per_class + +if __name__ == "__main__": + dataroot=os.path.abspath(sys.argv[1]) + label_file = os.path.abspath(sys.argv[2]) + class_names = [name.strip() for name in open(label_file).readlines()] + npu_result = os.path.abspath(sys.argv[3]) + eval_path = os.path.abspath(sys.argv[4]) + eval_path = pathlib.Path(eval_path) + if not os.path.exists(eval_path): + os.makedirs(eval_path) + + dataset = VOCDataset(dataroot, is_test=True) + true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(dataset) + size = 300 + mean = np.array([123, 117, 104]) # RGB layout + std = 1.0 + iou_threshold = 0.45 + prob_threshold=0.01 + candidate_size=200 + sigma=0.5 + + results = [] + for i in range(len(dataset)): + print("i:",i) + image = dataset.get_image(i) + image_id = dataset.ids[i] + height, width, _ = image.shape + scores_id = str(image_id)+'_1.bin' + boxes_id = str(image_id)+'_2.bin' + boxes = np.fromfile(os.path.join(npu_result, boxes_id), dtype='float32').reshape((1,8732,4)) + scores = np.fromfile(os.path.join(npu_result, scores_id), dtype='float32').reshape((1,8732,21)) + boxes = torch.from_numpy(boxes) + scores = torch.from_numpy(scores) + boxes = boxes[0] + scores = scores[0] + + picked_box_probs = [] + picked_labels = [] + for class_index in range(1, scores.size(1)): + probs = scores[:, class_index] + mask = probs > prob_threshold + probs = probs[mask] + if probs.size(0) == 0: + continue + subset_boxes = boxes[mask, :] + box_probs = torch.cat([subset_boxes, probs.reshape(-1, 1)], dim=1) + box_probs_ = box_utils.nms(box_probs, "hard", + score_threshold=prob_threshold, + iou_threshold=iou_threshold, + sigma=sigma, + top_k=-1, + candidate_size=candidate_size) + picked_box_probs.append(box_probs_) + picked_labels.extend([class_index] * box_probs_.size(0)) + if not picked_box_probs: + print("###########################################") + boxes_, labels_, probs_ = torch.tensor([]), torch.tensor([]), torch.tensor([]) + else: + picked_box_probs = torch.cat(picked_box_probs) + picked_box_probs[:, 0] *= width + picked_box_probs[:, 1] *= height + picked_box_probs[:, 2] *= width + picked_box_probs[:, 3] *= height + boxes_, labels_, probs_ = picked_box_probs[:, :4], torch.tensor(picked_labels), picked_box_probs[:, 4] + indexes = torch.ones(labels_.size(0), 1, dtype=torch.float32) * i + results.append(torch.cat([ + indexes.reshape(-1, 1), + labels_.reshape(-1, 1).float(), + probs_.reshape(-1, 1), + boxes_ + 1.0 # matlab's indexes start from 1 + ], dim=1)) + results = torch.cat(results) + for class_index, class_name in enumerate(class_names): + if class_index == 0: continue # ignore background + prediction_path = eval_path / f"det_test_{class_name}.txt" + with open(prediction_path, "w") as f: + sub = results[results[:, 1] == class_index, :] + for i in range(sub.size(0)): + prob_box = sub[i, 2:].numpy() + image_id = dataset.ids[int(sub[i, 0])] + print( + image_id + " " + " ".join([str(v) for v in prob_box]), + file=f + ) + aps = [] + print("\n\nAverage Precision Per-class:") + for class_index, class_name in enumerate(class_names): + if class_index == 0: + continue + prediction_path = eval_path / f"det_test_{class_name}.txt" + ap = compute_average_precision_per_class( + true_case_stat[class_index], + all_gb_boxes[class_index], + all_difficult_cases[class_index], + prediction_path, + iou_threshold, + use_2007_metric = True + ) + aps.append(ap) + print(f"{class_name}: {ap}") + print(f"\nAverage Precision Across All Classes:{sum(aps)/len(aps)}") +``` +``` +python3 ssd_pth_postprocess.py /root/dataset/VOCdevkit/VOC2007/ ./voc-model-labels.txt ./result/dumpOutput_device0/ ./eval_results/ +``` +第一个参数为voc2007数据集目录,第二个为包含背景的21个类别,在代码仓里可以找到下载地址,第三个为benchmark推理结果,第四个为评价推理结果 + +### 3.5 maskrcnn端到端推理指导 +[基于开源mmdetection预训练的maskrcnn_Onnx模型端到端推理指导.md](https://gitee.com/pengyeqing/ascend-pytorch-crowdintelligence-doc/blob/master/onnx%E7%AB%AF%E5%88%B0%E7%AB%AF%E6%8E%A8%E7%90%86%E6%8C%87%E5%AF%BC/benchmark/cv/segmentation/%E5%9F%BA%E4%BA%8E%E5%BC%80%E6%BA%90mmdetection%E9%A2%84%E8%AE%AD%E7%BB%83%E7%9A%84maskrcnn_Onnx%E6%A8%A1%E5%9E%8B%E7%AB%AF%E5%88%B0%E7%AB%AF%E6%8E%A8%E7%90%86%E6%8C%87%E5%AF%BC.md) +[基于detectron2训练的npu权重的maskrcnn_Onnx模型端到端推理指导.md](https://gitee.com/pengyeqing/ascend-pytorch-crowdintelligence-doc/blob/master/onnx%E7%AB%AF%E5%88%B0%E7%AB%AF%E6%8E%A8%E7%90%86%E6%8C%87%E5%AF%BC/benchmark/cv/segmentation/%E5%9F%BA%E4%BA%8Edetectron2%E8%AE%AD%E7%BB%83%E7%9A%84npu%E6%9D%83%E9%87%8D%E7%9A%84maskrcnn_Onnx%E6%A8%A1%E5%9E%8B%E7%AB%AF%E5%88%B0%E7%AB%AF%E6%8E%A8%E7%90%86%E6%8C%87%E5%AF%BC.md) + + + +## 4 附录 + +- **[机器申请及使用指南](#41-机器申请及使用指南)** +- **[交付标准与规范](#42-交付标准与规范)** +- **[深度学习指导](#43-深度学习指导)** + + +### 4.1 机器申请及使用指南 +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> **机器周均使用率过低且项目无故无进展时,华为方将有权回收算力资源,由此造成交付延期由使用者自己承担。** +> **请勿随意更改密码,更改密码带来的风险由更改者承担。** +> **请勿随意更新驱动等系统相关软件,有需要请及时联系华为方支持人员。** + +- 机器申请 + - GPU T4 + - 装有t4的服务器,请联系华为方 + - NPU 310 + - 装有310的服务器,请联系华为方 +- t4服务器使用 + - /home/下每个普通用户创建一个自己的目录,原则上只允许用户在自己的这个目录下开发,不要修改其它目录的东西 + - 测试时请确保t4卡没有运行其它测试任务,使用nvidia-smi查看卡是否处于空闲态 + - t4上使用trtexec一条命令即可测试onnx模型性能,一般模型性能测试在半小时到半天之间可完成,测试完成后请及时退出登录 + - 不要更新CUDA驱动包与tensorRT,修改系统文件,系统密码等 + +- 310服务器使用 + - 请联系华为方申请登录服务器的普通用户名与密码 + - /home/下每个用户创建一个自己的目录,原则上只允许用户在自己的这个目录下开发,不要修改其它目录的东西 + - 不要随意更新CANN包与驱动包,修改系统文件,系统密码等 + - /opt/npu是共享的数据集盘目录,该目录仅用来存放共享的数据集,不可向该目录盘写其它数据 + - 每个模型使用到的数据集都放在/root/datasets/目录,除/root/datasets与/opt/npu外,不要在其它目录存放数据集 + - CANN包放在/home/common/packages/目录下 + - 请使用conda安装python的库,将python的库安装在自己的conda环境里,修改这些库的代码不会影响其他用户 + ``` + 查看已有环境: + conda env list + 创建自己的conda环境: + conda create -n your_env_name python=3.7.5 + 进入环境: + conda activate your_env_name + 查看环境安装的python的库: + conda list + 只在该环境中安装py软件包: + https://anaconda.org/ 网址搜索包的安装命令 + conda install -c pytorch pytorch + conda install -c pytorch torchvision + conda install -c conda-forge onnx=1.9.0 + 查看安装路径: + python3.7 + import torchvision + print(torchvision.__file__) + 退出环境: + conda deactivate + 删除环境: + conda remove -n your_env_name --all + ``` + - root添加普通用户方法: + ``` + useradd -m your_name + passwd your_name + usermod -s /bin/bash your_name + 修改/etc/sudoers添加your_name ALL=(ALL:ALL) ALL + your_name用户便可使用sudo命令 + ``` + - 普通用户执行atc找不到动态库: + ``` + 修改/etc/sudoers将Defaults env_reset改成Defaults !env_reset + 修改/etc/bash.bashrc添加alias sudo='sudo env PATH=$PATH LD_LIBRARY_PATH=$LD_LIBRARY_PATH' + ``` + + +### 4.2 交付标准与规范 +- 交付标准 + - 精度: + om模型推理的精度与Ascend 910训练出的权重精度或PyTorch预训练模型github代码仓README.md或官网文档公布的精度对比,精度下降不超过1%则认为精度达标 + - 性能: + Ascend benchmark工具在数据集上推理测的NPU 310单颗device吞吐率乘以4颗即单卡吞吐率大于TensorRT工具测的GPU T4单卡吞吐率则认为性能达标 + 如若交付要求中对性能有要求(易模型),310的性能必须高于t4的性能 + 如若交付要求中没有对性能有要求(中难模型),310上推理需尽可能进行性能优化 + 若无法达到,则需要向华为方提交性能已达瓶颈的认证申请,华为方将定期组织专家组对申请模型进行评审,通过评审的模型允许以不高于t4的性能进行交付 + - 脚本: + 代码符合pep8规范; + 脚本命名格式需统一,文件名含模型名时模型名用小写,模型名含多个字符串时用-连接; + xxx_pth2onnx.py中不能使用从网络下载权重pth文件的代码,xxx_pth2onnx.py应有输入输出参数,输入是本地权重pth文件,输出是生成的onnx模型文件名; + xxx_pth_preprocess.py与xxx_pth_postprocess.py尽可能只引用numpy,Pillow,torch,pycocotools等基础库,如不要因mmdetection框架的数据处理与精度评测部分封装了这些基础库的操作,为调用这些简单接口,前后处理脚本就依赖mmdetection; + 不同模型的脚本与代码部分处理流程有相似性,尽量整合成通用的脚本与代码。 + - 推理过程: + 需要提供端到端推理过程中执行的命令等 + - 关键问题总结: + 需要提供端到端推理遇到的关键问题的简要调试过程,至少包含模型转换要点,精度调试,性能优化 + + 说明: + ``` + 1.如果已经有了ascend 910训练提供的权重文件,那么优先使用910训练提供的权重文件做离线推理,精度与910训练出的精度对齐;如果开源代码仓提供了多个权重文件,使用常用的基础的那个配置的权重文件即可;如果开源代码仓没有提供pth权重文件,则需要该模型的训练同学提供pth权重文件,或者使用开源代码仓训练脚本简单训练一个pth权重文件,然后对比om精度与该pth权重文件的精度 + + 2.由于随机数可能不能模拟数据分布,Ascend benchmark工具纯推理功能测的有些模型性能数据可能不太准,所以模型测试脚本与提交代码的描述中的性能数据以Ascend benchmark在数据集上推理时得到性能数据为准 + + 3.如果模型支持多batch,需要测试batch1,4,8,16,32的精度与性能,写在README.md里,模型测试脚本与提交代码的描述只需提供bs1和bs16的精度性能数据 + + 4.如果导出的onnx因包含自定义算子等而不能推理,则在t4上运行开源评测脚本测试pth模型在线推理性能 + + 5.对于性能不达标的模型,需要进行如下工作: + 1)优化修改onnx模型去掉影响性能的冗余pad,用Ascend atc的相关优化选项尝试一下,尝试使用最近邻替换双线性的resize重新训练,降低图片分辨率等使性能达标。 + 2)对于算子导致的性能问题,需要使用profiling分析定位引起性能下降的原因,具体到引起性能下降的算子。优先修改模型代码以使其选择性能好的npu算子替换性能差的npu算子使性能达标,然后在modelzoo上提issue,等修复版本发布后再重测性能,继续优化。 + 3)需要交付profiling性能数据,对经过上述方法性能可以达标的模型,在交付文档中写明问题原因与达标需要执行的操作;对经过上述方法性能仍不达标的模型,在交付的README.md文档中写明问题原因与简要的定位过程。 + + 6.git clone开源模型代码仓到工作目录,如果模型代码仓没有安装命令,pth2onnx.py脚本需要引用模型代码仓的函数或类时,通过sys.path.append(r"./代码仓目录")添加搜索路径,如果需要修改开源代码仓代码,将修改用git diff做成一个patch文件,交付件不要交付开源代码仓里的代码,只需要交付这个patch文件。参见本文3.5 maskrcnn端到端推理指导-开源detectron2加载npu权重的推理指导 + + 7.数据集统一放在/root/datasets/目录 + ``` + +- 交付件 + - 交付件参考:[ResNeXt50_Onnx模型端到端推理指导.md](https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50) + - 最终交付件: + 包含以上交付标准的代码,README.md,以及验收脚本 + 权重文件、profiling性能数据等非代码交付件一并打压缩包邮件发送 + - 最终交付形式: + gitee网址:https://gitee.com/ascend/modelzoo/tree/master/contrib/ACL_PyTorch/Research + commit信息格式:[学校学院名称][高校贡献][Pytorch离线推理][模型名称]-PR内容摘要 + 模型命名风格为大驼峰,模型名含多个字符串时使用横杠或下划线连接,当上下文用横杠时模型名用下划线连接,否则用横杠连接 + 对于batch1与batch16,npu性能均高于T4性能1.2倍的模型,放在Benchmark目录下,1-1.2倍对应Official目录,低于1倍放在Research目录,目前都放在contrib/ACL_PyTorch/Research下即可 + +- gitee仓PR贡献流程 + - fork [modelzoo](https://gitee.com/ascend/modelzoo) 到个人仓 + - 提交代码到个人仓 + - 签署cla [link](https://clasign.osinfra.cn/sign/Z2l0ZWUlMkZhc2NlbmQ=) + - 选择 Sign Individual CLA + - 若已提交PR,但忘记签署,可在签署CLA后再评论内评论 ```/check-cla``` 重新校验 + - 依据文件夹名称及目录规范整理代码,完成自验,使用PR内容模板进行PR,审查人员请指定 王姜奔(wangjiangben_hw) + - PR后,华为方会进行代码检视,并对PR进行验证,请关注PR的评论并及时修改 + - 最终验收完成后合入主干 +- gitee仓验收使用脚本(请自验)、PR内容模板 + - 验收使用脚本(请自验) + >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) + **说明:** + > **提交前请确保自验通过!确保直接执行以下脚本就可运行!** + + ```shell + #准备环境 + 交付的代码文件夹下获取模型结构的开源代码,安装必要的依赖,获取训练提供的权重文件,获取数据集路径,获取benchmark工具 + + # pth是否能正确转换为om + bash test/pth2om.sh + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准),不指定数据集目录时默认/root/datasets + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准) + bash perf_t4.sh + ``` + - PR内容模板 + - PR示例链接 https://gitee.com/ascend/modelzoo/pulls/887 + - PR名称 + - [学校学院名称][高校贡献][Pytorch离线推理][模型名称]-PR内容摘要 + - 举例说明:[华为大学昇腾学院][高校贡献][Pytorch离线推理][ResNeXt50]-初次提交 + + ``` + + + **What type of PR is this?** + > /kind task + + **What does this PR do / why do we need it**: + # 简述你这次的PR的详情 + + | 模型 | 官网精度 | 310精度 | t4性能 | 310性能 | + | :------: | :------: | :------: | :------: | :------: | + | ResNeXt50 bs1 | top1:77.62% top5:93.70% | top1:77.62% top5:93.69% | 763.044fps | 1497.252fps | + | ResNeXt50 bs16 | top1:77.62% top5:93.70% | top1:77.62% top5:93.69% | 1234.940fps | 2096.376fps | + # 如果蓝区版本测精度或性能不达标,最新CANN版本测可以达标,这里需要写出原因与最新CANN包版本,用最新版本测。如果是无法规避的算子缺陷导致性能不达标,这里需要添加性能不达标的原因与解决方案。如果onnx因包含自定义算子不支持推理,需要说明性能是在t4上测的在线推理,如果模型不支持batch 16,也需要说明一下 + + 自验报告 + # 第X次验收测试 + # 验收结果 OK / Failed + # 验收环境: A + K / CANN 5.0.1 + # 关联issue: + + # pth是否能正确转换为om + bash test/pth2om.sh + # 验收结果: OK / Failed + # 备注: 成功生成om,无运行报错,报错日志xx 等 + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准) + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + # 验收结果: 是 / 否 + # 备注: 目标pth精度top1:77.62% top5:93.70%;bs1,bs16验收om精度top1:77.62% top5:93.69%;精度下降不超过1%;无运行报错,报错日志xx 等 + # 备注: 验收310测试性能bs1:1497.252FPS bs16:2096.376FPS;无运行报错,报错日志xx 等 + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准) + bash perf_t4.sh + # 验收结果: OK / Failed + # 备注: 验收t4测试性能bs1:763.044FPS bs16:1234.940FPS;无运行报错,报错日志xx 等 + + # 310性能是否超过t4: 是 / 否 + bs1:310=(1497.252/763.044)1.96倍t4 + bs16:310=(2096.376/1234.940)1.70倍t4 + + - 示例链接 https://gitee.com/ascend/modelzoo/pulls/836#note_4750681 + + **Which issue(s) this PR fixes**: + # 用于后期issue关联的pr + + Fixes # + + **Special notes for your reviewers**: + # 在reviewer检视时你想要和他说的 + + ``` + +### 4.3 深度学习指导 +- 书籍推荐 +``` +1.现代设计理论与方法-约束条件下的最优化问题与梯度下降 +2.自动控制原理-神经网络前向计算与反向传播 +3.深入理解TensorFlow-深度学习框架 +4.极客网王天一人工智能基础课-理解理论基本概念 +5.动手学深度学习-实践教材图像自然语言模型的基本概念 +6.python深度学习-Keras实战理解深度学习到的是什么 +7.深度学习-理论 +数据的处理,网络模型的结构,理解深度学习学的是什么 +``` +- 实践 +``` +重构经典的深度学习教材 +类似kaggle类型的学生开发者竞赛 +类似嵌入式开发板搭建简单易得的实验条件 +使用mindspore进行网络开发 +``` +- 参加社区开发 + + - [https://ascend.huawei.com](http://ascend.huawei.com) + - [https://gitee.com/mindspore/mindspore](https://gitee.com/mindspore/mindspore) + - [https://gitee.com/openeuler/A-Tune](https://gitee.com/openeuler/A-Tune) + diff --git "a/AscendPyTorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272\351\252\214\346\224\266\346\214\207\345\215\227.md" "b/AscendPyTorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272\351\252\214\346\224\266\346\214\207\345\215\227.md" new file mode 100644 index 0000000000000000000000000000000000000000..e0449aaa17214ddce93b90e67c663e7f3fabfe80 --- /dev/null +++ "b/AscendPyTorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272\351\252\214\346\224\266\346\214\207\345\215\227.md" @@ -0,0 +1,276 @@ +# Ascend PyTorch 模型推理众智验收指南 + +1. 先上gitee管理平台,将验收目标调整至验收状态 +2. 检查PR内容,文件夹路径和文件结构 + - PR模板和文件路径结构都在下面附件里有详细说明,请仔细check + - 参见付件pr检视,请仔细check +3. 按照验收脚本在交付文件夹下进行验收 + 验收机器:192.168.88.45 + 参考[ResNext50测试说明](https://gitee.com/ascend/modelzoo/blob/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50/test/README.md) + 准备环境: + ``` + 1.拉取modelzoo上提交的模型pr,然后将模型文件夹ResNext50拷贝到验收机器的/home/verify_models,并进入到/home/verify_models/ResNext50 + 2.根据requirements.txt安装必要的依赖 + 3.git clone ResNext50模型结构代码所在的开源代码仓torchvision + 4.如果通过补丁修改了开源模型代码则将补丁打入,如果开源模型代码需要安装则安装 + 5.获取训练的权重文件 + 6.获取数据集存放路径 + 7.获取benchmark工具 + ``` + + + ```shell + #准备环境 + 交付的代码文件夹下获取模型结构的开源代码,安装必要的依赖,获取训练提供的权重文件,获取数据集路径,获取benchmark工具 + + # pth是否能正确转换为om + bash test/pth2om.sh + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准),不指定数据集目录时默认/root/datasets + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准) + bash test/perf_t4.sh + ``` + + - 验收过程中遇到问题,如是一些路径或者打字错误的问题,先修复继续执行 + - 每次验收都需要对验收脚本中的所有未验收脚本进行验收,不要因某一项验收失败而阻塞后续验收工作 +4. 验收反馈 + - 验收后,使用验收报告模板,在评论区反馈验收结果 + ```shell + # 第X次验收测试 + # 验收结果 OK / Failed + # 验收环境: A + K / CANN 5.0.1 + # 关联issue: + + # pth是否能正确转换为om + bash test/pth2om.sh + # 验收结果: OK / Failed + # 备注: 成功生成om,无运行报错,报错日志xx 等 + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准) + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + # 验收结果: 是 / 否 + # 备注: 目标pth精度top1:77.62% top5:93.70%;bs1,bs16验收om精度top1:77.62% top5:93.69%;精度下降不超过1%;无运行报错,报错日志xx 等 + # 备注: 验收310测试性能bs1:1497.252FPS bs16:2096.376FPS;无运行报错,报错日志xx 等 + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准),该步是验证eval_acc_perf.sh显示的t4性能数据是否正确,该脚本中填写的性能数据与t4实测性能数据要接近 + bash test/perf_t4.sh + # 验收结果: OK / Failed + # 备注: 验收t4测试性能bs1:763.044FPS bs16:1234.940FPS,与eval_acc_perf.sh脚本显示的t4性能数据一致;无运行报错,报错日志xx 等 + + # 310性能是否超过t4: 是 / 否 + bs1:310=(1497.252/763.044)1.96倍t4 + bs16:310=(2096.376/1234.940)1.70倍t4 + ``` + - 示例链接 https://gitee.com/ascend/modelzoo/pulls/836#note_4814643 +5. 验收完成后,需要进行以下几步 + - 在pr评论区按照上文模板反馈验收结果 + - 上gitee管理平台,将验收目标调整至完成状态 + - 上团队空间-测试管理-PyTorch模型众智验收跟踪表 更新模型验收数据 + - 完成验收测试报告文档,归档obs + - 整理验收必要的交付件,归档obs,将/home/verify_models/{模型名}目录归档,归档时需要删除该目录下的占用磁盘空间的无用文件夹预处理后的数据集prep_dataset,result/dumpOutput_device0与result/dumpOutput_device1 +6. 验收归档与统计 + 1./home/verify_models/modelzoo目录用来拉取modelzoo代码pr + 1./home/verify_models目录下需要保存以上测试后通过的模型 + 3./home/verify_models/models_result.xlsx里填写模型的测试数据,bs4,8,32的性能数据从README.md中获取,如果蓝区版本精度性能不达标,而黄区测试达标在备注里写明黄区版本,如果黄区测试也不能达标则写明黄区测试精度或性能不达标 + 4./home/verify_models仅用来存放测试通过的模型,models_result.xlsx以及modelzoo的代码,不要在该目录存放其它无用的文件 + + + + +- 关联issue模板 (负责人请关联相应的学生,若无法关联,请关联验收者) + ``` + 【Pytorch模型推理众智测试验收】【第x次回归测试】 xxx模型 验收不通过 + + 贴上验收报告 + + ``` + - 在pr提交的内容栏里编辑issue的链接即可关联对应的issue,问题解决后issue将自动关闭 + - 示例链接 https://gitee.com/ascend/modelzoo/issues/I3FI5L?from=project-issue + +### 附: pr检视 + +- pr检视: +1.标题格式:[华为大学昇腾学院][高校贡献][Pytorch离线推理][Cascade_RCNN]-初次提交 +2.包含bs1与bs16权重精度与om精度,包含bs1与bs16的t4与310性能数据,性能数据用fps表示 +3.备注:如果蓝区版本测精度或性能不达标,最新CANN版本测可以达标,这里需要写出原因与最新CANN包版本,用最新版本测。如果是无法规避的算子缺陷导致性能不达标,这里需要添加性能不达标的原因与解决方案。如果onnx因包含自定义算子不支持推理,需要说明性能是在t4上测的在线推理,如果模型不支持batch 16,也需要说明一下 +4.自验报告:CANN包版本与精度性能等数据是否正确 + +- 代码规范: +参考[ResNext50](https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50) +1.pipline要通过,缺陷扫描与规范扫描要尽可能改 +2.python脚本文件头需要加License声明 +3.pr不要包括开源模型的代码与权重文件 +注意: +4.python脚本不能包含从网上下载权重的代码,比如函数预训练为true时一般会下载权重 +5.python脚本避免依赖非必要的第三方库 +6.requirements.txt包含服务器上安装的本模型所有必要依赖的开源库的具体版本 + +- 模型README.md检视: +模板参见[README.md](https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50/README.md) +1.1.2 代码地址->需要给出使用的模型开源代码地址与其branch,commitid +2.2 环境说明->需要给出服务器上安装的本模型所有必要依赖的开源库的具体版本 +3.3.1 pth转onnx模型->优先使用训练提供的权重文件,如果训练的权重文件网上能获则需给出网址,否则需要给出从哪获取权重文件。如果训练没有提供权重则使用开源代码仓的权重文件。需要给出权重文件名与其md5sum值 +4.3.1 pth转onnx模型->如果需要对模型的开源代码做修改,以打patch的形式修改 +5.3.1 模型转换要点:->对于CANN包算子有问题导致模型转换失败或需要规避才能转换成功,则需要在模型转换要点里写明定位主要过程,原因与措施 +6.6.1 离线推理TopN精度统计->精度测试需要测试bs1与bs16的精度 +7.6.1 精度调试:->对于CANN包算子有问题导致精度不达标或需要规避才能达标,则需要在精度调试里写明定位主要过程,原因与措施 +8.7 性能对比->性能数据需要测bs1,16,4,8,32的性能数据,且需要计算出单卡吞吐率 +9.7 性能优化:->对于CANN包算子有问题导致性能不达标或需要规避才能达标,则需要在性能优化里写明定位主要过程,原因与措施 + +- test/README.md检视: +该文件是验收测试说明,主要是准备环境,pip3.7 install -r requirements.txt可能会重新安装某版本pytorch,验收时根据需要决定是否执行 +参见模板[test/README.md](https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50/test/README.md) + +### 附: 模型推理指导中的交付标准与规范 +- 交付标准 + - 精度: + om模型推理的精度与Ascend 910训练出的权重精度或PyTorch预训练模型github代码仓README.md或官网文档公布的精度对比,精度下降不超过1%则认为精度达标 + - 性能: + Ascend benchmark工具在数据集上推理测的NPU 310单颗device吞吐率乘以4颗即单卡吞吐率大于TensorRT工具测的GPU T4单卡吞吐率则认为性能达标 + 如若交付要求中对性能有要求(易模型),310的性能必须高于t4的性能 + 如若交付要求中没有对性能有要求(中难模型),310上推理需尽可能进行性能优化 + 若无法达到,则需要向华为方提交性能已达瓶颈的认证申请,华为方将定期组织专家组对申请模型进行评审,通过评审的模型允许以不高于t4的性能进行交付 + - 脚本: + 代码符合pep8规范; + 脚本命名格式需统一,文件名含模型名时模型名用小写,模型名含多个字符串时用-连接; + xxx_pth2onnx.py中不能使用从网络下载权重pth文件的代码,xxx_pth2onnx.py应有输入输出参数,输入是本地权重pth文件,输出是生成的onnx模型文件名; + xxx_pth_preprocess.py与xxx_pth_postprocess.py尽可能只引用numpy,Pillow,torch,pycocotools等基础库,如不要因mmdetection框架的数据处理与精度评测部分封装了这些基础库的操作,为调用这些简单接口,前后处理脚本就依赖mmdetection; + 不同模型的脚本与代码部分处理流程有相似性,尽量整合成通用的脚本与代码。 + - 推理过程: + 需要提供端到端推理过程中执行的命令等 + - 关键问题总结: + 需要提供端到端推理遇到的关键问题的简要调试过程,至少包含模型转换要点,精度调试,性能优化 + + 说明: + ``` + 1.如果已经有了ascend 910训练提供的权重文件,那么优先使用910训练提供的权重文件做离线推理,精度与910训练出的精度对齐;如果开源代码仓提供了多个权重文件,使用常用的基础的那个配置的权重文件即可;如果开源代码仓没有提供pth权重文件,则需要该模型的训练同学提供pth权重文件,或者使用开源代码仓训练脚本简单训练一个pth权重文件,然后对比om精度与该pth权重文件的精度 + + 2.由于随机数可能不能模拟数据分布,Ascend benchmark工具纯推理功能测的有些模型性能数据可能不太准,所以模型测试脚本与提交代码的描述中的性能数据以Ascend benchmark在数据集上推理时得到性能数据为准 + + 3.如果模型支持多batch,需要测试batch1,4,8,16,32的精度与性能,写在README.md里,模型测试脚本与提交代码的描述只需提供bs1和bs16的精度性能数据 + + 4.如果导出的onnx因包含自定义算子等而不能推理,则在t4上运行开源评测脚本测试pth模型在线推理性能 + + 5.对于性能不达标的模型,需要进行如下工作: + 1)优化修改onnx模型去掉影响性能的冗余pad,用Ascend atc的相关优化选项尝试一下,尝试使用最近邻替换双线性的resize重新训练,降低图片分辨率等使性能达标。 + 2)对于算子导致的性能问题,需要使用profiling分析定位引起性能下降的原因,具体到引起性能下降的算子。优先修改模型代码以使其选择性能好的npu算子替换性能差的npu算子使性能达标,然后在modelzoo上提issue,等修复版本发布后再重测性能,继续优化。 + 3)需要交付profiling性能数据,对经过上述方法性能可以达标的模型,在交付文档中写明问题原因与达标需要执行的操作;对经过上述方法性能仍不达标的模型,在交付的README.md文档中写明问题原因与简要的定位过程。 + + 6.git clone开源模型代码仓到工作目录,如果模型代码仓没有安装命令,pth2onnx.py脚本需要引用模型代码仓的函数或类时,通过sys.path.append(r"./代码仓目录")添加搜索路径,如果需要修改开源代码仓代码,将修改用git diff做成一个patch文件,交付件不要交付开源代码仓里的代码,只需要交付这个patch文件。参见本文3.5 maskrcnn端到端推理指导-开源detectron2加载npu权重的推理指导 + + 7.数据集统一放在/root/datasets/目录 + ``` + +- 交付件 + - 交付件参考:[ResNeXt50_Onnx模型端到端推理指导.md](https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50) + - 最终交付件: + 包含以上交付标准的代码,README.md,以及验收脚本 + 权重文件、profiling性能数据等非代码交付件一并打压缩包邮件发送 + - 最终交付形式: + gitee网址:https://gitee.com/ascend/modelzoo/tree/master/contrib/ACL_PyTorch/Research + commit信息格式:【高校贡献-${学校学院名称}】【Pytorch离线推理-${模型名称}】${PR内容摘要} + 模型命名风格为大驼峰,模型名含多个字符串时使用横杠或下划线连接,当上下文用横杠时模型名用下划线连接,否则用横杠连接 + 对于batch1与batch16,npu性能均高于T4性能1.2倍的模型,放在Benchmark目录下,1-1.2倍对应Official目录,低于1倍放在Research目录,目前都放在contrib/ACL_PyTorch/Research下即可 + +- gitee仓PR贡献流程 + - fork [modelzoo](https://gitee.com/ascend/modelzoo) 到个人仓 + - 提交代码到个人仓 + - 签署cla [link](https://clasign.osinfra.cn/sign/Z2l0ZWUlMkZhc2NlbmQ=) + - 选择 Sign Individual CLA + - 若已提交PR,但忘记签署,可在签署CLA后再评论内评论 ```/check-cla``` 重新校验 + - 依据文件夹名称及目录规范整理代码,完成自验,使用PR内容模板进行PR,审查人员请指定 王姜奔(wangjiangben_hw) + - PR后,华为方会进行代码检视,并对PR进行验证,请关注PR的评论并及时修改 + - 最终验收完成后合入主干 +- gitee仓验收使用脚本(请自验)、PR内容模板 + - 验收使用脚本(请自验) + >![](public_sys-resources/icon-note.gif) + **说明:** + > **提交前请确保自验通过!确保直接执行以下脚本就可运行!** + + ```shell + #准备环境 + 交付的代码文件夹下获取模型结构的开源代码,安装必要的依赖,获取训练提供的权重文件,获取数据集路径,获取benchmark工具 + + # pth是否能正确转换为om + bash test/pth2om.sh + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准),不指定数据集目录时默认/root/datasets + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准) + bash test/perf_t4.sh + ``` + - PR内容模板 + - PR示例链接 https://gitee.com/ascend/modelzoo/pulls/887 + - PR名称 + - [学校学院名称][高校贡献][Pytorch离线推理][模型名称]-PR内容摘要 + - 举例说明:[华为大学昇腾学院][高校贡献][Pytorch离线推理][ResNeXt50]-初次提交 + + ``` + + + **What type of PR is this?** + > /kind task + + **What does this PR do / why do we need it**: + # 简述你这次的PR的详情 + + | 模型 | 官网精度 | 310精度 | t4性能 | 310性能 | + | :------: | :------: | :------: | :------: | :------: | + | ResNeXt50 bs1 | top1:77.62% top5:93.70% | top1:77.62% top5:93.69% | 763.044fps | 1497.252fps | + | ResNeXt50 bs16 | top1:77.62% top5:93.70% | top1:77.62% top5:93.69% | 1234.940fps | 2096.376fps | + # 如果是无法规避的算子缺陷导致性能不达标,这里需要添加性能不达标的原因与解决方案 + + 自验报告 + # 第X次验收测试 + # 验收结果 OK / Failed + # 验收环境: A + K / CANN 5.0.1 + # 关联issue: + + # pth是否能正确转换为om + bash test/pth2om.sh + # 验收结果: OK / Failed + # 备注: 成功生成om,无运行报错,报错日志xx 等 + + # 精度数据是否达标(需要显示官网pth精度与om模型的精度) + # npu性能数据(确保device空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,性能数据以单卡吞吐率为标准) + bash test/eval_acc_perf.sh --datasets_path=/root/datasets + # 验收结果: 是 / 否 + # 备注: 目标pth精度top1:77.62% top5:93.70%;bs1,bs16验收om精度top1:77.62% top5:93.69%;精度下降不超过1%;无运行报错,报错日志xx 等 + # 备注: 验收310测试性能bs1:1497.252FPS bs16:2096.376FPS;无运行报错,报错日志xx 等 + + # 在t4环境测试性能数据(确保gpu空闲时测试,如果模型支持多batch,测试bs1与bs16,否则只测试bs1,如果导出的onnx模型因含自定义算子等不能离线推理,则在t4上测试pytorch模型的在线推理性能,性能数据以单卡吞吐率为标准),该步是验证eval_acc_perf.sh显示的t4性能数据是否正确,该脚本中填写的性能数据与t4实测性能数据要接近 + bash test/perf_t4.sh + # 验收结果: OK / Failed + # 备注: 验收t4测试性能bs1:763.044FPS bs16:1234.940FPS,与eval_acc_perf.sh脚本显示的t4性能数据一致;无运行报错,报错日志xx 等 + + # 310性能是否超过t4: 是 / 否 + bs1:310=(1497.252/763.044)1.96倍t4 + bs16:310=(2096.376/1234.940)1.70倍t4 + + - 示例链接 https://gitee.com/ascend/modelzoo/pulls/836#note_4750681 + + **Which issue(s) this PR fixes**: + # 用于后期issue关联的pr + + Fixes # + + **Special notes for your reviewers**: + # 在reviewer检视时你想要和他说的 + + ``` + + diff --git "a/AscendPytorch\346\250\241\345\236\213\344\274\227\346\231\272FAQ.md" "b/AscendPytorch\346\250\241\345\236\213\344\274\227\346\231\272FAQ.md" new file mode 100644 index 0000000000000000000000000000000000000000..b607ca83900a055218b6991483ad953a0778470e --- /dev/null +++ "b/AscendPytorch\346\250\241\345\236\213\344\274\227\346\231\272FAQ.md" @@ -0,0 +1,934 @@ +# Ascend PyTorch模型迁移常见问题FAQ +- [Ascend PyTorch模型迁移常见问题FAQ](#ascend-pytorch模型迁移常见问题faq) +- [1 介绍](#1-介绍) +- [2 常见问题FAQ](#2-常见问题faq) + - [2.1 NPU模型打通常见问题FAQ](#21-npu模型打通常见问题faq) + - [FAQ1、在模型运行或者算子运行时遇到报错,“RuntimeError: ExchangeDevice:”](#faq1在模型运行或者算子运行时遇到报错runtimeerror-exchangedevice) + - [FAQ2、在模型运行或者算子运行时遇到报错,“Error in atexit._run_exitfuncs:”](#faq2在模型运行或者算子运行时遇到报错error-in-atexit_run_exitfuncs) + - [FAQ3、在模型运行遇到报错,“terminate called after throwing an instance of 'c10::Error' what(): HelpACLExecute:”](#faq3在模型运行遇到报错terminate-called-after-throwing-an-instance-of-c10error-what--helpaclexecute) + - [FAQ4、在模型调测遇到报错,“RuntimeError: malloc:/..../pytorch/c10/npu/NPUCachingAllocator.cpp:293 NPU error, error code is 500000.”](#faq4在模型调测遇到报错runtimeerror-mallocpytorchc10npunpucachingallocatorcpp293-npu-error-error-code-is-500000) + - [FAQ5、在模型调测遇到报错,RuntimeError: Could not run 'aten::trunc.out' with arguments from the 'NPUTensorId' backend.](#faq5在模型调测遇到报错runtimeerror-could-not-run-atentruncout-with-arguments-from-the-nputensorid-backend) + - [FAQ6、在模型调测中,遇到某个算子报错的情况,如下分别为MaxPoolGradWithArgmaxV1算子和max算子报错。](#faq6在模型调测中遇到某个算子报错的情况如下分别为maxpoolgradwithargmaxv1算子和max算子报错) + - [FAQ7、在模型运行遇到报错,ImportError: libhccl.so.](#faq7在模型运行遇到报错importerror-libhcclso) + - [FAQ8、在模型运行将多任务下发关闭(export TASK_QUEUE_ENABLE=0)后仍然遇到报错,HelpACLExecute.](#faq8在模型运行将多任务下发关闭export-task_queue_enable0后仍然遇到报错helpaclexecute) + - [FAQ9、在模型运行遇到报错,RuntimeError: Initialize.](#faq9在模型运行遇到报错runtimeerror-initialize) + - [FAQ10、在模型运行遇到报错,TVM/te/cce error.](#faq10在模型运行遇到报错tvmtecce-error) + - [FAQ11、在调用torch时,遇到ModuleNotFoundError: No module named 'torch._C'报错。](#faq11在调用torch时遇到modulenotfounderror-no-module-named-torch_c报错) + - [FAQ12、cuda流同步操作报错。](#faq12cuda流同步操作报错) + - [FAQ13、aicpu_kernels/libpt_kernels.so找不到](#faq13aicpu_kernelslibpt_kernelsso找不到) + - [FAQ14、npu-smi info 查看显存时发现有残留](#faq14npu-smi-info-查看显存时发现有残留) + - [FAQ15、match op inputs failed](#faq15match-op-inputs-failed) + - [FAQ16、Op type SigmoidCrossEntropyWithLogitsV2 of ops kernel AIcoreEngine is unsupported,](#faq16op-type-sigmoidcrossentropywithlogitsv2-of-ops-kernel-aicoreengine-is-unsupported) + - [FAQ17、Hook失败](#faq17hook失败) + - [FAQ18、模型报错运行时MemCopySync:drvMemcpy failed.](#faq18模型报错运行时memcopysyncdrvmemcpy-failed) + - [FAQ19、加载权重时发生load state_dict error.](#faq19加载权重时发生load-state_dict-error) + - [FAQ20、加载数据集时发生cannot identify image.](#faq20加载数据集时发生cannot-identify-image) + - [FAQ21、timm框架版本问题导致错误](#faq21timm框架版本问题导致错误) + - [FAQ22、GPU场景下安装DCN2v模块](#faq22gpu场景下安装dcn2v模块) + - [FAQ23、模型训练时报libtorch_npu.so: undefined symbol: aclopSetCompileFlag错误。](#faq23模型训练时报libtorch_npuso-undefined-symbol-aclopsetcompileflag错误) + - [FAQ24、模型训练时报fill算子错误: RuntimeError: Run:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/aten/src/ATen/native/npu/utils/OpParamMaker.h:280 NPU error,NPU error code is:500002](#faq24模型训练时报fill算子错误-runtimeerror-runusr1workspacepytorch_apex_daily_c20tr5codeatensrcatennativenpuutilsopparammakerh280-npu-errornpu-error-code-is500002) + - [FAQ25、cpu下运行scatter算子报错:RuntimeError: index 4558486308284583594 is out of bounds for dimension 1 with size 4233.](#faq25cpu下运行scatter算子报错runtimeerror-index-4558486308284583594-is-out-of-bounds-for-dimension-1-with-size-4233) + - [FAQ26、NPU训练时,第一个batch训练速度特别慢,第二个开始速度正常,和gpu差不多。](#faq26npu训练时第一个batch训练速度特别慢第二个开始速度正常和gpu差不多) + - [FAQ26、pip安装包 matplotlib pillow numpy scipy xtcocotools torchvision 等包,在x86环境安装顺利但是在arm环境失败](#faq26pip安装包-matplotlib-pillow-numpy-scipy-xtcocotools-torchvision-等包在x86环境安装顺利但是在arm环境失败) + - [FAQ27、模型训练时出现argmax算子计算问题。](#faq27模型训练时出现argmax算子计算问题) + - [FAQ28、模型推理时加载pth出现问题。](#faq28模型推理时加载pth出现问题) + - [FAQ29、多个环境都遇到了安装升级5.0.1的toolkit包,安装时报错的问题。](#faq29多个环境都遇到了安装升级501的toolkit包安装时报错的问题) + - [FAQ30、Alexnet dropout 精度不达标规避方法。](#faq30alexnet-dropout-精度不达标规避方法) + - [2.2 NPU模型分布式运行常见问题FAQ](#22-npu模型分布式运行常见问题faq) + - [FAQ1、在模型分布式训练时,遇到报错 host not found.](#faq1在模型分布式训练时遇到报错-host-not-found) + - [FAQ2、在模型运行时,遇到eval模式下loss值特别大,过万.](#faq2在模型运行时遇到eval模式下loss值特别大过万) + - [FAQ3、在模型运行时,模型训练的精度和loss值多卡之间不同步.](#faq3在模型运行时模型训练的精度和loss值多卡之间不同步) + - [FAQ4、在模型运行时,模型训练跑到中途中断.](#faq4在模型运行时模型训练跑到中途中断) +# [1 介绍](#1-介绍) + + 本文目标读者为Ascend模型迁移开发者,用于指导开发者在昇腾版本的 PyTorch + Apex 下,实现模型训练精度性能达标。这里仅列举模型迁移中遇到的常见问题与解决方法,持续更新。 + + +# [2 常见问题FAQ](#2-常见问题FAQ) + +## [2.1 NPU模型打通常见问题FAQ](#21-NPU模型打通常见问题FAQ) + +### FAQ1、在模型运行或者算子运行时遇到报错,“RuntimeError: ExchangeDevice:” + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq_1103.png) + +* 原因分析 + + 目前在一个线程内,只能调用一个npu设备,当切换不同的npu device时,会出现上述错误。 + +* 处理方法 + + 检查代码中在调用torch.npu.set_device(device)、tensor.to(device)或者model.to(device)时,同一个线程内前后调用时device名称不一致。对于多个线程情况(如多卡训练),每个线程也是只能调用固定的npu device。 + + +### FAQ2、在模型运行或者算子运行时遇到报错,“Error in atexit._run_exitfuncs:” + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq_6_1111.png) + +* 原因分析 + + 在torch初始化时,若未通过torch.npu.device(id)指定npu设备,则默认使用device 0设备。若直接使用其他npu设备,如指定在device 1上创建tensor,那么在运行时会出现上述错误。 + +* 处理方法 + + 在调用npu设备之前,通过torch.npu.set_device(device)指定需要使用的npu 设备即可。 + +### FAQ3、在模型运行遇到报错,“terminate called after throwing an instance of 'c10::Error' what(): HelpACLExecute:” + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq2_1103.png) + +* 原因分析 + + 目前HelpACLExecute的报错信息是无法直接找到报错位置的,这里是在task任务下发时报错,由于开启TASK多线程下发(export TASK_QUEUE_ENABLE=1),报错信息被上层封装起来,无法获取更加详细的报错日志。 + +* 处理方法 + + 遇到这种情况处理方式有两种:一是查看host日志,可以查看具体的报错日志信息。日志默认位置是/root/ascend/log/plog/下,可能会有多个日志文件,日志文件以host-0为前缀,根据时间标识查找对应的日志文件。打开日志文件,搜索“ERROR”,查询具体的报错信息。二是关闭多线程下发(export TASK_QUEUE_ENABLE=0),同时开启错误日志级别(export ASCEND_GLOBAL_LOG_LEVEL=3)然后再次运行代码,一般可根据终端报错信息知道错误原因。 + +### FAQ4、在模型调测遇到报错,“RuntimeError: malloc:/..../pytorch/c10/npu/NPUCachingAllocator.cpp:293 NPU error, error code is 500000.” + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq3_1109.png) + +* 原因分析 + + 对于NPUCachingAllocator中malloc类型的错误,一般是npu显存不足,所需显存小于npu上可用显存,导致报错。 + +* 处理方法 + + 在模型调测中,可用通过减小batch size参数,来减少NPU显存的分配,解决该问题。 + +### FAQ5、在模型调测遇到报错,RuntimeError: Could not run 'aten::trunc.out' with arguments from the 'NPUTensorId' backend. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq5_1109.png) + +* 原因分析 + + 目前npu设备仅支持pytorch部分算子,对于不支持的算子在使用时均会报上述错误,算子正在不断开发中。[查看NPU设备已经支持的算子](https://support.huaweicloud.com/opl-pytorch/atlasptol_09_0001.html), 持续更新。 + +* 处理方法 + + 在模型调测中,可用通过减小batch size参数,来减少NPU显存的分配,解决该问题。 + + +### FAQ6、在模型调测中,遇到某个算子报错的情况,如下分别为MaxPoolGradWithArgmaxV1算子和max算子报错。 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq4_1109.png) + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq4_2_1109.png) + +* 原因分析 + + 在模型搭建中,算子输入参数是多样的。某些算子在特定参数下,计算报错或者不支持,根据报错信息可以定位到具体算子。 + +* 处理方法 + + 根据报错信息定位到具体算子,解决步骤如下: + 1) 排查模型中对该算子的调用方式和参数正确; + 2) 根据报错算子构建单算子用例,构建报错场景; + 3) 一般算子错误无法在python侧解决,构建出报错场景。在论坛中发帖附上报错场景,求助华为工程师即可。 + 注:输入参数shape 和 dtype需要重点关注,一般是导致算子报错的主要原因。 + + 前述图中,根据报错信息,定位到是MaxPoolGradWithArgmaxV1算子和max算子报错。MaxPoolGradWithArgmaxV1是在反向计算过程中报错,那么构建测试用例时需要构建对应的反向场景; + 而对于max算子,是正向计算时报错,构建正向场景即可。在模型中遇到算子报错,首选是仅构建单算子测试用例,确定报错场景和原因即可;若无法在单算子中构建单算子用例,则需要构建基于上下文的单算子场景, 可以参考[Ascend PyTorch模型迁移指导.md](https://gitee.com/ascend/docs-dev/blob/master/tutorials/Ascend%20PyTorch%E6%A8%A1%E5%9E%8B%E8%BF%81%E7%A7%BB%E6%8C%87%E5%AF%BC.md#44-%E5%8D%95%E7%AE%97%E5%AD%90%E7%94%A8%E4%BE%8B%E7%BC%96%E5%86%99%E8%AF%B4%E6%98%8E) 编写用例。 + + +### FAQ7、在模型运行遇到报错,ImportError: libhccl.so. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq6_1118.png) + +* 原因分析 + + 目前对外发布的pytorch安装包,默认是使用NPU和HCCL功能,因此在调用时需要将HCCL模块路径添加到环境变量中。根据报错信息,can not find libhccl.so,缺少hccl库文件。 + +* 处理方法 + + 将hccl模块的路径添加到环境变量中即可,一般hccl库文件路径是安装包下的.../fwkacllib/python/site-packages/hccl。 + + +### FAQ8、在模型运行将多任务下发关闭(export TASK_QUEUE_ENABLE=0)后仍然遇到报错,HelpACLExecute. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq7_1118.png) + +* 原因分析 + + 目前pytorch算子在npu上运行,通过ACL接口调用底层经过优化的算子,部分算子发生错误时,报错信息获取异常,在上层报错信息显示为HelpACLExecute. 内部也正在对报错信息与日志逐步完善中。 + +* 处理方法 + + 查看host日志,确定报错算子和位置。日志默认路径为/var/log/npu/slog/host-0,查找对应时间的log文件,搜索ERROR字段,查找错误信息。如对上述的错误,查询日志中的ERROR字段为: + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq7_1_1118.png) + + 从日志信息EEROR部分可以发现,报错算子为topKD,报错原因是 The number of attrs in op desc and op store does not match. 定位到是topk算子错误,具体原因是算子参数不匹配。 在模型代码中查找topk算子调用位置,确定该算子是否可有其他算子代替,若可由其他算子报错,暂时使用代替方案,并将算子报错信息报告华为工程师。若无替代算子,请将算子报错信息通知华为工程师解决。 + + +### FAQ9、在模型运行遇到报错,RuntimeError: Initialize. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq8_1118.png) + + +* 原因分析 + + 根据报错信息,是npu设备初始化错误。查看host日志内容,根据前述步骤查找日志。日志报错如下: + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq8_1_1118.png) + +* 处理方法 + + 从日志中定位到是在拉起npu设备时报错。一般可以通过重启服务器解决该问题,所有npu device也会重新启动。若重启服务器后,仍然存在该问题,检查安装的driver和fireware版本是否匹配,更换正确版本的driver和fireware,或者向华为工程师报告求助解决。 + + +### FAQ10、在模型运行遇到报错,TVM/te/cce error. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq10_1118.png) + +* 原因分析 + + pytorch内调用npu类型算子时,强依赖于te、cce、tvm组件,pytorch、toolkit/nnae和te版本需要一致。在更新toolkit/nnae后,te等组件不会自动更新,当版本不匹配时,则会出现该报错。 + +* 处理方法 + + 更新te等组件版本,具体是需要更新te-*.whl和topi-*.whl安装包。在安装的toolkit或者nnae的fwkacllib子目录下(对于默认安装路径,在/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/lib64目录下,更新安装包即可。在该目录下有安装包topi-0.4.0-py3-none-any.whl和te-0.4.0-py3-none-any.whl,分别运行 pip install --upgrade topi-0.4.0-py3-none-any.whl, pip install --upgrade te-0.4.0-py3-none-any.whl. + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq10_1_1118.png) + +### FAQ11、在调用torch时,遇到ModuleNotFoundError: No module named 'torch._C'报错。 + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq11_1123.png) + +* 原因分析 + + 首先确定报错位置,上述报错在.../code/pytorch/torch/__init__.py ,而当前运行路径在.../code/pytorch下,在执行import torch时,默认首先在当前目录下查找torch文件夹,因此会报错。这里应该是调用在系统目录下安装的torch包,而不是当前目录下的torch。 + +* 处理方法 + + 切换到其他目录执行脚本即可。 + +### FAQ12、cuda流同步操作报错。 + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq11_1123.png) + +* 原因分析 + + npu请使用npu的流同步方法 + +* 处理方法 + + ```python + stream = torch.npu.current_stream() + stream.synchronize() + ``` + + +### FAQ13、aicpu_kernels/libpt_kernels.so找不到 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq12_0126.png) + +* 原因分析 + + 未导入AICPU + +* 处理方法 + + ```export ASCEND_AICPU_PATH=/usr/local/Ascend/ascend-toolkit/latest``` + + +### FAQ14、npu-smi info 查看显存时发现有残留 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq13_0126.png) + +* 原因分析 + + 有python进程残留,需要kill + +* 处理方法 + + ```pkill -9 python``` + + +### FAQ15、match op inputs failed + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq14_0126.png) + +* 原因分析 + + PTIndexPut编译的算子和输入的shape对不上, 并有acl_dynamic_shape_op打头的日志字样,可以确定是动态shape报错 + +* 处理方法 + PTIndexPut对应 ```tensor[indices] = value``` ,需要在代码中找到对应的地方将动态shape修改为固定shape + + + +### FAQ16、Op type SigmoidCrossEntropyWithLogitsV2 of ops kernel AIcoreEngine is unsupported, + +``` +[ERROR] GE(24836,python3.7):2021-01-27-18:27:51.562.111 [../../../../../../graphengine/ge/engine_manager/dnnengine_manager.cc:266]25155 GetDNNEngineName: ErrorNo: 1343242282(assign engine failed) GetDNNEngineName:Op type SigmoidCrossEntropyWithLogitsV2 of ops kernel AIcoreEngine is unsupported, reason:Op SigmoidCrossEntropyWithLogitsV2 not supported reason: The type of this op is not found in op store, check whether the op store has this type of op. Op store name is tbe-custom. +The dtype, format or shape of input in op desc is not supported in op store, check the dtype, format or shape of input between the op store and the graph. Op store name is tbe-builtin. +``` + +* 原因分析 + + 给SigmoidCrossEntropyWithLogitsV2这个算子了不支持的输入类型 + +* 处理方法 + 检查对应python代码中输入的数据类型,多半是由于输入int64类型导致的错误 + + +### FAQ17、Hook失败 + +```shell +Traceback (most recent call last): + File "tools/train.py", line 227, in + main() + File "tools/train.py", line 221, in main + meta=meta) + File "/root/YoloV3/mmdetection/mmdet/apis/train.py", line 192, in train_detector + runner.run(data_loaders, cfg.workflow, cfg.total_epochs) + File "/usr/local/python3.7.5/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 166, in run + epoch_runner(data_loaders[i], **kwargs) + File "/usr/local/python3.7.5/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train + self.run_iter(data_batch, train_mode=True) + File "/usr/local/python3.7.5/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 30, in run_iter + outputs = self.model.train_step(data_batch, self.optimizer, **kwargs) + File "/usr/local/python3.7.5/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 100, in train_step + return self.module.train_step(*inputs[0], **kwargs[0]) + File "/root/YoloV3/mmdetection/mmdet/models/detectors/base.py", line 251, in train_step + losses = self(**data) + File "/usr/local/python3.7.5/lib/python3.7/site-packages/torch/nn/modules/module.py", line 660, in __call__ + var = next((v for v in var.values() if isinstance(v, torch.Tensor))) +StopIteration +``` + +* 原因分析 + + mmdet的loss部分结构触发了pytorch原生的一个hook的bug,会导致死循环 + +* 处理方法 + + 解决方案是 /usr/local/python3.7.5/lib/python3.7/site-packages/torch/nn/modules/module.py 在这个文件的658行加try跳过 + ```python + if len(self._backward_hooks) > 0: + var = result + try: + while not isinstance(var, torch.Tensor): + if isinstance(var, dict): + var = next((v for v in var.values() if isinstance(v, torch.Tensor))) + else: + var = var[0] + grad_fn = var.grad_fn + if grad_fn is not None: + for hook in self._backward_hooks.values(): + wrapper = functools.partial(hook, self) + functools.update_wrapper(wrapper, hook) + grad_fn.register_hook(wrapper) + except Exception as e: + print('hook failed..') + print(str(e)) + return result + ``` + + +### FAQ18、模型报错运行时MemCopySync:drvMemcpy failed. + +```shell + 脚本: + import torch + + def test_sum(): + xs_shape = [22400, 8] + ys_shape = [22400, 8] + gt_bboxes_shape = [22400, 8,4] + xs = torch.rand(xs_shape).npu() + ys = torch.rand(ys_shape).npu() + gt_bboxes = torch.rand(gt_bboxes_shape).npu().half() + left = xs - gt_bboxes[..., 0] + right = gt_bboxes[..., 2] - xs + top = ys - gt_bboxes[..., 1] + bottom = gt_bboxes[..., 3] - ys + # stream = torch.npu.current_stream() + # stream.synchronize() + # left, top 结果是fp32, right, bottom 结果是fp16, + # print(left.dtype, top.dtype, right.dtype, bottom.dtype) + bbox_targets = torch.stack((left, top, right, bottom), -1) #报错位置在这里 + # stream.synchronize() + + bbox_targets = torch.sum(bbox_targets) + shell报错信息: + RuntimeError: Run:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/aten/src/ATen/native/npu/utils/OpParamMaker.h:280 NPU error,NPU error code is:500002 + [ERROR] RUNTIME(160809)kernel task happen error, retCode=0x28, [aicpu timeout]. + [ERROR] RUNTIME(160809)aicpu kernel execute failed, device_id=0, stream_id=512, task_id=24, fault so_name=, fault kernel_name=, extend_info=. + Error in atexit._run_exitfuncs: + Traceback (most recent call last): + File "/usr/local/python3.7.5/lib/python3.7/site-packages/torch/__init__.py", line 429, in _npu_shutdown + torch._C._npu_shutdown() + RuntimeError: npuSynchronizeDevice:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/c10/npu/NPUStream.cpp:806 NPU error, error code is 0 + + 日志信息: + [ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.679 [../../../../../../runtime/feature/src/npu_driver.cc:1408]12828 MemCopySync:drvMemcpy failed: dst=0x108040288000, destMax=1240, src=0x7fe7649556d0, size=1240, kind=1, drvRetCode=17! + [ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.698 [../../../../../../runtime/feature/src/logger.cc:113]12828 KernelLaunch:launch kernel failed, kernel=140631803535760/ArgMinWithValue_tvmbin, dim=32, stream=0x55b22b3def50 + [ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.717 [../../../../../../runtime/feature/src/api_c.cc:224]12828 rtKernelLaunch:ErrCode=207001, desc=[module new memory error], InnerCode=0x70a0002 +``` + +* 原因分析 + + 根据shell和日志报错信息,两者报错信息不匹配,甚至是矛盾的。shell报错是在同步操作中和ai cpu错误,而日志却是在min算子(内部调用ArgMinWithValue_tvmbin),之间的报错信息完全不对应。实际上出现这种问题,日志内的报错信息会比较滞后,不具有参考价值。经过分析,该类错误一般都是由AI cpu算子引起的,因算子执行可能是异步的,报错信息可能滞后,即使关闭多任务算子下发也是一样的结果。所以实际上的错误位置是在shell脚本报错位置和日志报错算子之前就已经出现错误了。这时在根据报错加上stream同步操作,不断缩小错误范围,定位错误算子。stream同步操作可以保证代码运行到当前位置时,前面所有的计算一定是完成的,这样就可以确定范围。 + +* 处理方法 + +通过在代码中加上stream同步操作,可以确定报错算子是在stack,那么打印stack所有参数的shape、dtype、npu_format,然后构造单算子用例就能很好的复现和解决问题。所以这里的问题是,减法计算输入参数数据类型不同导致a-b和b-a结果的数据类型也不一致,最终在stack算子中报错。可以将stack入参数据类型转换为一致即可临时规避问题。对于该报错需要根据实际的错误来定位。 + +### FAQ19、加载权重时发生load state_dict error. + +* 现象描述 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq18_01.png) +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq18_02.png) + +* 原因分析 + + 模型训练后保存的state_dict的key值与加载时state_dict的key值不一致,保存时会在每个key的最前面多一个module前缀。 + +* 处理方法 + + 加载权重时先遍历state_dict字典,修改key值,并使用新建的字典,具体用例参考demo.py。 + ```shell + 脚本: + ckpt = torch.load("checkpoint.pth", map_location=loc) + # model.load_state_dict(ckpt['state_dict']) + state_dict_old = ckpt['state_dict'] + state_dict = {} + for key, value in state_dict_old.items(): + key = key[7:] + state_dict[key] = value + model.load_state_dict(state_dict) + ``` + +### FAQ20、加载数据集时发生cannot identify image. + +* 现象描述 +![](https://gitee.com/zhangjie11ee/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq19_0527.png) + + +* 原因分析 + + 模型训练时无法找到对应的数据集出现错误。 + +* 处理方法 + + 找不到数据集,检查数据集路径和数据集是否有效。 + +### FAQ21、timm框架版本问题导致错误 + +* 现象描述 +![](https://gitee.com/zhangjie11ee/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq20_0607.png) + 模型出差copy_npu的错误,使用的是timm框架结构。 + + +* 原因分析 + + 使用的timm框架有问题,需要定位分析 + +* 处理方法 + + 进行timme框架替换,环境上timm安装的是4.9版本,需要替换为是4.6版本的。 + +### FAQ22、GPU场景下安装DCN2v模块 + +* 现象描述 +![](https://gitee.com/zhangjie11ee/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq21_0607.png) + 导入DCNv2失败,出现未定义符合错误。 + + +* 原因分析 + + 该模块是模型自带的,导致导入失败,需要自己进行编译安装DCNv2模块 + +* 处理方法 + + 下载https://github.com/CharlesShang/DCNv2的源码,进行编译安装, + 可以参考https://www.gitmemory.com/issue/xingyizhou/CenterNet/7/486653333进行安装。 + + + + + +### FAQ23、模型训练时报libtorch_npu.so: undefined symbol: aclopSetCompileFlag错误。 + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq20_0528.PNG) + +* 原因分析 + + 环境中的pytorch版本与toolkit版本不匹配,或存在多个tookit版本,环境变量未正确指定。 + +* 处理方法 + + 1)重新安装版本匹配的torch或者toolkit。 + 2)重新设置环境变量,指定正确的toolkit路径。 + + +### FAQ24、模型训练时报fill算子错误: RuntimeError: Run:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/aten/src/ATen/native/npu/utils/OpParamMaker.h:280 NPU error,NPU error code is:500002 + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq21_0529.PNG) + +* 原因分析 + + 脚本中fill算子输入的类型是int64, 查看vim /usr/local/Ascend/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json中Fills算子支持的输入类型是float16,float32,int32 + +* 处理方法 + + 1)将fill算子输入的类型改成int32。 + + +### FAQ25、cpu下运行scatter算子报错:RuntimeError: index 4558486308284583594 is out of bounds for dimension 1 with size 4233. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq22_0604.PNG) + +* 原因分析 + + scatter算子中的index参数仅支持long类型 + index (LongTensor) – the indices of elements to scatter, can be either empty or the same size of src. When empty, the operation returns identity + +* 处理方法 + + 修改代码中b的类型为long。 + + +### FAQ26、NPU训练时,第一个batch训练速度特别慢,第二个开始速度正常,和gpu差不多。 + +* 现象描述 + +无 + +* 原因分析 + + NPU是在线编译算子的,在执行第一步的时候会去编译算子,所以第一步会特别慢。 + +* 处理方法 + + 正常现象。 + + +### FAQ26、pip安装包 matplotlib pillow numpy scipy xtcocotools torchvision 等包,在x86环境安装顺利但是在arm环境失败 + +* 现象描述 + + arm环境上安装很多包的时候会报错,报错的内容,现象各不相同,找不到包或者缺少底层依赖。 + +* 原因分析 + + 1. pip根据你当前的pip版本下载的,不同版本对应的包再pip源的中是相互隔离的,所以即使有些包已经出了arm版本,但是你的pip不够新下载也会出错,或者找不到。 + 2. 有些包在你选定的源里的确没有,尝试使用其他的pip源 + 3. arm上的环境上的python生态并不好,有些包即使是最新的pip版本依然下载不到。那只能编译源码了。 + +* 处理方法 + + 1)尝试更新pip,注意你若是使用的pip3.7则下面命令对应改成pip3.7 + ```bash + pip install --upgrade pip + ``` + + 2)临时切换pip源下载,使用 -i 参数指定临时源,常用的源还有 清华源,阿里源,豆瓣源 + ```bash + pip install torchvision==0.2.2 -i https://repo.huaweicloud.com/repository/pypi/simple/ + ``` + 其他源: + ```bash + 清华大学 :https://pypi.tuna.tsinghua.edu.cn/simple/ + 阿里云:http://mirrors.aliyun.com/pypi/simple/ + 豆瓣源:http://pypi.douban.com/simple/ + ``` + + 3)对于前两种办法都无法安装的包,那只能使用源码安装了,目前像 kaldi,xtcocotools 这类包需要使用gitee或者github上共享的源码,根据他的readme来编译安装。 + +### FAQ27、模型训练时出现argmax算子计算问题。 + +* 现象描述 + +![](https://gitee.com/zhangjie11ee/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq27_0618.png) + +* 原因分析 + + 1.因为传进去的输入的NCHW会发生变化,需要提前固定,不然会出现形状问题 + +* 处理方法 + + 1)需要对输入进行处理,参考如下: + output.data = output.data.npu_format_cast(0) + predict = torch.argmax(output, 1).to(torch.int32) + 1 + +### FAQ28、模型推理时加载pth出现问题。 + +* 现象描述 + +![](https://gitee.com/zhangjie11ee/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq28_0618.png) + +* 原因分析 + + 1.pth在npu上时加载会出现加载失败的现象 + +* 处理方法 + + 1)需要添加:pretrained_net = torch.load(cfg["test"]["ckpt_path"], map_location='cpu') + +### FAQ29、多个环境都遇到了安装升级5.0.1的toolkit包,安装时报错的问题。 + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_2901.png) + +* 原因分析 + + 通过分析发现是环境中/usr/bin/pip3目录不存在,或者没有软链到/usr/bin/pip3.7 + +* 处理方法 + + 如果环境中/usr/bin/pip3目录已经存在,但没有软链到/usr/bin/pip3.7,那就删除/usr/bin/pip3目录,然后做软链;如果/usr/bin/pip3目录不存在,直接做软链接。软链接命令如下:ln -s /usr/bin/pip3.7 /usr/bin/pip3 + +### FAQ30、某个算子不支持,GE层报错,如何排查 + * 现象描述 + 问题显示如下 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3001.png) + * 原因分析 + 提示的 NLLossGrad 算子不支持 + * 处理办法 + + 在 /usr/local/Ascend/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe/config/ascend910 你去这个目录下的aic-ascend910-ops-info.json文件搜下这个NLLossGrad + 查看的结果如上发现类型不匹配导致 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3002.png) + +### FAQ31 dict加载的时候提示key缺少 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3101.png) + 因为ddp保存的权重会在key的前面加上moudule.所以需要简单处理下对齐下key, + 模型训练后保存的state_dict的key值与加载时state_dict的key值不一致,保存时会在每个key的最前面多一个module前缀。 + load进来都是dict,可以print看看 + 这里是提示的key缺失所以要加上 + pth.tar后缀的 + ```python +def proc_node_module(checkpoint, AttrName): + new_state_dict = OrderedDict() + for k, v in checkpoint[AttrName].items(): + if k[0:7] == "module.": + name = k[7:] + else: + name = k[0:] + new_state_dict[name] = v + return new_state_dict +checkpoint = torch.load("checkpoint.pth.tar", map_location='cpu') +checkpoint['state_dict'] = proc_node_module(checkpoint, 'state_dict') +model.load_state_dict(checkpoint['state_dict']) +``` +pth后缀的 +```python +def proc_nodes_module(checkpoint): + new_state_dict = OrderedDict() + for k,v in checkpoint.items(): + if(k[0:7] == "module."): + name = k[7:] + else: + name = k[0:] + new_state_dict[name]=v + return new_state_dict +pretrained_net = torch.load(pth_file, map_location='cpu') +pretrained_net['state_dict'] = proc_nodes_module(pretrained_net) +model.load_state_dict(pretrained_net['state_dict']) +``` +### FAQ32 dict加载的时候提示key缺少 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3201.png) + + 原因 没有pip3这个快捷方式 + +1.检查 + +首先确定环境中是有python3.7.5的 + +确定自己的 pip3.7 存在的软连接位置 + +```bash +which pip3.7 #返回值应该是 /usr/bin/pip3.7 +``` + +2.创建软连接 + +```bash +ln -s /usr/bin/pip3.7 /usr/bin/pip3 +``` + +### FAQ33 toolkit包安装报错 +```bash +The user and group are not same with last installation,do not support overwriting installation +``` + +原因 + +当前指定的驱动运行用户与“/etc/ascend_install.info”文件中记录的运行用户不一致,导致校验失败,安装退出。原因是之前卸载驱动和CANN软件时,aicpu没有被卸载,导致“/etc/ascend_install.info”文件未清空。 + +先卸载aicpu,再安装驱动。卸载aicpu操作如下: + +1. 以root用户登录安装环境。 + +2. 进入卸载脚本所在目录。 + + cd /usr/local/Ascend/opp/aicpu/script + +3. 执行**./uninstall.sh**命令运行脚本,完成卸载。 + +### FAQ34 driver安装crl报错 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3401.png) +原因目录 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3402.png) +原因老版本的安装信息 /ascend/ascend_check 存在,driver安装前校验无法通过 + +解决办法,删除这个文件 +### FAQ35 onnx安装问题, protobuf-compiler缺失 + +arm 安装 onnx 步骤 x86的直接安装就行 + +pip安装 + 更新一下pip 或者 pip3.7 安装 + arm在21版本的pip中可以下载并执行编译安装,但是可能提示编译缺少包 +获取源码安装 + git clone https://github.com/onnx/onnx.git + cd ./onnx + python3.7 setup.py build + python3.7 setup.py install + 但是可能会有问题 + ![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3501.png) + +问题处理 : 缺失编译条件 + protobuf-compiler缺失 + +ubutu: + sudo apt-get install libprotobuf-dev protobuf-compiler +cent: + yum install libprotobuf-dev protobuf-compiler + 再次尝试安装试试,还是失败,就下一步 + +安装protobuf + wget https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz + tar xvf protobuf-2.6.1.tar.gz + cd protobuf-2.6.1 + ./configure + make -j 4 + make check + make install + 再次尝试安装下试试,否则继续下一步 + +安装 protoc + wget https://github.com/protobuf-c/protobuf-c/releases/download/v1.2.1/protobuf-c-1.2.1.tar.gz + tar xvf protobuf-c-1.2.1.tar.gz + cd protobuf-c-1.2.1 + export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig // 指定protobuf.pc文件所在 + ./configure + make -j 4 + make install + +还是失败的话,建议看下 环境基础依赖是否安装, +最后实在不行就放弃吧,换个操作系统。 + +### FAQ36 conda拷贝环境后发现pip使用不了报错如下: +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3601.png) +##### **问题原因:** + +conda现存的conda存在的bug,当你clone的环境是中的pip版本过高(21.0.1的版本就不行),那么继承的子环境会存在问题。 + +##### **解决办法** + +方法1 单独使用如下命令创建环境,然后apex包和torch包根据实际环境安装 + +conda create -n wangyuanming python=3.7.5 + +方法2 确定你拷贝的基础环境pip版本正确 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3602.png) + +### FAQ37 执行pip安装的时候缺少so的包 + +不一定是 openblas的包,也有可能是其他的包报错也是一样的 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3702.png) + **原因及解决办法** + +因为基础的依赖包没有安装 + +下面两种不同的环境需要安装的依赖有说不同 + +看下面的 FAQ38 + +### FAQ38 环境安装前需要基础依赖安装 +环境安装前需要基础依赖安装 +● CentOS/EulerOS/Tlinux/BClinux/Suse + +一般依赖需求 + +yum install -y libjpeg python-devel zlib-devel libjpeg-turbo-devel protobuf-compiler + +依赖+工具集 + +yum install -y gcc gcc-c++ make cmake unzip zlib-devel libffi-devel openssl-devel pciutils net-tools sqlite-devel lapack-devel openblas-devel gcc-gfortran dos2unix + +● Ubuntu/Debian/UOS + +一般依赖需求 + +apt-get install -y libjpeg python-devel zlib-devel libjpeg-turbo-devel + +依赖+工具集 + + apt-get install -y gcc g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3 libopenblas-dev libncursesw5-dev dos2unix + +### FAQ39 conda使用,外部的python环境指定的不是自己安装的版本 + +**问题现象** +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3901.png) +检查pip出处 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3902.png) +Python版本不对,执行位置也不对 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq1_3903.png) +原因和解决办法 +安装完的环境初始化操作被修改了,一般conda正常激活的时候前面应该有括号表示当前的conda环境 +所以这里想用外面的环境直接conda deactivate 为了一直有效直接添加到环境变量中。 + + +### FAQ40、Alexnet dropout 精度不达标规避方法。 +* 现象描述 + Alexnet dropout npu精度不达标 +* 处理方法 + + 我们采用规避dropout的方法,然后使模型精度达标。 + 源代码如下 + ``` + self.classifier = nn.Sequential( + nn.Dropout(), + nn.Linear(256 * 6 * 6, 4096), + nn.ReLU(inplace=True), + nn.Dropout(), + nn.Linear(4096, 4096), + nn.ReLU(inplace=True), + nn.Linear(4096, num_classes), + ) + ``` + 修改为如下: + ``` + class Dropout(nn.Module): + def __init__(self, p=0.5, inplace=False): + super(Dropout, self).__init__() + self.p = p + self.inplace = inplace + + def forward(self, x): + x = F.dropout(x.float().cpu(), self.p, self.training, self.inplace).npu().half() + return x + ....... + + self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) + self.classifier = nn.Sequential( + Dropout(), + nn.Linear(256 * 6 * 6, 4096), + nn.ReLU(inplace=True), + Dropout(), + nn.Linear(4096, 4096), + nn.ReLU(inplace=True), + nn.Linear(4096, num_classes), + ) + ``` + +### FAQ41、mmdet在做hook定位时反向过程报错 +- 现象描述 +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq41_0625_fig1.PNG) + +- 原因分析 + +这个是torch的原始BUG,如果是空dict就会死循环;因为mmdet自己会包装dict,所以这里一定要读到tensor,才会正常执行 +- 处理方法 +代码参考路径为:/usr/local/python3.7.5/lib/python3.7/site-packages/torch/nn/modules/module.py +适配代码参考如下: +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq41_0625_fig2.PNG) + + + + +## [2.2 NPU模型分布式运行常见问题FAQ](#22-NPU模型分布式运行常见问题FAQ) + +### FAQ1、在模型分布式训练时,遇到报错 host not found. + +* 现象描述 + +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq11_1120.png) + +* 原因分析 + + 对模型进行分布式训练时,会调用集合通信模块HCCL,需要根据实际情况设置IP和端口信息。根据报错信息,确定是IP地址设置错误。 + +* 处理方法 + + 在运行脚本中设置正确的IP地址,对于单机情况,设置为本机的IP即可;对于多机情况,每个服务器上脚本中的IP需要设置为master节点的IP。 + +### FAQ2、在模型运行时,遇到eval模式下loss值特别大,过万. + +* 现象描述 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq2_0201.png) + + +* 原因分析 + + 通过打印输入、查看数据集,降低loss_scale等方式均没有效果,通过重装torch和apex解决,该问题应该是包的版本不匹配引起的 + +* 处理方法 + + 重装环境中的torch和apex,问题得到解决。 + +### FAQ3、在模型运行时,模型训练的精度和loss值多卡之间不同步. + + +* 现象描述 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq2_0301.png) + + +* 原因分析 + + 只填加了train_sampler,没有添加set_epoch,导致不同步问题 + +* 处理方法 + + 在train epoch循环过程中,添加set_epoch,问题得到解决。 + +### FAQ4、在模型运行时,模型训练跑到中途中断. + + +* 现象描述 +![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/figures/model_faq2_0401.png) + + +* 原因分析 + + 模型在训练时,跑到中途中断报错,经分析是linux环境本身的限制,需要修改默认的打开进程数目值 + +* 处理方法 + + 通过ulimit -SHn 51200命令(可把该命令加入到env.sh文件中,方便跑模型时同步执行)修改打开进程数目值,该问题解决。 \ No newline at end of file diff --git "a/AscendPytorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272FAQ.md" "b/AscendPytorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272FAQ.md" new file mode 100644 index 0000000000000000000000000000000000000000..9dc2fae0f39a2dc6d3596388f80f4b163813a98c --- /dev/null +++ "b/AscendPytorch\346\250\241\345\236\213\346\216\250\347\220\206\344\274\227\346\231\272FAQ.md" @@ -0,0 +1,303 @@ +# Ascend PyTorch模型推理常见问题FAQ +- [Ascend PyTorch模型推理常见问题FAQ](#ascend-pytorch模型推理常见问题faq) +- [1 介绍](#1-介绍) +- [2 常见问题FAQ](#2-常见问题faq) + - [2.1 NPU模型打通常见问题FAQ](#21-npu模型打通常见问题faq) + - [FAQ1、需要提供哪些交付件,如何交付?](#faq1需要提供哪些交付件如何交付) + - [FAQ2、装有Ascend 310卡的服务器环境如何使用?](#faq2装有ascend-310卡的服务器环境如何使用) + - [FAQ3、推理与训练的关系?](#faq3推理与训练的关系) + - [FAQ4、推理工作量?](#faq4推理工作量) + - [FAQ5、推理过程中哪些工作在310服务器上做,哪些在t4服务器上做,哪些在cpu上做?](#faq5推理过程中哪些工作在310服务器上做哪些在t4服务器上做哪些在cpu上做) + - [FAQ6、预训练权重文件选择的问题?](#faq6预训练权重文件选择的问题) + - [FAQ7、精度与性能需要测试哪些batch?](#faq7精度与性能需要测试哪些batch) + - [FAQ8、onnx不能推理,t4性能如何测?](#faq8onnx不能推理t4性能如何测) + - [FAQ9、om性能如何测?](#faq9om性能如何测) + - [FAQ10、导出onnx脚本的dynamic_axes与onnx的输入shape(-1,3,224,224)中的-1是什么意思?](#faq10导出onnx脚本的dynamic_axes与onnx的输入shape-13224224中的-1是什么意思) + - [FAQ11、atc命令失败时如何查看日志?](#faq11atc命令失败时如何查看日志) + - [FAQ12、模型代码包含不能导出onnx的算子时如何解决-等价替换为自定义算子?](#faq12模型代码包含不能导出onnx的算子时如何解决-等价替换为自定义算子) + - [FAQ13、运行atc或benchmark命令时报错找不到atc命令或找不到ascend动态库](#faq13运行atc或benchmark命令时报错找不到atc命令或找不到ascend动态库) + - [FAQ14、推理性能不达标,profiling显示TransData算子耗时,参考如下方案优化](#faq14推理性能不达标profiling显示transdata算子耗时参考如下方案优化) + - [FAQ15、onnx转om模型报错atc命令ERROR问题解决](#faq15onnx转om模型报错atc命令error问题解决) + - [FAQ16、离线推理后处理脚本适配](#faq16离线推理后处理脚本适配) + - [FAQ17、执行数据集预处理报错](#faq17执行数据集预处理报错) + - [2.2 NPU模型精度调试常见问题FAQ](#22-npu模型精度调试常见问题faq) + - [2.3 NPU模型性能优化常见问题FAQ](#23-npu模型性能优化常见问题faq) +# [1 介绍](#1-介绍) + + 本文目标读者为Ascend模型离线推理开发者,用于指导开发者在昇腾版本的CANN包下,实现模型推理精度性能达标。这里仅列举模型离线推理中遇到的常见问题与解决方法,持续更新。 + + +# [2 常见问题FAQ](#2-常见问题FAQ) + +## [2.1 NPU模型打通常见问题FAQ](#21-NPU模型打通常见问题FAQ) + +### FAQ1、需要提供哪些交付件,如何交付? +交付请参考《推理指导》6.2 交付标准与规范 +交付件样例:https://gitee.com/ascend/modelzoo/tree/master/built-in/ACL_PyTorch/Benchmark/cv/classification/ResNext50 + +### FAQ2、装有Ascend 310卡的服务器环境如何使用? +提供的装有Ascend 310卡的服务器已经安装好ascend的包,服务器home/common/resnext50的样例是可以运行的 + +### FAQ3、推理与训练的关系? +模型推理与训练是独立的事情,推理比训练简单一些,推理是使用Ascend 910训练的权重或模型开源代码仓提供的权重在310上执行推理,一般在训练等待结果的时间内可以同步做推理 + +### FAQ4、推理工作量? +做之前需要先熟悉相关工作,然后进行模型推理,如果精度性能不达标就需要花费不少时间了,模型推理到验收还有检视整改测试资料文档的工作,不是三天就能做完模型推理,从开始到验收完成整个周期规划了1个月~1.5个月的时间 + +### FAQ5、推理过程中哪些工作在310服务器上做,哪些在t4服务器上做,哪些在cpu上做? +前后处理与转onnx在cpu上做即可,转om模型和benchmark推理时的命令在装有ascend 310的服务器上执行即可,因为两个命令依赖Ascend cann包提供的编译工具与npu算子库,gpu性能数据需要在装有t4卡的服务器上测 + +### FAQ6、预训练权重文件选择的问题? +如果已经有了ascend 910训练提供的权重文件,那么优先使用910训练提供的权重文件做离线推理,精度与910训练出的精度对齐 +如果开源代码仓提供了多个权重文件,使用常用的基础的那个配置的权重文件即可,并且模型支持多任务时只需要针对一个任务做推理 +如果开源代码仓没有提供pth权重文件,则需要该模型的训练同学提供pth权重文件,或者使用开源代码仓训练脚本简单训练一个pth权重文件,然后对比om精度与该pth权重文件的精度 + +### FAQ7、精度与性能需要测试哪些batch? +如果模型支持多batch,需要测试batch1,4,8,16,32的精度与性能,写在README.md里,模型测试脚本与提交代码的描述只需提供bs1和bs16的精度性能数据 + +### FAQ8、onnx不能推理,t4性能如何测? +如果导出的onnx因包含自定义算子等而不能推理,则在t4上运行开源评测脚本测试pth模型在线推理性能 + +### FAQ9、om性能如何测? +测试时需要确保测试过程中device只进行了这一个测试任务,使用npu-smi info查看device是否空闲 +由于随机数可能不能模拟数据分布,Ascend benchmark工具纯推理功能测的有些模型性能数据可能不太准,所以模型测试脚本与提交代码的描述中的性能数据以Ascend benchmark在数据集上推理时得到性能数据为准 + +### FAQ10、导出onnx脚本的dynamic_axes与onnx的输入shape(-1,3,224,224)中的-1是什么意思? +如下导出的onnx模型通过可视化工具netron查看其输入shape是(-1,3,224,224),-1代表onnx模型是动态batch的,当用tensorRT在t4上测onnx的性能时可以指定任意batch的输入(batch,3,224,224),dynamic_axes是动态batch参数,'image': {0: '-1'}表示输入image的第一维是-1即batch维为-1表示动态 +``` + input_names = ["image"] + output_names = ["class"] + dynamic_axes = {'image': {0: '-1'}, 'class': {0: '-1'}} + dummy_input = torch.randn(1, 3, 224, 224) + torch.onnx.export(model, dummy_input, output_file, input_names = input_names, dynamic_axes = dynamic_axes, output_names = output_names, opset_version=11, verbose=True) +``` +无论onnx模型的batch是多少,onnx转换为om时只要通过--input_shape指定batch为正整数,就得到对应batch的om模型,目前om虽然支持动态batch,但是我们不使用动态batch的om模型 +``` +atc --framework=5 --model=./resnext50.onnx --input_format=NCHW --input_shape="image:16,3,224,224" --output=resnext50_bs16 --log=debug --soc_version=Ascend310 +``` +当然像一些模型如shufflenetv1其实不支持动态batch,转换为固定batch的om时除了指定--input_shape的相同的batch,还需要相同batch的onnx模型来转换,否则会报错 + +### FAQ11、atc命令失败时如何查看日志? +``` +export ASCEND_SLOG_PRINT_TO_STDOUT=1 +export ASCEND_GLOBAL_LOG_LEVEL=0 #debug 0 --> info 1 --> warning 2 --> error 3 +然后执行atc ... > atc.log +``` + +### FAQ12、模型代码包含不能导出onnx的算子时如何解决-等价替换为自定义算子? +pytorch代码的adaptive_avg_pool2d目前onnx还不支持,所以导出onnx时报错,解决方案是尝试使用avg_pool2d替换adaptive_avg_pool2d,但当input最后两维不是output的整数倍时,adaptive_avg_pool2d不能完全等价替换为avg_pool2d,而npu有adaptive_avg_pool2d算子的实现,所以解决方案变为将adaptive_avg_pool2d改为自定义算子导出onnx,自定义算子不需要具体实现代码(因此导出的onnx不能使用onnxruntime进行推理,还需要将pytorch的_check_onnx_proto(proto)改为pass去除导出onnx时进行检查),只要自定义算子返回的输出shape与原算子输出的shape保持一致即可,相当于onnx只包含这个算子的声明(数据类型与属性需要与npu版算子对应),在onnx转为om时,atc工具的onnx插件如果支持该算子,atc工具会根据这个声明找到该算子npu的实现。 +查看npu的adaptive_avg_pool2d声明: +``` +REG_OP(AdaptiveAvgPool2d) + .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16})) + .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16})) + .REQUIRED_ATTR(output_size, ListInt) + .OP_END_FACTORY_REG(AdaptiveAvgPool2d) +``` +修改模型代码,将adaptive_avg_pool2d改为自定义算子,然后导出onnx,其中output_size_i代表int64类型的算子属性: +``` +class AdaptiveAvgPoolOp(torch.autograd.Function): + + @staticmethod + def forward(ctx, x, output_size): + out = torch.randn(x.shape[0], x.shape[1], output_size[0], output_size[1]).to(x.dtype) + return out + + @staticmethod + def symbolic(g, x, output_size): + out = g.op('AdaptiveAvgPool2d', x, output_size_i = output_size) + return out + +def adaptive_avg_pool_op(x, output_size): + out = AdaptiveAvgPoolOp.apply(x, output_size) + return out + +x = F.adaptive_avg_pool2d(input, output_size=bin_size)替换为x = adaptive_avg_pool_op(input, (bin_size, bin_size)) +``` + +### FAQ13、运行atc或benchmark命令时报错找不到atc命令或找不到ascend动态库 + +* 现象描述 + + ``` + Command 'atc' not found, but can be installed with: + or + ./benchmark.x86_64: error while loading shared libraries: libascendcl.so: cannot open shared object file: No such file or directory + ``` + +* 原因分析 + + 当环境变量未设置或者无效时,会出现上述错误。 + +* 处理方法 + + 设置环境变量: + ``` + export install_path=/usr/local/Ascend/ascend-toolkit/latest + export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH + export PYTHONPATH=${install_path}/atc/python/site-packages:$PYTHONPATH + export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH + export ASCEND_OPP_PATH=${install_path}/opp + export ASCEND_AICPU_PATH=/usr/local/Ascend/ascend-toolkit/latest + ``` + 若是普通用户登录装有Ascend310卡的服务器,需要使用sudo执行命令,并且 + ``` + 修改/etc/sudoers将Defaults env_reset改成Defaults !env_reset + 修改/etc/bash.bashrc添加alias sudo='sudo env PATH=$PATH LD_LIBRARY_PATH=$LD_LIBRARY_PATH' + ``` + +### FAQ14、推理性能不达标,profiling显示TransData算子耗时,参考如下方案优化 +(1)修改five_2_four.py优化方法 + 在环境变量env.sh中export install_path=/usr/local/Ascend/ascend-toolkit/latest路径下查找five_2_four.py文件,路径一般为 +``` +/usr/local/Ascend/ascend-toolkit/latest/x86_64-linux/opp/op_impl/built-in/ai_core/tbe/impl/five_2_four.py +``` + +修改five_2_four.py文件,将TransData算子的output shape加入five_2_four函数行中,示例如下: +``` +from impl import trans_data_negative_target_ntc + +@util.check_input_type(dict, dict, str, str, str) +def five_2_four(src, dst, src_format, dst_format, kernel_name='five_2_four'): + ... + elif dst_format.lower() == "nhwc" and dst_shape in [[10000, 63, 63, 1], [10000, 127, 127, 1], [16, 19, 19, 486], + [16, 10, 10, 486], [16, 38, 38, 324], [16, 5, 5, 486], + [16, 3, 3, 324], [8, 19, 19, 486], [8, 10, 10, 486], + [8, 38, 38, 324], [8, 5, 5, 486], [8, 3, 3, 324], + [100, 28, 28, 91]]: + trans_data_negative_target_tc.trans_data_negative_target_tc(src, dst, src_format, dst_format, kernel_name) + elif dst_format.lower() == "nchw" and dst_shape in [[2560, 512, 4, 26], [2560, 512, 1, 26], [2560, 256, 8, 25], + [16, 240, 7, 7], [16, 120, 14, 14], [1,19,1024,2048], [4,19,1024,2048]]: + print("=================================") + print("ntc dst shape:", dst_shape) + print("=================================") + trans_data_negative_target_ntc.trans_data_negative_target_ntc(src, dst, src_format, dst_format, kernel_name) + ... +``` +- 不同的batch_size,添加的shape不一样,shape大小为[*,19,1024,2048 ] ,以某模型为例,只测试batch1和batch4,因此添加的shape为[1,19,1024,2048],[4,19,1024,2048] + +修改完成后,重新转换生成om文件,atc转换过程会打印添加的日志,如下: +``` +ATC start working now, please wait for a moment. +================================= +ntc dst shape: [1, 19, 1024, 2048] +================================= +================================= +ntc dst shape: [1, 19, 1024, 2048] +================================= +ATC run success, welcome to the next use. +W11001: High-priority service of op[PartitionedCall_AvgPool_45_2] is invalid, low-priority service is used. It can work normally but may affect performance. +W11001: High-priority service of op[PartitionedCall_AvgPool_52_6] is invalid, low-priority service is used. It can work normally but may affect performance. +``` +(2)output_node输出节点类型更改为float16 +atc转换时指定输出节点类型为float16 +``` +atc --framework=5 --model=./ICNet.onnx --output=ICNet_bs1 --out_nodes="Resize_317:0" --output_type=FP16 --input_format=NCHW --input_shape="actual_input_1: 1,3,1024,2048" --log=debug --soc_version=Ascend310 +``` + +### FAQ15、onnx转om模型报错atc命令ERROR问题解决 +* 现象描述 + ``` + ATC run failed,please check the detail log. try 'atc --help' + E19999: Inter Error! + Unknown error occurred,please check the log. + ``` + 1. 设置环境变量 + ``` + export install_path=/usr/local/Ascend/ascend-toolkit/latest + export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH + export PYTHONPATH=${install_path}/atc/python/site-packages:$PYTHONPATH + export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH + export ASCEND_OPP_PATH=${install_path}/opp + ``` + 2. 更新最新的推理包run包 + + 3. 打印host日志 + ``` + export ASCEND_SLOG_PRINT_TO_STDOUT=1 + [WARNING] TBE(3112,atc.bin):2021-05-25-15:20:33.329.360 [image_ops.cc:2146][OP_PROTO] ResizeNearestInferShape:2146 OpName:[Resize_140] "Get + constValue failed of [sizes]" + [ERROR] TBE(3112,atc.bin):2021-05-25-15:20:33.329.371 [image_ops.cc:2084][OP_PROTO] CalculateSizeOut:2084 OpName:[Resize_140] "length of scale_out + after erase must be equal to 2" + [ERROR] TBE(3112,atc.bin):2021-05-25-15:20:33.329.376 [image_ops.cc:2155][OP_PROTO] ResizeNearestInferShape:2155 OpName:[Resize_140] "calculate size + out failed." + [ERROR] GE(3112,atc.bin):2021-05-25-15:20:33.329.391 [op_desc.cc:1345]3112 CallInferFunc: ErrorNo: -1(failed) [COMP][PRE_OPT]Resize_140 call infer + func. ret: 4294967295 + [ERROR] GE(3112,atc.bin):2021-05-25-15:20:33.329.397 [shape_refiner.cc:766]3112 InferShapeAndType: ErrorNo: -1(failed) [COMP][PRE_OPT]Resize_140 call + infer function failed. + ``` + 得出的结论为:onnx不支持 constValuse 需要进行优化转换 + 优化转换采用onnx-simplifier 工具进行转换 + 安装onnx-simplifier + pip3 install onnx-simplifier + 简化onnx模型: + python3 -m onnxsim ./hrnet_w18.onnx ./hrnet_w18_1.onnx --input-shape "16,3,224,224" + 转换完成再执行如下命令 + ``` + atc --framework=5 --model=./hrnet_w18_1.onnx --input_format=NCHW --input_shape="image:16,3,224,224" --output=hrnet_bs16 --log=debug -- + soc_version=Ascend310 + ``` + onnx转om成功。 + +### FAQ16、离线推理后处理脚本适配 + 对于一些图像分类的模型,后处理脚本都是通用的;而有些模型(比如分割类)是没有后处理脚本的,需要读者自行适配。 +(1)源码中包含在线推理脚本(如evaluate.py)或测试类脚本(如test.py) +基于这两个脚本适配,一般脚本中都包含类似的model语句 +``` +outputs = model(image) +``` +benchmark离线推理得到的./result/dumpOutput_device0/数据就可以理解为在线推理的model(image)步骤,适配过程就是从./result/dumpOutput_device0/中按照对应的名字将数据读取出来,适配代码参考如下: +``` +outputs = self.file2tensor(annotation_file) + +# 生成的是bin文件 +def file2tensor(self, annotation_file): + + filepath = annotation_file + '_1.bin' + size = os.path.getsize(filepath) + res = [] + L = int(size/4) #由于需要的是float32类型,所以按照4字节读取;根据实际情况按字节读取 + binfile = open(filepath, 'rb') + for i in range(L): + data = binfile.read(4) + num = struct.unpack('f', data) + res.append(num[0]) + binfile.close() + + dim_res = np.array(res).reshape(1,19,1024,2048) #转换为对应的shape,可通过在线推理打印outputs的shape获取到 + tensor_res = torch.tensor(dim_res, dtype=torch.float32) + print(filepath, tensor_res.dtype, tensor_res.shape) + + return tensor_res +``` +(2)如上的文件都没有,可以参考训练过程的validation步骤进行适配,适配方法同上。 + + +### FAQ17、执行数据集预处理报错 +``` +python3.7 imagenet_torch_preprocess.py /opt/npu/imagenet/val ./pre_dataset +``` +报错如下 +``` +PIL.UnidentifeldImageError: cannot identify image file '/opt/npu/imagenet/val/xxxx.jpeg' +``` +出现这个问题代表图片文件损坏。 +解决方法:更换未损坏的val数据集。 + + +## [2.2 NPU模型精度调试常见问题FAQ](#22-NPU模型精度调试常见问题FAQ) + + 1.前后处理与模型参数是否与开源代码仓的推理使用的完全一致 + 2.使用开源代码仓提供的测评pth的脚本测试pth在线推理精度是否达标,可以添加算子输出结果的调试打印 + 3.如果导出的onnx可以推理,确定onnx精度是否达标 + 4.如果是om算子导致精度下降,则模型转换时指定算子为om的输出节点,然后与pth在线推理时该算子(开启verbose导出onnx时会打印算子对应的py文件代码行)的输出对比,查看是否一致 + 5.如果某算子导致精度下降问题,尝试是否可以修改模型使用其它方法替换掉该算子,然后看精度是否达标,如果遇到实在规避不了的算子问题则需要在modelzoo提issue +参考《推理指导》的4.5 maskrcnn端到端推理指导案例 + + +## [2.3 NPU模型性能优化常见问题FAQ](#22-NPU模型性能优化常见问题FAQ) + + 1.优化修改onnx模型去掉影响性能的冗余pad,用Ascend atc的相关优化选项尝试一下,尝试使用最近邻替换双线性的resize重新训练,降低图片分辨率等使性能达标。 + 2.对于算子导致的性能问题,需要使用profiling分析定位引起性能下降的原因,具体到引起性能下降的算子。优先修改模型代码以使其选择性能好的npu算子替换性能差的npu算子使性能达标,然后在modelzoo上提issue,等修复版本发布后再重测性能,继续优化。 + 3.需要交付profiling性能数据,对经过上述方法性能可以达标的模型,在交付文档中写明问题原因与达标需要执行的操作;对经过上述方法性能仍不达标的模型,在交付的README.md文档中写明问题原因与简要的定位过程。 + diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/Dockerfile" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/Dockerfile" new file mode 100644 index 0000000000000000000000000000000000000000..30a31af55804dd79571d2a36e6107a844cb7e549 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/Dockerfile" @@ -0,0 +1,5 @@ +ARG FROM_IMAGE_NAME +FROM $FROM_IMAGE_NAME + +COPY requirements.txt . +RUN pip3.7 install -r requirements.txt \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/LICENSE" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/LICENSE" new file mode 100644 index 0000000000000000000000000000000000000000..dfcc682b4b265c524b676eea5c382472c09f42c4 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/LICENSE" @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2017, +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/README.md" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/README.md" new file mode 100644 index 0000000000000000000000000000000000000000..eba4b0294514836fc7ad5b98310fc140dc1f58c2 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/README.md" @@ -0,0 +1,42 @@ +# ResNet101_ID1595_for_PyTorch + +This implements training of ResNet101_ID1595_for_PyTorch on the ImageNet dataset, mainly modified from [pytorch/examples](https://github.com/pytorch/examples/tree/master/imagenet). + +[Paper](https://arxiv.org/pdf/1512.03385.pdf) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun."Deep Residual Learning for Image Recognition" + +## Requirements + +- Install PyTorch ([pytorch.org](http://pytorch.org)) +- `pip install -r requirements.txt` +- Download the ImageNet dataset from http://www.image-net.org/ + - Then, and move validation images to labeled subfolders, using [the following shell script](https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh) + +## Training + +To train a model, run `main.py` with the desired model architecture and the path to the ImageNet dataset: + +# 1p training 1p +bash ./test/train_full_1p.sh --data_path=xxx # training accuracy + +bash ./test/train_performance_1p.sh --data_path=xxx # training performance + +# 8p training 8p +bash ./test/train_full_8p.sh --data_path=xxx # training accuracy + +bash ./test/train_performance_8p.sh --data_path=xxx # training performance + +# eval default 8p, should support 1p +bash ./test/train_eval_8p.sh --data_path=xxx + +## Traing log +test/output/devie_id/train_${device_id}.log # training detail log + +test/output/devie_id/ResNet101_${device_id}_bs_8p_perf.log # 8p training performance result + +test/output/devie_id/ResNet101_${device_id}_bs_8p_acc.log # 8p training accuracy result + +## ResNet101_ID1595_for_PyTorch training result +| Acc@1 | FPS | Npu_nums | Epochs | AMP_Type | +| :------: | :------: | :------: | :------: | :------: | +| - | 698 | 1 | 110 | O2 | +| 77.36 | 3687 | 8 | 110 | O2 | \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/demo.py" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/demo.py" new file mode 100644 index 0000000000000000000000000000000000000000..2bb222c4834f69d4ea812b7cd1bd5e4ca7671e5b --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/demo.py" @@ -0,0 +1,73 @@ +# -*- coding: utf-8 -*- +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import torch +import numpy as np + + +def build_model(): + import torchvision + model = torchvision.models.resnet101(pretrained=True) + model.eval() + return model + + +def get_raw_data(): + from PIL import Image + from urllib.request import urlretrieve + IMAGE_URL = 'https://bbs-img.huaweicloud.com/blogs/img/thumb/1591951315139_8989_1363.png' + urlretrieve(IMAGE_URL, 'tmp.jpg') + img = Image.open("tmp.jpg") + img = img.convert('RGB') + return img + + +def pre_process(raw_data): + from torchvision import transforms + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]) + transforms_list = transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + normalize + ]) + input_data = transforms_list(raw_data) + return input_data.unsqueeze(0) + + +def post_process(output_tensor): + return torch.argmax(output_tensor, 1) + + +if __name__ == '__main__': + # 1. get raw data + raw_data = get_raw_data() + + # 2. buid model + model = build_model() + + # 3. pre process data + input_tensor = pre_process(raw_data) + + # 4. run forward + output_tensor = model(input_tensor) + + # 5. post process + result = post_process(output_tensor) + + # 6. print result + print(result) \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/docker_start.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/docker_start.sh" new file mode 100644 index 0000000000000000000000000000000000000000..944bca3cdac8e3f2d47ceb0e2b6eb181a405de11 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/docker_start.sh" @@ -0,0 +1,25 @@ +#!/bin/bash + +docker_image=$1 +data_dir=$2 +model_dir=$3 + +docker run -it --ipc=host \ + --device=/dev/davinci0 \ + --device=/dev/davinci1 \ + --device=/dev/davinci2 \ + --device=/dev/davinci3 \ + --device=/dev/davinci4 \ + --device=/dev/davinci5 \ + --device=/dev/davinci6 \ + --device=/dev/davinci7 \ + --device=/dev/davinci_manager \ + --device=/dev/devmm_svm --device=/dev/hisi_hdc \ + -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ + -v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons/ \ + -v ${model_dir}:${model_dir} \ + -v ${data_dir}:${data_dir} \ + -v /var/log/npu/conf/slog/slog.conf:/var/log/npu/conf/slog/slog.conf \ + -v /var/log/npu/slog/:/var/log/npu/slog -v /var/log/npu/profiling/:/var/log/npu/profiling \ + -v /var/log/npu/dump/:/var/log/npu/dump -v /var/log/npu/:/usr/slog ${docker_image} \ + /bin/bash \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/fusion_result.json" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/fusion_result.json" new file mode 100644 index 0000000000000000000000000000000000000000..46392cfd2562f14bb4f605949501dc7b4676187e --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/fusion_result.json" @@ -0,0 +1,885 @@ +{ + "graphId": "50", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "50" +}{ + "graphId": "56", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "56" +}{ + "graphId": "60", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "60" +}{ + "graphId": "61", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "61" +}{ + "graphId": "66", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "66" +}{ + "graphId": "67", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "67" +}{ + "graphId": "71", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "71" +}{ + "graphId": "75", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "75" +}{ + "graphId": "78", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "78" +}{ + "graphId": "81", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "81" +}{ + "graphId": "82", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "82" +}{ + "graphId": "83", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "83" +}{ + "graphId": "87", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "87" +}{ + "graphId": "91", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "91" +}{ + "graphId": "94", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "94" +}{ + "graphId": "97", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "97" +}{ + "graphId": "98", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "98" +}{ + "graphId": "99", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "99" +}{ + "graphId": "103", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "103" +}{ + "graphId": "107", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "107" +}{ + "graphId": "110", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "110" +}{ + "graphId": "113", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "113" +}{ + "graphId": "114", + "graph_fusion": { + "ConvToFullyConnectionFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ConvWeightCompressFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "GroupConv2DFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "114" +}{ + "graphId": "197", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "197" +}{ + "graphId": "198", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "198" +}{ + "graphId": "202", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "202" +}{ + "graphId": "203", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "203" +}{ + "graphId": "204", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "204" +}{ + "graphId": "205", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "205" +}{ + "graphId": "206", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "206" +}{ + "graphId": "207", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "207" +}{ + "graphId": "208", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "208" +}{ + "graphId": "209", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "209" +}{ + "graphId": "213", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "213" +}{ + "graphId": "214", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "214" +}{ + "graphId": "218", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "218" +}{ + "graphId": "219", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "219" +}{ + "graphId": "223", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "223" +}{ + "graphId": "224", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "224" +}{ + "graphId": "225", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "225" +}{ + "graphId": "226", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "226" +}{ + "graphId": "227", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "227" +}{ + "graphId": "228", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "228" +}{ + "graphId": "229", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "229" +}{ + "graphId": "230", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "230" +}{ + "graphId": "234", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "234" +}{ + "graphId": "235", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "235" +}{ + "graphId": "239", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "239" +}{ + "graphId": "240", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "240" +}{ + "graphId": "244", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "244" +}{ + "graphId": "245", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "245" +}{ + "graphId": "246", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "246" +}{ + "graphId": "247", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "247" +}{ + "graphId": "248", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "248" +}{ + "graphId": "249", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "249" +}{ + "graphId": "250", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "250" +}{ + "graphId": "251", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "251" +}{ + "graphId": "255", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "255" +}{ + "graphId": "256", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "256" +}{ + "graphId": "260", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "260" +}{ + "graphId": "261", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "261" +}{ + "graphId": "265", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "265" +}{ + "graphId": "266", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "266" +}{ + "graphId": "267", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "267" +}{ + "graphId": "268", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "268" +}{ + "graphId": "269", + "graph_fusion": { + "Conv2DbpInputDilationFusionPass": { + "effect_times": "0", + "match_times": "1" + }, + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "269" +}{ + "graphId": "270", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "270" +}{ + "graphId": "276", + "graph_fusion": { + "ZDwGroupFusionPass": { + "effect_times": "0", + "match_times": "1" + } + }, + "sessionId": "276" +} \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/main.py" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/main.py" new file mode 100644 index 0000000000000000000000000000000000000000..211833e3eb26015b6d6da425fde410101fa14f53 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/main.py" @@ -0,0 +1,626 @@ +# -*- coding: utf-8 -*- +# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the BSD 3-Clause License (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://opensource.org/licenses/BSD-3-Clause +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import argparse +import os +import random +import shutil +import time +import warnings + +import torch + +from apex import amp + +import torch.nn as nn +import torch.nn.parallel +import torch.backends.cudnn as cudnn +import torch.distributed as dist +import torch.optim +import torch.multiprocessing as mp +import torch.utils.data +import torch.utils.data.distributed +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision.models as models + +model_names = sorted(name for name in models.__dict__ + if name.islower() and not name.startswith("__") + and callable(models.__dict__[name])) + +parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') +parser.add_argument('data', metavar='DIR', + help='path to dataset') +parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet34', + choices=model_names, + help='model architecture: ' + + ' | '.join(model_names) + + ' (default: resnet18)') +parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', + help='number of data loading workers (default: 4)') +parser.add_argument('--epochs', default=90, type=int, metavar='N', + help='number of total epochs to run') +parser.add_argument('--start-epoch', default=0, type=int, metavar='N', + help='manual epoch number (useful on restarts)') +parser.add_argument('-b', '--batch-size', default=256, type=int, + metavar='N', + help='mini-batch size (default: 256), this is the total ' + 'batch size of all GPUs on the current node when ' + 'using Data Parallel or Distributed Data Parallel') +parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, + metavar='LR', help='initial learning rate', dest='lr') +parser.add_argument('--momentum', default=0.9, type=float, metavar='M', + help='momentum') +parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, + metavar='W', help='weight decay (default: 1e-4)', + dest='weight_decay') +parser.add_argument('-p', '--print-freq', default=10, type=int, + metavar='N', help='print frequency (default: 10)') +parser.add_argument('--resume', default='', type=str, metavar='PATH', + help='path to latest checkpoint (default: none)') +parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', + help='evaluate model on validation set') +parser.add_argument('--pretrained', dest='pretrained', action='store_true', + help='use pre-trained model') +parser.add_argument('--world-size', default=-1, type=int, + help='number of nodes for distributed training') +parser.add_argument('--rank', default=-1, type=int, + help='node rank for distributed training') +parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, + help='url used to set up distributed training') +parser.add_argument('--dist-backend', default='nccl', type=str, + help='distributed backend') +parser.add_argument('--seed', default=None, type=int, + help='seed for initializing training. ') +parser.add_argument('--gpu', default=None, type=int, + help='GPU id to use.') +parser.add_argument('--multiprocessing-distributed', action='store_true', + help='Use multi-processing distributed training to launch ' + 'N processes per node, which has N GPUs. This is the ' + 'fastest way to use PyTorch for either single node or ' + 'multi node data parallel training') +## for ascend 910 +parser.add_argument('--device', default='npu', type=str, help='npu or gpu') +parser.add_argument('--addr', default='10.136.181.115', + type=str, help='master addr') +parser.add_argument('--device_list', default='0,1,2,3,4,5,6,7', + type=str, help='device id list') +parser.add_argument('--amp', default=False, action='store_true', + help='use amp to train the model') +parser.add_argument('--loss-scale', default=1024., type=float, + help='loss scale using in amp, default -1 means dynamic') +parser.add_argument('--opt-level', default='O2', type=str, + help='loss scale using in amp, default -1 means dynamic') +parser.add_argument('--FusedSGD', default=False, action='store_true', + help='use FusedSGD') +best_acc1 = 0 + + +def device_id_to_process_device_map(device_list): + devices = device_list.split(",") + devices = [int(x) for x in devices] + devices.sort() + + process_device_map = dict() + for process_id, device_id in enumerate(devices): + process_device_map[process_id] = device_id + + return process_device_map + + +def main(): + args = parser.parse_args() + print(args.device_list) + + os.environ['MASTER_ADDR'] = args.addr + os.environ['MASTER_PORT'] = '29688' + + if args.seed is not None: + random.seed(args.seed) + torch.manual_seed(args.seed) + cudnn.deterministic = True + warnings.warn('You have chosen to seed training. ' + 'This will turn on the CUDNN deterministic setting, ' + 'which can slow down your training considerably! ' + 'You may see unexpected behavior when restarting ' + 'from checkpoints.') + + if args.gpu is not None: + warnings.warn('You have chosen a specific GPU. This will completely ' + 'disable data parallelism.') + + if args.dist_url == "env://" and args.world_size == -1: + args.world_size = int(os.environ["WORLD_SIZE"]) + + args.distributed = args.world_size > 1 or args.multiprocessing_distributed + + args.process_device_map = device_id_to_process_device_map(args.device_list) + + if args.device == 'npu': + ngpus_per_node = len(args.process_device_map) + else: + if args.distributed: + ngpus_per_node = torch.cuda.device_count() + else: + ngpus_per_node = 1 + print('ngpus_per_node:', ngpus_per_node) + if args.multiprocessing_distributed: + # Since we have ngpus_per_node processes per node, the total world_size + # needs to be adjusted accordingly + args.world_size = ngpus_per_node * args.world_size + # Use torch.multiprocessing.spawn to launch distributed processes: the + # main_worker process function + mp.spawn(main_worker, nprocs=ngpus_per_node, + args=(ngpus_per_node, args)) + else: + # Simply call main_worker function + main_worker(args.gpu, ngpus_per_node, args) + + +def main_worker(gpu, ngpus_per_node, args): + global best_acc1 + args.gpu = args.process_device_map[gpu] + + if args.gpu is not None: + print("Use GPU: {} for training".format(args.gpu)) + + if args.distributed: + if args.dist_url == "env://" and args.rank == -1: + args.rank = int(os.environ["RANK"]) + if args.multiprocessing_distributed: + # For multiprocessing distributed training, rank needs to be the + # global rank among all the processes + args.rank = args.rank * ngpus_per_node + gpu + + if args.device == 'npu': + dist.init_process_group(backend=args.dist_backend, + world_size=args.world_size, + rank=args.rank) + else: + dist.init_process_group(backend=args.dist_backend, + init_method=args.dist_url, + world_size=args.world_size, + rank=args.rank) + # create model + if args.pretrained: + print("=> using pre-trained model '{}'".format(args.arch)) + #model = models.__dict__[args.arch](pretrained=True) + model = resnet101.resnet101() + print("Load my train models...") + pretrained_dict = \ + torch.load("/home/ResNet101/model_best.pth.tar", map_location="cpu")["state_dict"] + model.load_state_dict(pretrained_dict, strict=False) + else: + print("=> creating model '{}'".format(args.arch)) + model = models.__dict__[args.arch]() + + if args.distributed: + # For multiprocessing distributed, DistributedDataParallel constructor + # should always set the single device scope, otherwise, + # DistributedDataParallel will use all available devices. + if args.gpu is not None: + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + torch.npu.set_device(loc) + model = model.to(loc) + else: + torch.cuda.set_device(args.gpu) + model.cuda(args.gpu) + + # When using a single GPU per process and per + # DistributedDataParallel, we need to divide the batch size + # ourselves based on the total number of GPUs we have + args.batch_size = int(args.batch_size / args.world_size) + args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) + else: + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + model = model.to(loc) + else: + model.cuda() + # DistributedDataParallel will divide and allocate batch_size to all + # available GPUs if device_ids are not set + print("[gpu id:", args.gpu, "]", + "===========test args.gpu is not None else==============") + elif args.gpu is not None: + print("[gpu id:", args.gpu, "]", + "==============test elif args.gpu is not None:================") + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + torch.npu.set_device(args.gpu) + model = model.to(loc) + else: + torch.cuda.set_device(args.gpu) + model = model.cuda(args.gpu) + + else: + # DataParallel will divide and allocate batch_size to all available GPUs + print("[gpu id:", args.gpu, "]", "==============test 1===============") + if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): + print("[gpu id:", args.gpu, "]", "============test 2=============") + else: + print("[gpu id:", args.gpu, "]", "===========test 3==============") + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + else: + print("before : model = torch.nn.DataParallel(model).cuda()") + + # define loss function (criterion) and optimizer + if args.FusedSGD: + from apex.optimizers import NpuFusedSGD + optimizer = NpuFusedSGD(model.parameters(), args.lr, + momentum=args.momentum, + weight_decay=args.weight_decay) + else: + optimizer = torch.optim.SGD(model.parameters(), args.lr, + momentum=args.momentum, + weight_decay=args.weight_decay) + + if args.amp: + model, optimizer = amp.initialize( + model, optimizer, opt_level=args.opt_level, loss_scale=args.loss_scale) + + if args.distributed: + # For multiprocessing distributed, DistributedDataParallel constructor + # should always set the single device scope, otherwise, + # DistributedDataParallel will use all available devices. + if args.gpu is not None: + # When using a single GPU per process and per + # DistributedDataParallel, we need to divide the batch size + # ourselves based on the total number of GPUs we have + # args.batch_size = int(args.batch_size / ngpus_per_node) + # args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) + if args.pretrained: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], broadcast_buffers=False, + find_unused_parameters=True) + else: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], broadcast_buffers=False) + else: + print("[gpu id:", args.gpu, "]", + "============================test args.gpu is not None else==========================") + model = torch.nn.parallel.DistributedDataParallel(model) + elif args.gpu is not None: + print("[gpu id:", args.gpu, "]", + "============================test elif args.gpu is not None:==========================") + else: + # DataParallel will divide and allocate batch_size to all available GPUs + print("[gpu id:", args.gpu, "]", "============================test 1==========================") + if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): + print("[gpu id:", args.gpu, "]", "============================test 2==========================") + model.features = torch.nn.DataParallel(model.features) + model.cuda() + else: + print("[gpu id:", args.gpu, "]", "============================test 3==========================") + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + model = torch.nn.DataParallel(model).to(loc) + else: + model = torch.nn.DataParallel(model).cuda() + + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + criterion = nn.CrossEntropyLoss().to(loc) + else: + criterion = nn.CrossEntropyLoss().cuda(args.gpu) + + # optionally resume from a checkpoint + if args.resume: + if os.path.isfile(args.resume): + print("=> loading checkpoint '{}'".format(args.resume)) + if args.gpu is None: + checkpoint = torch.load(args.resume) + else: + # Map model to be loaded to specified single gpu. + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + else: + loc = 'cuda:{}'.format(args.gpu) + checkpoint = torch.load(args.resume, map_location=loc) + args.start_epoch = checkpoint['epoch'] + best_acc1 = checkpoint['best_acc1'] + if args.gpu is not None: + # best_acc1 may be from a checkpoint from a different GPU + best_acc1 = best_acc1.to(args.gpu) + model.load_state_dict(checkpoint['state_dict']) + optimizer.load_state_dict(checkpoint['optimizer']) + if args.amp: + amp.load_state_dict(checkpoint['amp']) + print("=> loaded checkpoint '{}' (epoch {})" + .format(args.resume, checkpoint['epoch'])) + else: + print("=> no checkpoint found at '{}'".format(args.resume)) + + cudnn.benchmark = True + + # Data loading code + traindir = os.path.join(args.data, 'train') + valdir = os.path.join(args.data, 'val') + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]) + + train_dataset = datasets.ImageFolder( + traindir, + transforms.Compose([ + transforms.RandomResizedCrop(224), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + normalize, + ])) + + if args.distributed: + train_sampler = torch.utils.data.distributed.DistributedSampler( + train_dataset) + else: + train_sampler = None + + train_loader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.batch_size, shuffle=( + train_sampler is None), + num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True) + + val_loader = torch.utils.data.DataLoader( + datasets.ImageFolder(valdir, transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + normalize, + ])), + batch_size=args.batch_size, shuffle=True, + num_workers=args.workers, pin_memory=False, drop_last=True) + + if args.evaluate: + validate(val_loader, model, criterion, args, ngpus_per_node) + return + + start_time = time.time() + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + train_sampler.set_epoch(epoch) + + adjust_learning_rate(optimizer, epoch, args) + + # train for one epoch + train(train_loader, model, criterion, optimizer, epoch, args, ngpus_per_node) + + # evaluate on validation set + acc1 = validate(val_loader, model, criterion, args, ngpus_per_node) + + # remember best acc@1 and save checkpoint + is_best = acc1 > best_acc1 + best_acc1 = max(acc1, best_acc1) + if args.device == 'npu' and args.gpu == 0 and epoch == 89: + print("Complete 90 epoch training, take time:{}h".format(round((time.time() - start_time) / 3600.0, 2))) + + if not args.multiprocessing_distributed or (args.multiprocessing_distributed + and args.rank % ngpus_per_node == 0): + if args.amp: + save_checkpoint({ + 'epoch': epoch + 1, + 'arch': args.arch, + 'state_dict': model.state_dict(), + 'best_acc1': best_acc1, + 'optimizer': optimizer.state_dict(), + 'amp': amp.state_dict(), + }, is_best) + else: + save_checkpoint({ + 'epoch': epoch + 1, + 'arch': args.arch, + 'state_dict': model.state_dict(), + 'best_acc1': best_acc1, + 'optimizer': optimizer.state_dict(), + }, is_best) + + +def train(train_loader, model, criterion, optimizer, epoch, args, ngpus_per_node): + batch_time = AverageMeter('Time', ':6.3f') + data_time = AverageMeter('Data', ':6.3f') + losses = AverageMeter('Loss', ':.4e', start_count_index=0) + top1 = AverageMeter('Acc@1', ':6.2f', start_count_index=0) + top5 = AverageMeter('Acc@5', ':6.2f', start_count_index=0) + progress = ProgressMeter( + len(train_loader), + [batch_time, data_time, losses, top1, top5], + prefix="Epoch: [{}]".format(epoch)) + + # switch to train mode + model.train() + + end = time.time() + for i, (images, target) in enumerate(train_loader): + # measure data loading time + data_time.update(time.time() - end) + + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + images = images.to(loc, non_blocking=True).to(torch.float) + target = target.to(torch.int32).to(loc, non_blocking=True) + else: + images = images.cuda(args.gpu, non_blocking=True) + target = target.cuda(args.gpu, non_blocking=True) + + # compute output + output = model(images) + loss = criterion(output, target) + + # measure accuracy and record loss + acc1, acc5 = accuracy(output, target, topk=(1, 5)) + losses.update(loss.item(), images.size(0)) + top1.update(acc1[0], images.size(0)) + top5.update(acc5[0], images.size(0)) + + # compute gradient and do SGD step + optimizer.zero_grad() + if args.amp: + with amp.scale_loss(loss, optimizer) as scaled_loss: + scaled_loss.backward() + else: + loss.backward() + optimizer.step() + + # measure elapsed time + cost_time = time.time() - end + batch_time.update(cost_time) + end = time.time() + + if i % args.print_freq == 0: + if not args.multiprocessing_distributed or (args.multiprocessing_distributed + and args.rank % ngpus_per_node == 0): + progress.display(i) + + if not args.multiprocessing_distributed or (args.multiprocessing_distributed + and args.rank % ngpus_per_node == 0): + print("[npu id:", args.gpu, "]", "batch_size:", args.batch_size, + 'Time: {:.3f}'.format(batch_time.avg), '* FPS@all {:.3f}'.format( + args.batch_size / batch_time.avg)) + + +def validate(val_loader, model, criterion, args, ngpus_per_node): + batch_time = AverageMeter('Time', ':6.3f', start_count_index=2) + losses = AverageMeter('Loss', ':.4e', start_count_index=0) + top1 = AverageMeter('Acc@1', ':6.2f', start_count_index=0) + top5 = AverageMeter('Acc@5', ':6.2f', start_count_index=0) + progress = ProgressMeter( + len(val_loader), + [batch_time, losses, top1, top5], + prefix='Test: ') + + # switch to evaluate mode + model.eval() + + with torch.no_grad(): + end = time.time() + for i, (images, target) in enumerate(val_loader): + if args.gpu is not None: + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + images = images.to(loc).to(torch.float) + else: + images = images.cuda(args.gpu, non_blocking=True) + if args.device == 'npu': + loc = 'npu:{}'.format(args.gpu) + target = target.to(torch.int32).to(loc, non_blocking=True) + else: + target = target.cuda(args.gpu, non_blocking=True) + + # compute output + output = model(images) + loss = criterion(output, target) + + # measure accuracy and record loss + acc1, acc5 = accuracy(output, target, topk=(1, 5)) + losses.update(loss.item(), images.size(0)) + top1.update(acc1[0], images.size(0)) + top5.update(acc5[0], images.size(0)) + + # measure elapsed time + cost_time = time.time() - end + batch_time.update(cost_time) + end = time.time() + + if i % args.print_freq == 0: + if not args.multiprocessing_distributed or (args.multiprocessing_distributed + and args.rank % ngpus_per_node == 0): + progress.display(i) + + if i % args.print_freq == 0: + if not args.multiprocessing_distributed or (args.multiprocessing_distributed + and args.rank % ngpus_per_node == 0): + print("[gpu id:", args.gpu, "]", '[AVG-ACC] * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' + .format(top1=top1, top5=top5)) + + return top1.avg + + +def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): + torch.save(state, filename) + if is_best: + shutil.copyfile(filename, 'model_best.pth.tar') + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self, name, fmt=':f', start_count_index=2): + self.name = name + self.fmt = fmt + self.reset() + self.start_count_index = start_count_index + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + if self.count == 0: + self.N = n + + self.val = val + self.count += n + if self.count > (self.start_count_index * self.N): + self.sum += val * n + self.avg = self.sum / (self.count - self.start_count_index * self.N) + + def __str__(self): + fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' + return fmtstr.format(**self.__dict__) + +class ProgressMeter(object): + def __init__(self, num_batches, meters, prefix=""): + self.batch_fmtstr = self._get_batch_fmtstr(num_batches) + self.meters = meters + self.prefix = prefix + + def display(self, batch): + entries = [self.prefix + self.batch_fmtstr.format(batch)] + entries += [str(meter) for meter in self.meters] + print('\t'.join(entries)) + + def _get_batch_fmtstr(self, num_batches): + num_digits = len(str(num_batches // 1)) + fmt = '{:' + str(num_digits) + 'd}' + return '[' + fmt + '/' + fmt.format(num_batches) + ']' + + +def adjust_learning_rate(optimizer, epoch, args): + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" + lr = args.lr * (0.1 ** (epoch // 30)) + for param_group in optimizer.param_groups: + param_group['lr'] = lr + + +def accuracy(output, target, topk=(1,)): + """Computes the accuracy over the k top predictions for the specified values of k""" + with torch.no_grad(): + maxk = max(topk) + batch_size = target.size(0) + + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + + res = [] + for k in topk: + correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +if __name__ == '__main__': + main() diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/modelzoo_level.txt" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/modelzoo_level.txt" new file mode 100644 index 0000000000000000000000000000000000000000..d9cb363132a9aa5f027e117463592d7e8dbca150 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/modelzoo_level.txt" @@ -0,0 +1,3 @@ +FuncStatus:OK +PerfStatus:NOK +PrercisionStatus:NOK \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/pthtar2onnx.py" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/pthtar2onnx.py" new file mode 100644 index 0000000000000000000000000000000000000000..50281ab0c5832ccd0522538448af8b47f3f12de9 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/pthtar2onnx.py" @@ -0,0 +1,37 @@ +# -*- coding: utf-8 -*- +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import torch +import torchvision +import torch.onnx + +def convert(): + checkpoint = torch.load("./checkpoint.pth.tar", map_location='cpu') + model = torchvision.models.resnet101(pretrained=True) + model.load_state_dict(checkpoint['state_dict'], False) + model.eval() + print(model) + + input_names = ["actual_input_1"] + output_names = ["output1"] + dummy_input = torch.randn(16, 3, 224, 224) + torch.onnx.export(model, dummy_input, "resnet101_npu_16.onnx", + input_names=input_names, output_names=output_names, + opset_version=11) + + +if __name__ == "__main__": + convert() diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/requirements.txt" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/requirements.txt" new file mode 100644 index 0000000000000000000000000000000000000000..1ca16753b069e278dd0d4d5782e06b9c3b0ca654 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/requirements.txt" @@ -0,0 +1,5 @@ +torch==1.5.0 +apex +torchvision +onnx +opencv-python \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/resnet.py" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/resnet.py" new file mode 100644 index 0000000000000000000000000000000000000000..4817aec6be2730861d9273a712b9b4f6e31f8e29 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/resnet.py" @@ -0,0 +1,295 @@ +# -*- coding: utf-8 -*- +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import torch.nn as nn +import torch.utils.model_zoo as model_zoo + +__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', + 'resnet152'] + + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution""" + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = conv1x1(inplanes, planes) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = conv3x3(planes, planes, stride) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = conv1x1(planes, planes * self.expansion) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000, zero_init_residual=False): + super(ResNet, self).__init__() + self.inplanes = 64 + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + # Zero-initialize the last BN in each residual branch, + # so that the residual branch starts with zeros, and each residual block behaves like an identity. + # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 + if zero_init_residual: + for m in self.modules(): + if isinstance(m, Bottleneck): + nn.init.constant_(m.bn3.weight, 0) + elif isinstance(m, BasicBlock): + nn.init.constant_(m.bn2.weight, 0) + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + conv1x1(self.inplanes, planes * block.expansion, stride), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + # See note [TorchScript super()] + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + + return x + + +def resnet18(pretrained=False, progress=True, **kwargs): + r"""ResNet-18 model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, + **kwargs) + + +def resnet34(pretrained=False, progress=True, **kwargs): + r"""ResNet-34 model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet50(pretrained=False, progress=True, **kwargs): + r"""ResNet-50 model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet101(pretrained=False, **kwargs): + r"""ResNet-101 model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) + if pretrained: + model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) + return model + + +def resnet152(pretrained=False, progress=True, **kwargs): + r"""ResNet-152 model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, + **kwargs) + + +def resnext50_32x4d(pretrained=False, progress=True, **kwargs): + r"""ResNeXt-50 32x4d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 4 + return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def resnext101_32x8d(pretrained=False, progress=True, **kwargs): + r"""ResNeXt-101 32x8d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_ + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 8 + return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) + + +def wide_resnet50_2(pretrained=False, progress=True, **kwargs): + r"""Wide ResNet-50-2 model from + `"Wide Residual Networks" `_ + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def wide_resnet101_2(pretrained=False, progress=True, **kwargs): + r"""Wide ResNet-101-2 model from + `"Wide Residual Networks" `_ + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/env.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/env.sh" new file mode 100644 index 0000000000000000000000000000000000000000..6567ba8318b7776486ff78a0bdc44bcc58a7cf09 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/env.sh" @@ -0,0 +1,65 @@ +#!/bin/bash +export install_path=/usr/local/Ascend + +if [ -d ${install_path}/toolkit ]; then + export LD_LIBRARY_PATH=/usr/include/hdf5/lib/:/usr/local/:/usr/local/lib/:/usr/lib/:${install_path}/fwkacllib/lib64/:${install_path}/driver/lib64/common/:${install_path}/driver/lib64/driver/:${install_path}/add-ons:${path_lib}:${LD_LIBRARY_PATH} + export PATH=${install_path}/fwkacllib/ccec_compiler/bin:${install_path}/fwkacllib/bin:$PATH + export PYTHONPATH=${install_path}/fwkacllib/python/site-packages:${install_path}/tfplugin/python/site-packages:${install_path}/toolkit/python/site-packages:$PYTHONPATH + export PYTHONPATH=/usr/local/python3.7.5/lib/python3.7/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=${install_path}/opp +else + if [ -d ${install_path}/nnae/latest ];then + export LD_LIBRARY_PATH=/usr/local/:/usr/local/python3.7.5/lib/:/usr/local/openblas/lib:/usr/local/lib/:/usr/lib64/:/usr/lib/:${install_path}/nnae/latest/fwkacllib/lib64/:${install_path}/driver/lib64/common/:${install_path}/driver/lib64/driver/:${install_path}/add-ons/:/usr/lib/aarch64_64-linux-gnu:$LD_LIBRARY_PATH + export PATH=$PATH:${install_path}/nnae/latest/fwkacllib/ccec_compiler/bin/:${install_path}/nnae/latest/toolkit/tools/ide_daemon/bin/ + export ASCEND_OPP_PATH=${install_path}/nnae/latest/opp/ + export OPTION_EXEC_EXTERN_PLUGIN_PATH=${install_path}/nnae/latest/fwkacllib/lib64/plugin/opskernel/libfe.so:${install_path}/nnae/latest/fwkacllib/lib64/plugin/opskernel/libaicpu_engine.so:${install_path}/nnae/latest/fwkacllib/lib64/plugin/opskernel/libge_local_engine.so + export PYTHONPATH=${install_path}/nnae/latest/fwkacllib/python/site-packages/:${install_path}/nnae/latest/fwkacllib/python/site-packages/auto_tune.egg/auto_tune:${install_path}/nnae/latest/fwkacllib/python/site-packages/schedule_search.egg:$PYTHONPATH + export ASCEND_AICPU_PATH=${install_path}/nnae/latest + else + export LD_LIBRARY_PATH=/usr/local/:/usr/local/lib/:/usr/lib64/:/usr/lib/:/usr/local/python3.7.5/lib/:/usr/local/openblas/lib:${install_path}/ascend-toolkit/latest/fwkacllib/lib64/:${install_path}/driver/lib64/common/:${install_path}/driver/lib64/driver/:${install_path}/add-ons/:/usr/lib/aarch64-linux-gnu:$LD_LIBRARY_PATH + export PATH=$PATH:${install_path}/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin/:${install_path}/ascend-toolkit/latest/toolkit/tools/ide_daemon/bin/ + export ASCEND_OPP_PATH=${install_path}/ascend-toolkit/latest/opp/ + export OPTION_EXEC_EXTERN_PLUGIN_PATH=${install_path}/ascend-toolkit/latest/fwkacllib/lib64/plugin/opskernel/libfe.so:${install_path}/ascend-toolkit/latest/fwkacllib/lib64/plugin/opskernel/libaicpu_engine.so:${install_path}/ascend-toolkit/latest/fwkacllib/lib64/plugin/opskernel/libge_local_engine.so + export PYTHONPATH=${install_path}/ascend-toolkit/latest/fwkacllib/python/site-packages/:${install_path}/ascend-toolkit/latest/fwkacllib/python/site-packages/auto_tune.egg/auto_tune:${install_path}/ascend-toolkit/latest/fwkacllib/python/site-packages/schedule_search.egg:$PYTHONPATH + export ASCEND_AICPU_PATH=${install_path}/ascend-toolkit/latest + fi +fi + + +#将Host日志输出到串口,0-关闭/1-开启 +export ASCEND_SLOG_PRINT_TO_STDOUT=0 +#设置默认日志级别,0-debug/1-info/2-warning/3-error +export ASCEND_GLOBAL_LOG_LEVEL=3 +#设置Event日志开启标志,0-关闭/1-开启 +export ASCEND_GLOBAL_EVENT_ENABLE=0 +#设置是否开启taskque,0-关闭/1-开启 +export TASK_QUEUE_ENABLE=1 +#设置是否开启PTCopy,0-关闭/1-开启 +export PTCOPY_ENABLE=1 +#设置是否开启combined标志,0-关闭/1-开启 +export COMBINED_ENABLE=1 +#HCCL白名单开关,1-关闭/0-开启 +export HCCL_WHITELIST_DISABLE=1 +export HCCL_IF_IP=$(hostname -I |awk '{print $1}') + + +path_lib=$(python3.7 -c """ +import sys +import re +result='' +for index in range(len(sys.path)): + match_sit = re.search('-packages', sys.path[index]) + if match_sit is not None: + match_lib = re.search('lib', sys.path[index]) + + if match_lib is not None: + end=match_lib.span()[1] + result += sys.path[index][0:end] + ':' + + result+=sys.path[index] + '/torch/lib:' +print(result)""" +) + +echo ${path_lib} + +export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib/:${path_lib}:$LD_LIBRARY_PATH diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/ResNet101_ID1595_for_PyTorch_bs256_1p_perf.log" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/ResNet101_ID1595_for_PyTorch_bs256_1p_perf.log" new file mode 100644 index 0000000000000000000000000000000000000000..79f9e8881921a963a3aa24c975773ee8c67d009f --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/ResNet101_ID1595_for_PyTorch_bs256_1p_perf.log" @@ -0,0 +1,9 @@ +Network = ResNet101_ID1595_for_PyTorch +RankSize = 1 +BatchSize = 256 +DeviceType = aarch64 +CaseName = ResNet101_ID1595_for_PyTorch_bs256_1p_perf +ActualFPS = 1048.610 +TrainingTime = 244.13 +ActualLoss = 3.7035e+00 +E2ETrainingTime = 2793 diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_0.log" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_0.log" new file mode 100644 index 0000000000000000000000000000000000000000..7a189f304ce766996c474d13f4a90f11c10543a1 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_0.log" @@ -0,0 +1,5039 @@ +0,1,2,3,4,5,6,7 +ngpus_per_node: 8 +Use GPU: 2 for training +=> creating model 'resnet101' +[gpu id: 2 ] ==============test elif args.gpu is not None:================ +./main.py:136: UserWarning: You have chosen to seed training. This will turn on the CUDNN deterministic setting, which can slow down your training considerably! You may see unexpected behavior when restarting from checkpoints. + warnings.warn('You have chosen to seed training. ' +./main.py:143: UserWarning: You have chosen a specific GPU. This will completely disable data parallelism. + warnings.warn('You have chosen a specific GPU. This will completely ' +Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights. + +Defaults for this optimization level are: +enabled : True +opt_level : O2 +cast_model_type : torch.float16 +patch_torch_functions : False +keep_batchnorm_fp32 : True +master_weights : True +loss_scale : dynamic +combine_grad : None +check_combined_tensors : None +Processing user overrides (additional kwargs that are not None)... +After processing overrides, optimization options are: +enabled : True +opt_level : O2 +cast_model_type : torch.float16 +patch_torch_functions : False +keep_batchnorm_fp32 : True +master_weights : True +loss_scale : 1024.0 +combine_grad : None +check_combined_tensors : None +Use npu fused optimizer +[gpu id: 2 ] ============================test elif args.gpu is not None:========================== +Epoch: [0][ 0/5004] Time 196.695 ( 0.000) Data 8.062 ( 0.000) Loss 7.1284e+00 (7.1284e+00) Acc@1 0.00 ( 0.00) Acc@5 0.00 ( 0.00) +Epoch: [0][ 1/5004] Time 15.131 ( 0.000) Data 3.294 ( 0.000) Loss 8.6593e+00 (7.8939e+00) Acc@1 0.39 ( 0.20) Acc@5 1.17 ( 0.59) +Epoch: [0][ 2/5004] Time 0.237 ( 0.237) Data 0.013 ( 0.013) Loss 9.5272e+00 (8.4383e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.39) +Epoch: [0][ 3/5004] Time 0.241 ( 0.239) Data 0.022 ( 0.017) Loss 8.3551e+00 (8.4175e+00) Acc@1 0.00 ( 0.10) Acc@5 0.00 ( 0.29) +Epoch: [0][ 4/5004] Time 0.239 ( 0.239) Data 0.024 ( 0.019) Loss 8.6900e+00 (8.4720e+00) Acc@1 0.00 ( 0.08) Acc@5 0.78 ( 0.39) +Epoch: [0][ 5/5004] Time 0.238 ( 0.239) Data 0.025 ( 0.021) Loss 8.8442e+00 (8.5340e+00) Acc@1 0.00 ( 0.07) Acc@5 0.39 ( 0.39) +Epoch: [0][ 6/5004] Time 0.235 ( 0.238) Data 0.025 ( 0.022) Loss 7.5124e+00 (8.3881e+00) Acc@1 0.39 ( 0.11) Acc@5 0.39 ( 0.39) +Epoch: [0][ 7/5004] Time 0.240 ( 0.238) Data 0.028 ( 0.023) Loss 8.7513e+00 (8.4335e+00) Acc@1 0.00 ( 0.10) Acc@5 0.78 ( 0.44) +Epoch: [0][ 8/5004] Time 0.240 ( 0.239) Data 0.026 ( 0.023) Loss 8.4683e+00 (8.4374e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.43) +Epoch: [0][ 9/5004] Time 0.238 ( 0.238) Data 0.025 ( 0.023) Loss 8.1676e+00 (8.4104e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.39) +Epoch: [0][ 10/5004] Time 0.237 ( 0.238) Data 0.025 ( 0.024) Loss 8.2323e+00 (8.3942e+00) Acc@1 0.00 ( 0.11) Acc@5 0.00 ( 0.36) +Epoch: [0][ 11/5004] Time 0.239 ( 0.238) Data 0.028 ( 0.024) Loss 7.7600e+00 (8.3413e+00) Acc@1 0.00 ( 0.10) Acc@5 0.78 ( 0.39) +Epoch: [0][ 12/5004] Time 0.239 ( 0.239) Data 0.027 ( 0.024) Loss 7.6141e+00 (8.2854e+00) Acc@1 0.00 ( 0.09) Acc@5 0.00 ( 0.36) +Epoch: [0][ 13/5004] Time 0.244 ( 0.239) Data 0.025 ( 0.024) Loss 8.0500e+00 (8.2686e+00) Acc@1 0.00 ( 0.08) Acc@5 0.00 ( 0.33) +Epoch: [0][ 14/5004] Time 0.241 ( 0.239) Data 0.024 ( 0.024) Loss 7.8809e+00 (8.2427e+00) Acc@1 0.00 ( 0.08) Acc@5 0.39 ( 0.34) +Epoch: [0][ 15/5004] Time 0.239 ( 0.239) Data 0.022 ( 0.024) Loss 7.6010e+00 (8.2026e+00) Acc@1 0.00 ( 0.07) Acc@5 0.00 ( 0.32) +Epoch: [0][ 16/5004] Time 0.238 ( 0.239) Data 0.024 ( 0.024) Loss 7.5687e+00 (8.1653e+00) Acc@1 0.78 ( 0.11) Acc@5 1.17 ( 0.37) +Epoch: [0][ 17/5004] Time 0.241 ( 0.239) Data 0.025 ( 0.024) Loss 7.7687e+00 (8.1433e+00) Acc@1 0.00 ( 0.11) Acc@5 0.00 ( 0.35) +Epoch: [0][ 18/5004] Time 0.239 ( 0.239) Data 0.024 ( 0.024) Loss 9.0109e+00 (8.1890e+00) Acc@1 0.00 ( 0.10) Acc@5 0.00 ( 0.33) +Epoch: [0][ 19/5004] Time 0.239 ( 0.239) Data 0.025 ( 0.024) Loss 7.4484e+00 (8.1519e+00) Acc@1 0.00 ( 0.10) Acc@5 0.78 ( 0.35) +Epoch: [0][ 20/5004] Time 0.238 ( 0.239) Data 0.025 ( 0.024) Loss 7.3605e+00 (8.1142e+00) Acc@1 0.00 ( 0.09) Acc@5 0.39 ( 0.35) +Epoch: [0][ 21/5004] Time 0.240 ( 0.239) Data 0.025 ( 0.024) Loss 7.1803e+00 (8.0718e+00) Acc@1 0.00 ( 0.09) Acc@5 0.00 ( 0.34) +Epoch: [0][ 22/5004] Time 0.237 ( 0.239) Data 0.024 ( 0.024) Loss 7.7433e+00 (8.0575e+00) Acc@1 0.00 ( 0.08) Acc@5 0.39 ( 0.34) +Epoch: [0][ 23/5004] Time 0.239 ( 0.239) Data 0.025 ( 0.024) Loss 8.3131e+00 (8.0682e+00) Acc@1 0.39 ( 0.10) Acc@5 0.78 ( 0.36) +Epoch: [0][ 24/5004] Time 0.240 ( 0.239) Data 0.024 ( 0.024) Loss 7.5259e+00 (8.0465e+00) Acc@1 0.00 ( 0.09) Acc@5 1.17 ( 0.39) +Epoch: [0][ 25/5004] Time 0.243 ( 0.239) Data 0.025 ( 0.024) Loss 7.1664e+00 (8.0126e+00) Acc@1 0.00 ( 0.09) Acc@5 0.39 ( 0.39) +Epoch: [0][ 26/5004] Time 0.236 ( 0.239) Data 0.023 ( 0.024) Loss 7.1321e+00 (7.9800e+00) Acc@1 0.39 ( 0.10) Acc@5 1.56 ( 0.43) +Epoch: [0][ 27/5004] Time 0.239 ( 0.239) Data 0.025 ( 0.024) Loss 7.1734e+00 (7.9512e+00) Acc@1 0.00 ( 0.10) Acc@5 0.00 ( 0.42) +Epoch: [0][ 28/5004] Time 0.240 ( 0.239) Data 0.025 ( 0.024) Loss 7.0932e+00 (7.9216e+00) Acc@1 0.00 ( 0.09) Acc@5 0.39 ( 0.42) +Epoch: [0][ 29/5004] Time 0.245 ( 0.239) Data 0.026 ( 0.024) Loss 7.2980e+00 (7.9008e+00) Acc@1 0.78 ( 0.12) Acc@5 0.78 ( 0.43) +Epoch: [0][ 30/5004] Time 0.238 ( 0.239) Data 0.024 ( 0.024) Loss 7.0408e+00 (7.8731e+00) Acc@1 0.39 ( 0.13) Acc@5 1.17 ( 0.45) +Epoch: [0][ 31/5004] Time 0.237 ( 0.239) Data 0.025 ( 0.024) Loss 7.0054e+00 (7.8460e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.45) +Epoch: [0][ 32/5004] Time 0.239 ( 0.239) Data 0.026 ( 0.025) Loss 6.9824e+00 (7.8198e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.44) +Epoch: [0][ 33/5004] Time 0.241 ( 0.239) Data 0.026 ( 0.025) Loss 7.0612e+00 (7.7975e+00) Acc@1 0.00 ( 0.11) Acc@5 0.00 ( 0.43) +Epoch: [0][ 34/5004] Time 0.243 ( 0.239) Data 0.028 ( 0.025) Loss 6.9541e+00 (7.7734e+00) Acc@1 0.39 ( 0.12) Acc@5 1.95 ( 0.47) +Epoch: [0][ 35/5004] Time 0.240 ( 0.239) Data 0.025 ( 0.025) Loss 6.9516e+00 (7.7506e+00) Acc@1 0.39 ( 0.13) Acc@5 1.56 ( 0.50) +Epoch: [0][ 36/5004] Time 0.239 ( 0.239) Data 0.024 ( 0.025) Loss 6.9389e+00 (7.7286e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.49) +Epoch: [0][ 37/5004] Time 0.239 ( 0.239) Data 0.025 ( 0.025) Loss 6.9487e+00 (7.7081e+00) Acc@1 0.00 ( 0.12) Acc@5 1.56 ( 0.51) +Epoch: [0][ 38/5004] Time 0.240 ( 0.239) Data 0.024 ( 0.025) Loss 6.9494e+00 (7.6887e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.51) +Epoch: [0][ 39/5004] Time 0.239 ( 0.239) Data 0.024 ( 0.025) Loss 6.9794e+00 (7.6709e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.52) +Epoch: [0][ 40/5004] Time 0.242 ( 0.239) Data 0.026 ( 0.025) Loss 6.9615e+00 (7.6536e+00) Acc@1 0.39 ( 0.12) Acc@5 1.17 ( 0.53) +Epoch: [0][ 41/5004] Time 0.240 ( 0.239) Data 0.024 ( 0.025) Loss 6.9375e+00 (7.6366e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.53) +Epoch: [0][ 42/5004] Time 0.240 ( 0.239) Data 0.024 ( 0.025) Loss 7.0985e+00 (7.6241e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.53) +Epoch: [0][ 43/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.025) Loss 6.9116e+00 (7.6079e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.53) +Epoch: [0][ 44/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.025) Loss 6.9217e+00 (7.5926e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.52) +Epoch: [0][ 45/5004] Time 0.235 ( 0.239) Data 0.022 ( 0.025) Loss 6.9310e+00 (7.5782e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.53) +Epoch: [0][ 46/5004] Time 0.240 ( 0.239) Data 0.025 ( 0.025) Loss 6.9175e+00 (7.5642e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.52) +Epoch: [0][ 47/5004] Time 0.239 ( 0.239) Data 0.025 ( 0.025) Loss 6.9402e+00 (7.5512e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.53) +Epoch: [0][ 48/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.025) Loss 7.0500e+00 (7.5409e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.53) +Epoch: [0][ 49/5004] Time 0.237 ( 0.240) Data 0.022 ( 0.025) Loss 6.9396e+00 (7.5289e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.52) +Epoch: [0][ 50/5004] Time 0.238 ( 0.239) Data 0.024 ( 0.025) Loss 6.9335e+00 (7.5172e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.51) +Epoch: [0][ 51/5004] Time 0.238 ( 0.239) Data 0.025 ( 0.025) Loss 6.9301e+00 (7.5060e+00) Acc@1 0.39 ( 0.13) Acc@5 1.17 ( 0.53) +Epoch: [0][ 52/5004] Time 0.239 ( 0.239) Data 0.027 ( 0.025) Loss 6.9106e+00 (7.4947e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.52) +Epoch: [0][ 53/5004] Time 0.247 ( 0.240) Data 0.026 ( 0.025) Loss 6.9183e+00 (7.4840e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.53) +Epoch: [0][ 54/5004] Time 0.240 ( 0.240) Data 0.020 ( 0.025) Loss 6.9287e+00 (7.4739e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.52) +Epoch: [0][ 55/5004] Time 0.238 ( 0.240) Data 0.020 ( 0.024) Loss 6.9055e+00 (7.4638e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.52) +Epoch: [0][ 56/5004] Time 0.248 ( 0.240) Data 0.024 ( 0.024) Loss 6.8933e+00 (7.4538e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.53) +Epoch: [0][ 57/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.024) Loss 6.9284e+00 (7.4447e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.53) +Epoch: [0][ 58/5004] Time 0.246 ( 0.240) Data 0.024 ( 0.024) Loss 6.8942e+00 (7.4354e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.53) +Epoch: [0][ 59/5004] Time 0.240 ( 0.240) Data 0.021 ( 0.024) Loss 6.9559e+00 (7.4274e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.53) +Epoch: [0][ 60/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.024) Loss 6.9157e+00 (7.4190e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.54) +Epoch: [0][ 61/5004] Time 0.248 ( 0.240) Data 0.023 ( 0.024) Loss 6.9127e+00 (7.4109e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.54) +Epoch: [0][ 62/5004] Time 0.235 ( 0.240) Data 0.018 ( 0.024) Loss 6.9173e+00 (7.4030e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.53) +Epoch: [0][ 63/5004] Time 0.245 ( 0.240) Data 0.024 ( 0.024) Loss 6.9168e+00 (7.3954e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.52) +Epoch: [0][ 64/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.024) Loss 6.9022e+00 (7.3878e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.52) +Epoch: [0][ 65/5004] Time 0.245 ( 0.240) Data 0.024 ( 0.024) Loss 6.9269e+00 (7.3808e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.52) +Epoch: [0][ 66/5004] Time 0.245 ( 0.240) Data 0.023 ( 0.024) Loss 6.9046e+00 (7.3737e+00) Acc@1 0.00 ( 0.12) Acc@5 1.56 ( 0.54) +Epoch: [0][ 67/5004] Time 0.239 ( 0.240) Data 0.023 ( 0.024) Loss 6.8840e+00 (7.3665e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.53) +Epoch: [0][ 68/5004] Time 0.233 ( 0.240) Data 0.024 ( 0.024) Loss 6.9088e+00 (7.3599e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.54) +Epoch: [0][ 69/5004] Time 0.239 ( 0.240) Data 0.028 ( 0.024) Loss 6.9110e+00 (7.3535e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.54) +Epoch: [0][ 70/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.024) Loss 6.9031e+00 (7.3471e+00) Acc@1 0.00 ( 0.12) Acc@5 1.17 ( 0.54) +Epoch: [0][ 71/5004] Time 0.239 ( 0.240) Data 0.029 ( 0.024) Loss 6.9139e+00 (7.3411e+00) Acc@1 0.39 ( 0.12) Acc@5 0.39 ( 0.54) +Epoch: [0][ 72/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.024) Loss 6.8853e+00 (7.3349e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.54) +Epoch: [0][ 73/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.024) Loss 6.8804e+00 (7.3287e+00) Acc@1 0.39 ( 0.13) Acc@5 1.56 ( 0.55) +Epoch: [0][ 74/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.024) Loss 6.9051e+00 (7.3231e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.55) +Epoch: [0][ 75/5004] Time 0.236 ( 0.240) Data 0.024 ( 0.024) Loss 6.9058e+00 (7.3176e+00) Acc@1 0.00 ( 0.13) Acc@5 1.17 ( 0.56) +Epoch: [0][ 76/5004] Time 0.240 ( 0.240) Data 0.027 ( 0.024) Loss 6.8905e+00 (7.3121e+00) Acc@1 0.39 ( 0.13) Acc@5 1.17 ( 0.57) +Epoch: [0][ 77/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.024) Loss 6.9131e+00 (7.3069e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.57) +Epoch: [0][ 78/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.024) Loss 6.9044e+00 (7.3018e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.56) +Epoch: [0][ 79/5004] Time 0.237 ( 0.240) Data 0.025 ( 0.025) Loss 6.9107e+00 (7.2970e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.57) +Epoch: [0][ 80/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.025) Loss 6.9145e+00 (7.2922e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.56) +Epoch: [0][ 81/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.025) Loss 6.9048e+00 (7.2875e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.57) +Epoch: [0][ 82/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.025) Loss 6.9143e+00 (7.2830e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.56) +Epoch: [0][ 83/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.025) Loss 6.9050e+00 (7.2785e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.56) +Epoch: [0][ 84/5004] Time 0.237 ( 0.240) Data 0.026 ( 0.025) Loss 6.9378e+00 (7.2745e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.56) +Epoch: [0][ 85/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.025) Loss 6.9118e+00 (7.2703e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.55) +Epoch: [0][ 86/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.025) Loss 6.9211e+00 (7.2663e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.55) +Epoch: [0][ 87/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.025) Loss 6.9301e+00 (7.2625e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.55) +Epoch: [0][ 88/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.025) Loss 6.9074e+00 (7.2585e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.56) +Epoch: [0][ 89/5004] Time 0.243 ( 0.240) Data 0.025 ( 0.025) Loss 6.9421e+00 (7.2550e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.55) +Epoch: [0][ 90/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.025) Loss 6.8935e+00 (7.2510e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.55) +Epoch: [0][ 91/5004] Time 0.243 ( 0.240) Data 0.025 ( 0.025) Loss 6.9175e+00 (7.2474e+00) Acc@1 0.00 ( 0.12) Acc@5 1.56 ( 0.56) +Epoch: [0][ 92/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.025) Loss 6.9175e+00 (7.2438e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.55) +Epoch: [0][ 93/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.025) Loss 6.8978e+00 (7.2401e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.56) +Epoch: [0][ 94/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.025) Loss 6.9228e+00 (7.2368e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.56) +Epoch: [0][ 95/5004] Time 0.239 ( 0.240) Data 0.024 ( 0.025) Loss 6.9092e+00 (7.2334e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.56) +Epoch: [0][ 96/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.025) Loss 6.8961e+00 (7.2299e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.56) +Epoch: [0][ 97/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.025) Loss 6.9005e+00 (7.2265e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.56) +Epoch: [0][ 98/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.025) Loss 6.9057e+00 (7.2233e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.56) +Epoch: [0][ 99/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.025) Loss 6.9490e+00 (7.2206e+00) Acc@1 0.00 ( 0.12) Acc@5 1.17 ( 0.57) +Epoch: [0][ 100/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.025) Loss 6.9313e+00 (7.2177e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.57) +Epoch: [0][ 101/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.025) Loss 6.9129e+00 (7.2147e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.57) +Epoch: [0][ 102/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.025) Loss 6.8933e+00 (7.2116e+00) Acc@1 0.39 ( 0.13) Acc@5 1.95 ( 0.59) +Epoch: [0][ 103/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.025) Loss 6.9098e+00 (7.2087e+00) Acc@1 0.39 ( 0.13) Acc@5 0.39 ( 0.59) +Epoch: [0][ 104/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.025) Loss 6.9323e+00 (7.2060e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.58) +Epoch: [0][ 105/5004] Time 0.237 ( 0.240) Data 0.023 ( 0.025) Loss 6.9283e+00 (7.2034e+00) Acc@1 0.00 ( 0.13) Acc@5 1.17 ( 0.59) +Epoch: [0][ 106/5004] Time 0.243 ( 0.240) Data 0.025 ( 0.025) Loss 6.9174e+00 (7.2008e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.58) +Epoch: [0][ 107/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.025) Loss 6.8973e+00 (7.1979e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.58) +Epoch: [0][ 108/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.025) Loss 6.9061e+00 (7.1953e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.58) +Epoch: [0][ 109/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.025) Loss 6.9083e+00 (7.1927e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.58) +Epoch: [0][ 110/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.025) Loss 6.8965e+00 (7.1900e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.57) +Epoch: [0][ 111/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.025) Loss 6.8907e+00 (7.1873e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.58) +Epoch: [0][ 112/5004] Time 0.244 ( 0.240) Data 0.023 ( 0.025) Loss 6.9153e+00 (7.1849e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.58) +Epoch: [0][ 113/5004] Time 0.234 ( 0.240) Data 0.020 ( 0.025) Loss 6.9036e+00 (7.1824e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.58) +Epoch: [0][ 114/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.025) Loss 6.9938e+00 (7.1808e+00) Acc@1 0.00 ( 0.12) Acc@5 0.39 ( 0.58) +Epoch: [0][ 115/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.025) Loss 6.8924e+00 (7.1783e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.58) +Epoch: [0][ 116/5004] Time 0.237 ( 0.240) Data 0.026 ( 0.025) Loss 6.9054e+00 (7.1760e+00) Acc@1 0.00 ( 0.12) Acc@5 1.56 ( 0.59) +Epoch: [0][ 117/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.025) Loss 6.8820e+00 (7.1735e+00) Acc@1 0.39 ( 0.12) Acc@5 0.78 ( 0.59) +Epoch: [0][ 118/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.025) Loss 6.9104e+00 (7.1713e+00) Acc@1 0.39 ( 0.12) Acc@5 1.17 ( 0.59) +Epoch: [0][ 119/5004] Time 0.242 ( 0.240) Data 0.028 ( 0.025) Loss 6.9092e+00 (7.1691e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.60) +Epoch: [0][ 120/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.025) Loss 6.9232e+00 (7.1671e+00) Acc@1 0.00 ( 0.12) Acc@5 0.00 ( 0.59) +Epoch: [0][ 121/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.025) Loss 6.9078e+00 (7.1649e+00) Acc@1 0.00 ( 0.12) Acc@5 0.78 ( 0.59) +Epoch: [0][ 122/5004] Time 0.242 ( 0.240) Data 0.028 ( 0.025) Loss 6.8891e+00 (7.1627e+00) Acc@1 0.78 ( 0.13) Acc@5 1.56 ( 0.60) +Epoch: [0][ 123/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.025) Loss 6.9134e+00 (7.1607e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.60) +Epoch: [0][ 124/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.025) Loss 6.9144e+00 (7.1587e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.60) +Epoch: [0][ 125/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.9167e+00 (7.1568e+00) Acc@1 0.00 ( 0.13) Acc@5 1.56 ( 0.61) +Epoch: [0][ 126/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.025) Loss 6.8809e+00 (7.1546e+00) Acc@1 1.17 ( 0.14) Acc@5 1.17 ( 0.62) +Epoch: [0][ 127/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.9052e+00 (7.1527e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.62) +Epoch: [0][ 128/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.025) Loss 6.8908e+00 (7.1506e+00) Acc@1 0.78 ( 0.14) Acc@5 1.17 ( 0.62) +Epoch: [0][ 129/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.8974e+00 (7.1487e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.62) +Epoch: [0][ 130/5004] Time 0.241 ( 0.240) Data 0.029 ( 0.025) Loss 6.8855e+00 (7.1467e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.62) +Epoch: [0][ 131/5004] Time 0.245 ( 0.240) Data 0.027 ( 0.025) Loss 6.9503e+00 (7.1452e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.62) +Epoch: [0][ 132/5004] Time 0.236 ( 0.240) Data 0.023 ( 0.025) Loss 6.9034e+00 (7.1434e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.62) +Epoch: [0][ 133/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.025) Loss 6.9069e+00 (7.1416e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.62) +Epoch: [0][ 134/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.025) Loss 6.9067e+00 (7.1399e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.61) +Epoch: [0][ 135/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.025) Loss 6.9081e+00 (7.1382e+00) Acc@1 0.00 ( 0.14) Acc@5 1.56 ( 0.62) +Epoch: [0][ 136/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.025) Loss 6.9073e+00 (7.1365e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.62) +Epoch: [0][ 137/5004] Time 0.245 ( 0.240) Data 0.021 ( 0.025) Loss 6.9141e+00 (7.1349e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.63) +Epoch: [0][ 138/5004] Time 0.246 ( 0.240) Data 0.020 ( 0.025) Loss 6.9162e+00 (7.1333e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.62) +Epoch: [0][ 139/5004] Time 0.245 ( 0.240) Data 0.021 ( 0.025) Loss 6.8952e+00 (7.1316e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.62) +Epoch: [0][ 140/5004] Time 0.241 ( 0.240) Data 0.022 ( 0.025) Loss 6.8825e+00 (7.1298e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.63) +Epoch: [0][ 141/5004] Time 0.243 ( 0.240) Data 0.022 ( 0.025) Loss 6.9196e+00 (7.1284e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.62) +Epoch: [0][ 142/5004] Time 0.243 ( 0.240) Data 0.023 ( 0.025) Loss 6.8937e+00 (7.1267e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.63) +Epoch: [0][ 143/5004] Time 0.247 ( 0.240) Data 0.022 ( 0.025) Loss 7.0251e+00 (7.1260e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.63) +Epoch: [0][ 144/5004] Time 0.245 ( 0.240) Data 0.020 ( 0.025) Loss 6.9050e+00 (7.1245e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 145/5004] Time 0.242 ( 0.240) Data 0.021 ( 0.025) Loss 6.9091e+00 (7.1230e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.64) +Epoch: [0][ 146/5004] Time 0.248 ( 0.240) Data 0.023 ( 0.025) Loss 6.9004e+00 (7.1215e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.63) +Epoch: [0][ 147/5004] Time 0.241 ( 0.240) Data 0.019 ( 0.025) Loss 6.9079e+00 (7.1200e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.63) +Epoch: [0][ 148/5004] Time 0.245 ( 0.240) Data 0.023 ( 0.025) Loss 6.9192e+00 (7.1187e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.62) +Epoch: [0][ 149/5004] Time 0.243 ( 0.240) Data 0.022 ( 0.025) Loss 6.9033e+00 (7.1173e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.62) +Epoch: [0][ 150/5004] Time 0.246 ( 0.240) Data 0.022 ( 0.025) Loss 6.9119e+00 (7.1159e+00) Acc@1 0.78 ( 0.14) Acc@5 2.34 ( 0.63) +Epoch: [0][ 151/5004] Time 0.246 ( 0.241) Data 0.021 ( 0.025) Loss 6.9053e+00 (7.1145e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.64) +Epoch: [0][ 152/5004] Time 0.253 ( 0.241) Data 0.021 ( 0.025) Loss 6.9230e+00 (7.1133e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 153/5004] Time 0.245 ( 0.241) Data 0.017 ( 0.025) Loss 6.9133e+00 (7.1120e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.64) +Epoch: [0][ 154/5004] Time 0.244 ( 0.241) Data 0.019 ( 0.025) Loss 6.8999e+00 (7.1106e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 155/5004] Time 0.251 ( 0.241) Data 0.021 ( 0.025) Loss 6.9164e+00 (7.1094e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.64) +Epoch: [0][ 156/5004] Time 0.248 ( 0.241) Data 0.016 ( 0.024) Loss 6.9078e+00 (7.1081e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.63) +Epoch: [0][ 157/5004] Time 0.259 ( 0.241) Data 0.020 ( 0.024) Loss 6.9015e+00 (7.1068e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 158/5004] Time 0.237 ( 0.241) Data 0.016 ( 0.024) Loss 6.9090e+00 (7.1055e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.64) +Epoch: [0][ 159/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.024) Loss 6.8973e+00 (7.1042e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.64) +Epoch: [0][ 160/5004] Time 0.241 ( 0.241) Data 0.021 ( 0.024) Loss 6.9102e+00 (7.1030e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 161/5004] Time 0.245 ( 0.241) Data 0.023 ( 0.024) Loss 6.9004e+00 (7.1018e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.64) +Epoch: [0][ 162/5004] Time 0.246 ( 0.241) Data 0.022 ( 0.024) Loss 6.9164e+00 (7.1006e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.64) +Epoch: [0][ 163/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.024) Loss 6.9124e+00 (7.0995e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.63) +Epoch: [0][ 164/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.024) Loss 6.9005e+00 (7.0983e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.63) +Epoch: [0][ 165/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.024) Loss 6.9069e+00 (7.0971e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 166/5004] Time 0.245 ( 0.241) Data 0.020 ( 0.024) Loss 6.8998e+00 (7.0959e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.64) +Epoch: [0][ 167/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.024) Loss 6.8850e+00 (7.0947e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.64) +Epoch: [0][ 168/5004] Time 0.242 ( 0.241) Data 0.020 ( 0.024) Loss 6.8924e+00 (7.0935e+00) Acc@1 0.39 ( 0.14) Acc@5 2.34 ( 0.65) +Epoch: [0][ 169/5004] Time 0.243 ( 0.241) Data 0.022 ( 0.024) Loss 6.9052e+00 (7.0924e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.65) +Epoch: [0][ 170/5004] Time 0.245 ( 0.241) Data 0.021 ( 0.024) Loss 6.8916e+00 (7.0912e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.64) +Epoch: [0][ 171/5004] Time 0.242 ( 0.241) Data 0.021 ( 0.024) Loss 6.8904e+00 (7.0900e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.65) +Epoch: [0][ 172/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.8918e+00 (7.0889e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.65) +Epoch: [0][ 173/5004] Time 0.251 ( 0.241) Data 0.023 ( 0.024) Loss 6.9082e+00 (7.0879e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.64) +Epoch: [0][ 174/5004] Time 0.237 ( 0.241) Data 0.015 ( 0.024) Loss 6.9023e+00 (7.0868e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.65) +Epoch: [0][ 175/5004] Time 0.242 ( 0.241) Data 0.020 ( 0.024) Loss 6.8979e+00 (7.0857e+00) Acc@1 0.00 ( 0.14) Acc@5 1.56 ( 0.65) +Epoch: [0][ 176/5004] Time 0.243 ( 0.241) Data 0.022 ( 0.024) Loss 6.9041e+00 (7.0847e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.65) +Epoch: [0][ 177/5004] Time 0.248 ( 0.241) Data 0.022 ( 0.024) Loss 6.9039e+00 (7.0837e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.65) +Epoch: [0][ 178/5004] Time 0.236 ( 0.241) Data 0.020 ( 0.024) Loss 6.8999e+00 (7.0827e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.65) +Epoch: [0][ 179/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.8799e+00 (7.0815e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.66) +Epoch: [0][ 180/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.024) Loss 6.9307e+00 (7.0807e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.65) +Epoch: [0][ 181/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.024) Loss 6.8876e+00 (7.0796e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.66) +Epoch: [0][ 182/5004] Time 0.242 ( 0.241) Data 0.021 ( 0.024) Loss 6.8743e+00 (7.0785e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.66) +Epoch: [0][ 183/5004] Time 0.242 ( 0.241) Data 0.020 ( 0.024) Loss 6.9040e+00 (7.0776e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.66) +Epoch: [0][ 184/5004] Time 0.240 ( 0.241) Data 0.021 ( 0.024) Loss 7.3134e+00 (7.0788e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 185/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.024) Loss 6.8843e+00 (7.0778e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.66) +Epoch: [0][ 186/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.9121e+00 (7.0769e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 187/5004] Time 0.240 ( 0.241) Data 0.022 ( 0.024) Loss 6.9121e+00 (7.0760e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.66) +Epoch: [0][ 188/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.9151e+00 (7.0752e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 189/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.8938e+00 (7.0742e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 190/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.024) Loss 6.9116e+00 (7.0734e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 191/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.9060e+00 (7.0725e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.66) +Epoch: [0][ 192/5004] Time 0.244 ( 0.241) Data 0.023 ( 0.024) Loss 6.9082e+00 (7.0716e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.66) +Epoch: [0][ 193/5004] Time 0.240 ( 0.241) Data 0.023 ( 0.024) Loss 6.8949e+00 (7.0707e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.66) +Epoch: [0][ 194/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.8953e+00 (7.0698e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.66) +Epoch: [0][ 195/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.8974e+00 (7.0690e+00) Acc@1 0.00 ( 0.13) Acc@5 1.56 ( 0.66) +Epoch: [0][ 196/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.9128e+00 (7.0682e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.66) +Epoch: [0][ 197/5004] Time 0.245 ( 0.241) Data 0.023 ( 0.024) Loss 6.8846e+00 (7.0672e+00) Acc@1 0.39 ( 0.13) Acc@5 1.56 ( 0.66) +Epoch: [0][ 198/5004] Time 0.241 ( 0.241) Data 0.022 ( 0.024) Loss 6.8858e+00 (7.0663e+00) Acc@1 0.00 ( 0.13) Acc@5 1.17 ( 0.67) +Epoch: [0][ 199/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.024) Loss 6.8917e+00 (7.0655e+00) Acc@1 0.39 ( 0.13) Acc@5 1.17 ( 0.67) +Epoch: [0][ 200/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.024) Loss 6.8916e+00 (7.0646e+00) Acc@1 0.00 ( 0.13) Acc@5 1.17 ( 0.67) +Epoch: [0][ 201/5004] Time 0.240 ( 0.241) Data 0.021 ( 0.024) Loss 6.9135e+00 (7.0638e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.67) +Epoch: [0][ 202/5004] Time 0.239 ( 0.241) Data 0.022 ( 0.024) Loss 6.9005e+00 (7.0630e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 203/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.024) Loss 6.8896e+00 (7.0622e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 204/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.9163e+00 (7.0615e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.67) +Epoch: [0][ 205/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.024) Loss 6.9111e+00 (7.0607e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 206/5004] Time 0.239 ( 0.241) Data 0.021 ( 0.024) Loss 6.9013e+00 (7.0600e+00) Acc@1 0.78 ( 0.14) Acc@5 1.56 ( 0.67) +Epoch: [0][ 207/5004] Time 0.247 ( 0.241) Data 0.023 ( 0.024) Loss 6.9095e+00 (7.0592e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 208/5004] Time 0.237 ( 0.241) Data 0.021 ( 0.024) Loss 6.9100e+00 (7.0585e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.67) +Epoch: [0][ 209/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.024) Loss 6.8864e+00 (7.0577e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 210/5004] Time 0.244 ( 0.241) Data 0.023 ( 0.024) Loss 6.9078e+00 (7.0570e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 211/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.9239e+00 (7.0564e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 212/5004] Time 0.235 ( 0.241) Data 0.023 ( 0.024) Loss 6.9143e+00 (7.0557e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 213/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.024) Loss 6.9012e+00 (7.0550e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 214/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.024) Loss 6.8996e+00 (7.0543e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 215/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.024) Loss 6.9172e+00 (7.0536e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 216/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.024) Loss 6.9065e+00 (7.0530e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 217/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.024) Loss 6.9088e+00 (7.0523e+00) Acc@1 1.17 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 218/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.024) Loss 6.9145e+00 (7.0517e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 219/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.024) Loss 6.9150e+00 (7.0510e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 220/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.024) Loss 6.8884e+00 (7.0503e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 221/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.024) Loss 6.9496e+00 (7.0499e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 222/5004] Time 0.238 ( 0.241) Data 0.023 ( 0.024) Loss 6.9361e+00 (7.0493e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 223/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.024) Loss 6.9008e+00 (7.0487e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 224/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.024) Loss 6.9106e+00 (7.0481e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 225/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.024) Loss 6.9065e+00 (7.0474e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 226/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.024) Loss 6.8867e+00 (7.0467e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 227/5004] Time 0.234 ( 0.241) Data 0.024 ( 0.024) Loss 6.9070e+00 (7.0461e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 228/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.024) Loss 6.8886e+00 (7.0454e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 229/5004] Time 0.237 ( 0.241) Data 0.027 ( 0.024) Loss 6.9297e+00 (7.0449e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 230/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.024) Loss 6.9617e+00 (7.0446e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 231/5004] Time 0.234 ( 0.241) Data 0.023 ( 0.024) Loss 6.8992e+00 (7.0439e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 232/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.024) Loss 6.9185e+00 (7.0434e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 233/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.024) Loss 6.8868e+00 (7.0427e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 234/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.024) Loss 6.8905e+00 (7.0421e+00) Acc@1 0.00 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 235/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.024) Loss 6.9059e+00 (7.0415e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 236/5004] Time 0.232 ( 0.241) Data 0.023 ( 0.024) Loss 6.9074e+00 (7.0409e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 237/5004] Time 0.239 ( 0.241) Data 0.029 ( 0.024) Loss 6.8900e+00 (7.0403e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 238/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.024) Loss 6.9064e+00 (7.0397e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 239/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.024) Loss 6.9071e+00 (7.0392e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.67) +Epoch: [0][ 240/5004] Time 0.234 ( 0.241) Data 0.025 ( 0.024) Loss 6.8967e+00 (7.0386e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.67) +Epoch: [0][ 241/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.024) Loss 6.9032e+00 (7.0380e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 242/5004] Time 0.234 ( 0.241) Data 0.029 ( 0.024) Loss 6.9005e+00 (7.0375e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.67) +Epoch: [0][ 243/5004] Time 0.244 ( 0.241) Data 0.032 ( 0.024) Loss 6.9124e+00 (7.0370e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 244/5004] Time 0.231 ( 0.241) Data 0.024 ( 0.024) Loss 6.9149e+00 (7.0365e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.67) +Epoch: [0][ 245/5004] Time 0.241 ( 0.241) Data 0.031 ( 0.024) Loss 6.9009e+00 (7.0359e+00) Acc@1 0.00 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 246/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.024) Loss 6.9049e+00 (7.0354e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.67) +Epoch: [0][ 247/5004] Time 0.236 ( 0.241) Data 0.025 ( 0.024) Loss 6.9059e+00 (7.0349e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 248/5004] Time 0.237 ( 0.241) Data 0.027 ( 0.024) Loss 6.9288e+00 (7.0344e+00) Acc@1 0.00 ( 0.13) Acc@5 0.00 ( 0.67) +Epoch: [0][ 249/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.024) Loss 6.9214e+00 (7.0340e+00) Acc@1 0.39 ( 0.13) Acc@5 0.78 ( 0.67) +Epoch: [0][ 250/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.024) Loss 6.9135e+00 (7.0335e+00) Acc@1 0.00 ( 0.13) Acc@5 0.39 ( 0.66) +Epoch: [0][ 251/5004] Time 0.236 ( 0.241) Data 0.026 ( 0.024) Loss 6.8989e+00 (7.0330e+00) Acc@1 1.17 ( 0.14) Acc@5 1.56 ( 0.67) +Epoch: [0][ 252/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.024) Loss 6.8909e+00 (7.0324e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.67) +Epoch: [0][ 253/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.024) Loss 6.9014e+00 (7.0319e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.67) +Epoch: [0][ 254/5004] Time 0.235 ( 0.241) Data 0.025 ( 0.024) Loss 6.8934e+00 (7.0313e+00) Acc@1 0.78 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 255/5004] Time 0.236 ( 0.241) Data 0.028 ( 0.024) Loss 6.8826e+00 (7.0308e+00) Acc@1 0.78 ( 0.14) Acc@5 0.78 ( 0.67) +Epoch: [0][ 256/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.024) Loss 6.9038e+00 (7.0303e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.67) +Epoch: [0][ 257/5004] Time 0.236 ( 0.241) Data 0.025 ( 0.024) Loss 6.9026e+00 (7.0298e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.67) +Epoch: [0][ 258/5004] Time 0.247 ( 0.241) Data 0.026 ( 0.024) Loss 6.9051e+00 (7.0293e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.67) +Epoch: [0][ 259/5004] Time 0.232 ( 0.241) Data 0.020 ( 0.024) Loss 6.8915e+00 (7.0288e+00) Acc@1 0.39 ( 0.15) Acc@5 2.34 ( 0.68) +Epoch: [0][ 260/5004] Time 0.234 ( 0.241) Data 0.026 ( 0.024) Loss 6.9054e+00 (7.0283e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.67) +Epoch: [0][ 261/5004] Time 0.242 ( 0.241) Data 0.029 ( 0.024) Loss 6.9099e+00 (7.0278e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 262/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.024) Loss 6.9032e+00 (7.0274e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.67) +Epoch: [0][ 263/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.024) Loss 6.8919e+00 (7.0269e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.67) +Epoch: [0][ 264/5004] Time 0.248 ( 0.241) Data 0.026 ( 0.024) Loss 6.9052e+00 (7.0264e+00) Acc@1 0.00 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 265/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.9029e+00 (7.0259e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 266/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.8913e+00 (7.0254e+00) Acc@1 0.39 ( 0.14) Acc@5 2.73 ( 0.68) +Epoch: [0][ 267/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.024) Loss 6.8942e+00 (7.0249e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.69) +Epoch: [0][ 268/5004] Time 0.239 ( 0.241) Data 0.018 ( 0.024) Loss 6.9011e+00 (7.0245e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.69) +Epoch: [0][ 269/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.9158e+00 (7.0241e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 270/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.9049e+00 (7.0236e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 271/5004] Time 0.239 ( 0.241) Data 0.021 ( 0.024) Loss 6.8827e+00 (7.0231e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 272/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.9004e+00 (7.0227e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 273/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.8811e+00 (7.0222e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 274/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.024) Loss 6.9067e+00 (7.0217e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 275/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.024) Loss 6.9173e+00 (7.0214e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 276/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.024) Loss 6.8925e+00 (7.0209e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 277/5004] Time 0.258 ( 0.241) Data 0.021 ( 0.024) Loss 6.8792e+00 (7.0204e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 278/5004] Time 0.238 ( 0.241) Data 0.014 ( 0.024) Loss 6.9413e+00 (7.0201e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 279/5004] Time 0.256 ( 0.241) Data 0.021 ( 0.024) Loss 6.8975e+00 (7.0197e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 280/5004] Time 0.247 ( 0.241) Data 0.014 ( 0.024) Loss 6.9278e+00 (7.0193e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 281/5004] Time 0.251 ( 0.241) Data 0.018 ( 0.024) Loss 6.9107e+00 (7.0189e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 282/5004] Time 0.245 ( 0.241) Data 0.019 ( 0.024) Loss 6.9130e+00 (7.0186e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 283/5004] Time 0.245 ( 0.241) Data 0.021 ( 0.024) Loss 6.8811e+00 (7.0181e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 284/5004] Time 0.255 ( 0.241) Data 0.021 ( 0.024) Loss 6.9064e+00 (7.0177e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.68) +Epoch: [0][ 285/5004] Time 0.251 ( 0.241) Data 0.018 ( 0.024) Loss 6.8960e+00 (7.0173e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 286/5004] Time 0.244 ( 0.241) Data 0.019 ( 0.024) Loss 6.9006e+00 (7.0169e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 287/5004] Time 0.244 ( 0.241) Data 0.021 ( 0.024) Loss 6.8880e+00 (7.0164e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 288/5004] Time 0.250 ( 0.241) Data 0.022 ( 0.024) Loss 6.8972e+00 (7.0160e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 289/5004] Time 0.241 ( 0.241) Data 0.018 ( 0.024) Loss 6.8995e+00 (7.0156e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 290/5004] Time 0.249 ( 0.241) Data 0.022 ( 0.024) Loss 6.9087e+00 (7.0152e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 291/5004] Time 0.243 ( 0.241) Data 0.020 ( 0.024) Loss 6.8989e+00 (7.0148e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 292/5004] Time 0.246 ( 0.241) Data 0.022 ( 0.024) Loss 6.8962e+00 (7.0144e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 293/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.024) Loss 6.8905e+00 (7.0140e+00) Acc@1 0.39 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 294/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.024) Loss 6.9034e+00 (7.0136e+00) Acc@1 0.78 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 295/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.024) Loss 6.9125e+00 (7.0133e+00) Acc@1 0.78 ( 0.14) Acc@5 1.17 ( 0.68) +Epoch: [0][ 296/5004] Time 0.246 ( 0.241) Data 0.022 ( 0.024) Loss 6.8823e+00 (7.0129e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 297/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.024) Loss 6.9008e+00 (7.0125e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.68) +Epoch: [0][ 298/5004] Time 0.242 ( 0.241) Data 0.022 ( 0.024) Loss 6.9099e+00 (7.0121e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.68) +Epoch: [0][ 299/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.024) Loss 6.8990e+00 (7.0118e+00) Acc@1 0.39 ( 0.14) Acc@5 1.56 ( 0.68) +Epoch: [0][ 300/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.024) Loss 6.8890e+00 (7.0113e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.69) +Epoch: [0][ 301/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.024) Loss 6.8940e+00 (7.0110e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.69) +Epoch: [0][ 302/5004] Time 0.241 ( 0.241) Data 0.022 ( 0.024) Loss 6.8889e+00 (7.0106e+00) Acc@1 0.39 ( 0.14) Acc@5 1.17 ( 0.69) +Epoch: [0][ 303/5004] Time 0.236 ( 0.241) Data 0.022 ( 0.024) Loss 6.8959e+00 (7.0102e+00) Acc@1 0.39 ( 0.15) Acc@5 1.95 ( 0.69) +Epoch: [0][ 304/5004] Time 0.234 ( 0.241) Data 0.024 ( 0.024) Loss 6.9122e+00 (7.0099e+00) Acc@1 0.00 ( 0.14) Acc@5 0.78 ( 0.69) +Epoch: [0][ 305/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.024) Loss 6.9076e+00 (7.0095e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.69) +Epoch: [0][ 306/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.024) Loss 6.8916e+00 (7.0091e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 307/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.024) Loss 6.9075e+00 (7.0088e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 308/5004] Time 0.237 ( 0.241) Data 0.024 ( 0.024) Loss 6.8926e+00 (7.0084e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 309/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.024) Loss 7.0136e+00 (7.0085e+00) Acc@1 0.39 ( 0.15) Acc@5 1.56 ( 0.69) +Epoch: [0][ 310/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.024) Loss 6.9202e+00 (7.0082e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 311/5004] Time 0.237 ( 0.241) Data 0.020 ( 0.024) Loss 6.9073e+00 (7.0078e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 312/5004] Time 0.232 ( 0.241) Data 0.021 ( 0.024) Loss 6.9152e+00 (7.0075e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 313/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.024) Loss 6.9190e+00 (7.0073e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 314/5004] Time 0.239 ( 0.241) Data 0.022 ( 0.024) Loss 6.9089e+00 (7.0070e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 315/5004] Time 0.240 ( 0.241) Data 0.022 ( 0.024) Loss 6.9034e+00 (7.0066e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 316/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.024) Loss 6.8940e+00 (7.0063e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 317/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.024) Loss 6.8943e+00 (7.0059e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.69) +Epoch: [0][ 318/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.024) Loss 6.8911e+00 (7.0056e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 319/5004] Time 0.238 ( 0.241) Data 0.023 ( 0.024) Loss 6.9223e+00 (7.0053e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 320/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.024) Loss 6.9046e+00 (7.0050e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 321/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.024) Loss 6.9048e+00 (7.0047e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 322/5004] Time 0.234 ( 0.241) Data 0.023 ( 0.024) Loss 6.8966e+00 (7.0043e+00) Acc@1 0.00 ( 0.14) Acc@5 1.56 ( 0.69) +Epoch: [0][ 323/5004] Time 0.237 ( 0.241) Data 0.027 ( 0.024) Loss 6.8996e+00 (7.0040e+00) Acc@1 1.17 ( 0.15) Acc@5 1.56 ( 0.70) +Epoch: [0][ 324/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.024) Loss 6.8993e+00 (7.0037e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 325/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.024) Loss 6.8912e+00 (7.0033e+00) Acc@1 0.00 ( 0.14) Acc@5 1.17 ( 0.70) +Epoch: [0][ 326/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.024) Loss 6.8963e+00 (7.0030e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.70) +Epoch: [0][ 327/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.024) Loss 6.9135e+00 (7.0027e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 328/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.024) Loss 6.9024e+00 (7.0024e+00) Acc@1 0.00 ( 0.14) Acc@5 0.00 ( 0.69) +Epoch: [0][ 329/5004] Time 0.236 ( 0.241) Data 0.027 ( 0.024) Loss 6.9000e+00 (7.0021e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 330/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.024) Loss 6.8922e+00 (7.0018e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 331/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.024) Loss 6.9175e+00 (7.0015e+00) Acc@1 0.39 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 332/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.024) Loss 6.8858e+00 (7.0012e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 333/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.024) Loss 6.8918e+00 (7.0009e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 334/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.024) Loss 6.9063e+00 (7.0006e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 335/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.024) Loss 6.8935e+00 (7.0003e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 336/5004] Time 0.236 ( 0.241) Data 0.025 ( 0.024) Loss 6.8846e+00 (6.9999e+00) Acc@1 0.00 ( 0.14) Acc@5 0.39 ( 0.69) +Epoch: [0][ 337/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.024) Loss 6.9041e+00 (6.9996e+00) Acc@1 0.78 ( 0.15) Acc@5 1.56 ( 0.69) +Epoch: [0][ 338/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.024) Loss 6.8648e+00 (6.9992e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 339/5004] Time 0.236 ( 0.241) Data 0.025 ( 0.024) Loss 6.8938e+00 (6.9989e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 340/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.024) Loss 6.9089e+00 (6.9987e+00) Acc@1 0.78 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 341/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.024) Loss 6.8731e+00 (6.9983e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 342/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.024) Loss 6.8951e+00 (6.9980e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 343/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.024) Loss 6.8855e+00 (6.9977e+00) Acc@1 0.00 ( 0.15) Acc@5 1.95 ( 0.70) +Epoch: [0][ 344/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.024) Loss 6.9134e+00 (6.9974e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 345/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.024) Loss 6.9158e+00 (6.9972e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 346/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.024) Loss 6.9029e+00 (6.9969e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 347/5004] Time 0.234 ( 0.241) Data 0.023 ( 0.024) Loss 6.8796e+00 (6.9966e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 348/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.024) Loss 6.8855e+00 (6.9963e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 349/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.024) Loss 6.9056e+00 (6.9960e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 350/5004] Time 0.233 ( 0.241) Data 0.017 ( 0.024) Loss 6.9020e+00 (6.9957e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 351/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.9171e+00 (6.9955e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 352/5004] Time 0.234 ( 0.241) Data 0.023 ( 0.024) Loss 6.9071e+00 (6.9953e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 353/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.024) Loss 6.9143e+00 (6.9950e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 354/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.024) Loss 6.8884e+00 (6.9947e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 355/5004] Time 0.236 ( 0.241) Data 0.024 ( 0.024) Loss 6.8881e+00 (6.9944e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 356/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.024) Loss 6.9047e+00 (6.9942e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 357/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.024) Loss 6.9063e+00 (6.9939e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 358/5004] Time 0.234 ( 0.241) Data 0.025 ( 0.024) Loss 7.0665e+00 (6.9941e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 359/5004] Time 0.238 ( 0.241) Data 0.029 ( 0.024) Loss 6.9054e+00 (6.9939e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 360/5004] Time 0.240 ( 0.241) Data 0.029 ( 0.024) Loss 6.8948e+00 (6.9936e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 361/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.024) Loss 6.8917e+00 (6.9933e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 362/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.024) Loss 6.8730e+00 (6.9930e+00) Acc@1 0.78 ( 0.15) Acc@5 1.95 ( 0.70) +Epoch: [0][ 363/5004] Time 0.234 ( 0.241) Data 0.024 ( 0.024) Loss 6.9019e+00 (6.9928e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 364/5004] Time 0.244 ( 0.241) Data 0.029 ( 0.024) Loss 6.9112e+00 (6.9925e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 365/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.024) Loss 6.9001e+00 (6.9923e+00) Acc@1 0.78 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 366/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.024) Loss 6.9232e+00 (6.9921e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 367/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.024) Loss 6.9152e+00 (6.9919e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 368/5004] Time 0.229 ( 0.241) Data 0.022 ( 0.024) Loss 6.8935e+00 (6.9916e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 369/5004] Time 0.240 ( 0.241) Data 0.030 ( 0.024) Loss 6.9028e+00 (6.9914e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 370/5004] Time 0.236 ( 0.241) Data 0.028 ( 0.024) Loss 6.9044e+00 (6.9911e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 371/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.024) Loss 6.9095e+00 (6.9909e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 372/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.024) Loss 6.8977e+00 (6.9907e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 373/5004] Time 0.236 ( 0.241) Data 0.028 ( 0.024) Loss 6.9209e+00 (6.9905e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 374/5004] Time 0.237 ( 0.241) Data 0.029 ( 0.024) Loss 6.9060e+00 (6.9903e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 375/5004] Time 0.238 ( 0.241) Data 0.029 ( 0.024) Loss 6.8983e+00 (6.9900e+00) Acc@1 0.78 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 376/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.024) Loss 6.8913e+00 (6.9898e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 377/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.024) Loss 6.9077e+00 (6.9895e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 378/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.024) Loss 6.9116e+00 (6.9893e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 379/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.024) Loss 6.9077e+00 (6.9891e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 380/5004] Time 0.236 ( 0.241) Data 0.027 ( 0.024) Loss 6.8884e+00 (6.9889e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 381/5004] Time 0.242 ( 0.241) Data 0.029 ( 0.024) Loss 6.9055e+00 (6.9886e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 382/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.024) Loss 6.8999e+00 (6.9884e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 383/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.024) Loss 6.9082e+00 (6.9882e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 384/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.024) Loss 6.8846e+00 (6.9879e+00) Acc@1 0.00 ( 0.15) Acc@5 1.56 ( 0.69) +Epoch: [0][ 385/5004] Time 0.236 ( 0.241) Data 0.026 ( 0.024) Loss 6.8873e+00 (6.9877e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 386/5004] Time 0.248 ( 0.241) Data 0.029 ( 0.024) Loss 6.9113e+00 (6.9875e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 387/5004] Time 0.230 ( 0.241) Data 0.021 ( 0.024) Loss 6.9103e+00 (6.9873e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 388/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.024) Loss 6.8935e+00 (6.9870e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 389/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.024) Loss 6.8667e+00 (6.9867e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 390/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.024) Loss 6.8886e+00 (6.9865e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 391/5004] Time 0.236 ( 0.241) Data 0.027 ( 0.024) Loss 6.9096e+00 (6.9863e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 392/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.024) Loss 6.8905e+00 (6.9860e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 393/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.024) Loss 6.9037e+00 (6.9858e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 394/5004] Time 0.241 ( 0.241) Data 0.022 ( 0.024) Loss 6.9149e+00 (6.9856e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 395/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.8776e+00 (6.9854e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.69) +Epoch: [0][ 396/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.024) Loss 6.9101e+00 (6.9852e+00) Acc@1 0.78 ( 0.15) Acc@5 1.56 ( 0.69) +Epoch: [0][ 397/5004] Time 0.238 ( 0.241) Data 0.021 ( 0.024) Loss 6.9060e+00 (6.9850e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.69) +Epoch: [0][ 398/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.024) Loss 6.9044e+00 (6.9848e+00) Acc@1 0.39 ( 0.15) Acc@5 1.56 ( 0.69) +Epoch: [0][ 399/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.024) Loss 6.8701e+00 (6.9845e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 400/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.024) Loss 6.9192e+00 (6.9843e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.69) +Epoch: [0][ 401/5004] Time 0.238 ( 0.241) Data 0.022 ( 0.024) Loss 6.8919e+00 (6.9841e+00) Acc@1 0.00 ( 0.15) Acc@5 1.95 ( 0.69) +Epoch: [0][ 402/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.9173e+00 (6.9839e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.69) +Epoch: [0][ 403/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.024) Loss 6.8854e+00 (6.9837e+00) Acc@1 0.39 ( 0.15) Acc@5 1.95 ( 0.70) +Epoch: [0][ 404/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.024) Loss 6.8961e+00 (6.9835e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 405/5004] Time 0.244 ( 0.241) Data 0.021 ( 0.024) Loss 6.9001e+00 (6.9833e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 406/5004] Time 0.237 ( 0.241) Data 0.021 ( 0.024) Loss 6.8946e+00 (6.9831e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 407/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.024) Loss 6.9008e+00 (6.9828e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 408/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.8877e+00 (6.9826e+00) Acc@1 0.00 ( 0.15) Acc@5 1.56 ( 0.70) +Epoch: [0][ 409/5004] Time 0.240 ( 0.241) Data 0.023 ( 0.024) Loss 6.8953e+00 (6.9824e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.70) +Epoch: [0][ 410/5004] Time 0.248 ( 0.241) Data 0.023 ( 0.024) Loss 6.8991e+00 (6.9822e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 411/5004] Time 0.237 ( 0.241) Data 0.019 ( 0.024) Loss 6.8855e+00 (6.9820e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 412/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.8985e+00 (6.9818e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 413/5004] Time 0.239 ( 0.241) Data 0.023 ( 0.024) Loss 6.8710e+00 (6.9815e+00) Acc@1 0.78 ( 0.15) Acc@5 1.95 ( 0.70) +Epoch: [0][ 414/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.024) Loss 6.9023e+00 (6.9813e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 415/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.8946e+00 (6.9811e+00) Acc@1 0.78 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 416/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.8726e+00 (6.9808e+00) Acc@1 0.00 ( 0.15) Acc@5 1.56 ( 0.70) +Epoch: [0][ 417/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.024) Loss 6.9001e+00 (6.9806e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 418/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.024) Loss 6.8887e+00 (6.9804e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 419/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.024) Loss 6.8648e+00 (6.9801e+00) Acc@1 0.39 ( 0.15) Acc@5 1.56 ( 0.70) +Epoch: [0][ 420/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.024) Loss 6.8971e+00 (6.9800e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 421/5004] Time 0.192 ( 0.241) Data 0.021 ( 0.024) Loss 6.8828e+00 (6.9797e+00) Acc@1 0.39 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 422/5004] Time 0.237 ( 0.241) Data 0.066 ( 0.024) Loss 6.9037e+00 (6.9795e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 423/5004] Time 0.235 ( 0.241) Data 0.066 ( 0.024) Loss 6.9040e+00 (6.9794e+00) Acc@1 0.00 ( 0.15) Acc@5 1.17 ( 0.70) +Epoch: [0][ 424/5004] Time 0.238 ( 0.241) Data 0.066 ( 0.025) Loss 6.9091e+00 (6.9792e+00) Acc@1 0.00 ( 0.15) Acc@5 0.39 ( 0.70) +Epoch: [0][ 425/5004] Time 0.236 ( 0.241) Data 0.066 ( 0.025) Loss 6.9081e+00 (6.9790e+00) Acc@1 0.00 ( 0.15) Acc@5 1.95 ( 0.71) +Epoch: [0][ 426/5004] Time 0.247 ( 0.241) Data 0.067 ( 0.025) Loss 6.8907e+00 (6.9788e+00) Acc@1 0.00 ( 0.15) Acc@5 0.00 ( 0.70) +Epoch: [0][ 427/5004] Time 0.277 ( 0.241) Data 0.057 ( 0.025) Loss 6.8716e+00 (6.9786e+00) Acc@1 0.39 ( 0.15) Acc@5 1.17 ( 0.71) +Epoch: [0][ 428/5004] Time 0.233 ( 0.241) Data 0.023 ( 0.025) Loss 6.9182e+00 (6.9784e+00) Acc@1 0.39 ( 0.15) Acc@5 0.78 ( 0.71) +Epoch: [0][ 429/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.025) Loss 6.8789e+00 (6.9782e+00) Acc@1 0.00 ( 0.15) Acc@5 0.78 ( 0.71) +Epoch: [0][ 430/5004] Time 0.236 ( 0.241) Data 0.027 ( 0.025) Loss 6.9008e+00 (6.9780e+00) Acc@1 0.78 ( 0.15) Acc@5 0.78 ( 0.71) +Epoch: [0][ 431/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.025) Loss 6.8950e+00 (6.9778e+00) Acc@1 0.78 ( 0.16) Acc@5 1.17 ( 0.71) +Epoch: [0][ 432/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.025) Loss 6.9087e+00 (6.9777e+00) Acc@1 0.39 ( 0.16) Acc@5 1.95 ( 0.71) +Epoch: [0][ 433/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.025) Loss 6.9083e+00 (6.9775e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.71) +Epoch: [0][ 434/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.025) Loss 6.8922e+00 (6.9773e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.71) +Epoch: [0][ 435/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.025) Loss 6.9170e+00 (6.9772e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.71) +Epoch: [0][ 436/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.025) Loss 6.8902e+00 (6.9770e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.71) +Epoch: [0][ 437/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.025) Loss 6.9156e+00 (6.9768e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.71) +Epoch: [0][ 438/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.025) Loss 6.8958e+00 (6.9767e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.71) +Epoch: [0][ 439/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.025) Loss 6.8722e+00 (6.9764e+00) Acc@1 0.00 ( 0.16) Acc@5 2.34 ( 0.72) +Epoch: [0][ 440/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.025) Loss 6.9149e+00 (6.9763e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 441/5004] Time 0.236 ( 0.241) Data 0.026 ( 0.025) Loss 6.9120e+00 (6.9761e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.71) +Epoch: [0][ 442/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.025) Loss 6.8758e+00 (6.9759e+00) Acc@1 0.78 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 443/5004] Time 0.235 ( 0.241) Data 0.026 ( 0.025) Loss 6.9059e+00 (6.9757e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.71) +Epoch: [0][ 444/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.025) Loss 6.9051e+00 (6.9756e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 445/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.025) Loss 6.8971e+00 (6.9754e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.71) +Epoch: [0][ 446/5004] Time 0.236 ( 0.241) Data 0.026 ( 0.025) Loss 6.8935e+00 (6.9752e+00) Acc@1 0.78 ( 0.16) Acc@5 1.56 ( 0.72) +Epoch: [0][ 447/5004] Time 0.236 ( 0.241) Data 0.028 ( 0.025) Loss 6.9058e+00 (6.9751e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 448/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.025) Loss 6.8900e+00 (6.9749e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 449/5004] Time 0.239 ( 0.240) Data 0.028 ( 0.025) Loss 6.9089e+00 (6.9747e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 450/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.8848e+00 (6.9745e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 451/5004] Time 0.240 ( 0.240) Data 0.027 ( 0.025) Loss 6.8798e+00 (6.9743e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 452/5004] Time 0.236 ( 0.240) Data 0.026 ( 0.025) Loss 6.9024e+00 (6.9742e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 453/5004] Time 0.241 ( 0.240) Data 0.028 ( 0.025) Loss 6.9064e+00 (6.9740e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.72) +Epoch: [0][ 454/5004] Time 0.236 ( 0.240) Data 0.024 ( 0.025) Loss 6.8978e+00 (6.9739e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 455/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.025) Loss 6.8765e+00 (6.9736e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 456/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.025) Loss 6.8964e+00 (6.9735e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.72) +Epoch: [0][ 457/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.025) Loss 6.9170e+00 (6.9733e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 458/5004] Time 0.237 ( 0.240) Data 0.020 ( 0.025) Loss 6.8768e+00 (6.9731e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.72) +Epoch: [0][ 459/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.025) Loss 6.8816e+00 (6.9729e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 460/5004] Time 0.235 ( 0.240) Data 0.017 ( 0.025) Loss 6.8797e+00 (6.9727e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 461/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.025) Loss 6.8945e+00 (6.9726e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 462/5004] Time 0.236 ( 0.240) Data 0.024 ( 0.025) Loss 6.8931e+00 (6.9724e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 463/5004] Time 0.235 ( 0.240) Data 0.025 ( 0.025) Loss 6.8881e+00 (6.9722e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 464/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.025) Loss 6.8872e+00 (6.9720e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 465/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.025) Loss 6.8815e+00 (6.9718e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.72) +Epoch: [0][ 466/5004] Time 0.237 ( 0.240) Data 0.026 ( 0.025) Loss 6.8844e+00 (6.9716e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 467/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.025) Loss 6.8788e+00 (6.9714e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.72) +Epoch: [0][ 468/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.025) Loss 6.8992e+00 (6.9713e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 469/5004] Time 0.234 ( 0.240) Data 0.023 ( 0.025) Loss 6.8835e+00 (6.9711e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 470/5004] Time 0.240 ( 0.240) Data 0.027 ( 0.025) Loss 6.9141e+00 (6.9710e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 471/5004] Time 0.236 ( 0.240) Data 0.025 ( 0.025) Loss 6.8760e+00 (6.9708e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.72) +Epoch: [0][ 472/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.025) Loss 6.9079e+00 (6.9707e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.72) +Epoch: [0][ 473/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.025) Loss 6.8847e+00 (6.9705e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.72) +Epoch: [0][ 474/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.025) Loss 6.8989e+00 (6.9703e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 475/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.025) Loss 6.9004e+00 (6.9702e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 476/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.025) Loss 6.8949e+00 (6.9700e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 477/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.025) Loss 6.8881e+00 (6.9698e+00) Acc@1 0.39 ( 0.16) Acc@5 2.34 ( 0.73) +Epoch: [0][ 478/5004] Time 0.230 ( 0.240) Data 0.021 ( 0.025) Loss 6.9007e+00 (6.9697e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 479/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.025) Loss 6.8887e+00 (6.9695e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 480/5004] Time 0.245 ( 0.240) Data 0.027 ( 0.025) Loss 6.8712e+00 (6.9693e+00) Acc@1 0.78 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 481/5004] Time 0.236 ( 0.240) Data 0.024 ( 0.025) Loss 6.8910e+00 (6.9692e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 482/5004] Time 0.237 ( 0.240) Data 0.026 ( 0.025) Loss 6.8832e+00 (6.9690e+00) Acc@1 0.39 ( 0.16) Acc@5 1.95 ( 0.73) +Epoch: [0][ 483/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.8820e+00 (6.9688e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 484/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.025) Loss 6.8932e+00 (6.9687e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 485/5004] Time 0.238 ( 0.240) Data 0.026 ( 0.025) Loss 6.8861e+00 (6.9685e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 486/5004] Time 0.206 ( 0.240) Data 0.026 ( 0.025) Loss 6.8915e+00 (6.9683e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.74) +Epoch: [0][ 487/5004] Time 0.234 ( 0.240) Data 0.057 ( 0.025) Loss 6.8807e+00 (6.9681e+00) Acc@1 0.78 ( 0.16) Acc@5 1.95 ( 0.74) +Epoch: [0][ 488/5004] Time 0.237 ( 0.240) Data 0.058 ( 0.025) Loss 6.8816e+00 (6.9680e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 489/5004] Time 0.236 ( 0.240) Data 0.058 ( 0.025) Loss 6.8919e+00 (6.9678e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 490/5004] Time 0.242 ( 0.240) Data 0.057 ( 0.025) Loss 6.8833e+00 (6.9676e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 491/5004] Time 0.234 ( 0.240) Data 0.052 ( 0.025) Loss 6.8723e+00 (6.9674e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 492/5004] Time 0.238 ( 0.240) Data 0.058 ( 0.025) Loss 6.8955e+00 (6.9673e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 493/5004] Time 0.233 ( 0.240) Data 0.056 ( 0.025) Loss 6.8735e+00 (6.9671e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 494/5004] Time 0.239 ( 0.240) Data 0.058 ( 0.025) Loss 6.8850e+00 (6.9669e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 495/5004] Time 0.237 ( 0.240) Data 0.058 ( 0.026) Loss 6.8765e+00 (6.9668e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 496/5004] Time 0.237 ( 0.240) Data 0.057 ( 0.026) Loss 6.8449e+00 (6.9665e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 497/5004] Time 0.238 ( 0.240) Data 0.057 ( 0.026) Loss 6.8828e+00 (6.9663e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 498/5004] Time 0.233 ( 0.240) Data 0.056 ( 0.026) Loss 6.8763e+00 (6.9662e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 499/5004] Time 0.236 ( 0.240) Data 0.060 ( 0.026) Loss 6.8728e+00 (6.9660e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 500/5004] Time 0.238 ( 0.240) Data 0.061 ( 0.026) Loss 6.8993e+00 (6.9658e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.74) +Epoch: [0][ 501/5004] Time 0.240 ( 0.240) Data 0.060 ( 0.026) Loss 6.8828e+00 (6.9657e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.74) +Epoch: [0][ 502/5004] Time 0.236 ( 0.240) Data 0.057 ( 0.026) Loss 6.8667e+00 (6.9655e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 503/5004] Time 0.240 ( 0.240) Data 0.058 ( 0.026) Loss 6.8970e+00 (6.9654e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 504/5004] Time 0.236 ( 0.240) Data 0.057 ( 0.026) Loss 6.8821e+00 (6.9652e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 505/5004] Time 0.238 ( 0.240) Data 0.058 ( 0.026) Loss 6.8662e+00 (6.9650e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 506/5004] Time 0.240 ( 0.240) Data 0.057 ( 0.026) Loss 6.9289e+00 (6.9649e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 507/5004] Time 0.239 ( 0.240) Data 0.055 ( 0.026) Loss 6.8855e+00 (6.9648e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 508/5004] Time 0.234 ( 0.240) Data 0.054 ( 0.026) Loss 6.8896e+00 (6.9646e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 509/5004] Time 0.237 ( 0.240) Data 0.058 ( 0.026) Loss 6.8722e+00 (6.9644e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 510/5004] Time 0.238 ( 0.240) Data 0.058 ( 0.026) Loss 6.8849e+00 (6.9643e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 511/5004] Time 0.244 ( 0.240) Data 0.058 ( 0.027) Loss 6.8962e+00 (6.9641e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 512/5004] Time 0.235 ( 0.240) Data 0.054 ( 0.027) Loss 6.8895e+00 (6.9640e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 513/5004] Time 0.239 ( 0.240) Data 0.058 ( 0.027) Loss 6.8656e+00 (6.9638e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 514/5004] Time 0.234 ( 0.240) Data 0.057 ( 0.027) Loss 6.8842e+00 (6.9637e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 515/5004] Time 0.244 ( 0.240) Data 0.061 ( 0.027) Loss 6.8817e+00 (6.9635e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 516/5004] Time 0.237 ( 0.240) Data 0.057 ( 0.027) Loss 6.9088e+00 (6.9634e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 517/5004] Time 0.238 ( 0.240) Data 0.058 ( 0.027) Loss 6.8629e+00 (6.9632e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 518/5004] Time 0.236 ( 0.240) Data 0.057 ( 0.027) Loss 6.8683e+00 (6.9630e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 519/5004] Time 0.237 ( 0.240) Data 0.057 ( 0.027) Loss 6.8759e+00 (6.9628e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 520/5004] Time 0.238 ( 0.240) Data 0.057 ( 0.027) Loss 6.8833e+00 (6.9627e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 521/5004] Time 0.239 ( 0.240) Data 0.057 ( 0.027) Loss 6.8898e+00 (6.9626e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 522/5004] Time 0.233 ( 0.240) Data 0.055 ( 0.027) Loss 6.8765e+00 (6.9624e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 523/5004] Time 0.238 ( 0.240) Data 0.060 ( 0.027) Loss 6.8789e+00 (6.9622e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 524/5004] Time 0.239 ( 0.240) Data 0.058 ( 0.027) Loss 6.8913e+00 (6.9621e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 525/5004] Time 0.239 ( 0.240) Data 0.056 ( 0.027) Loss 6.8554e+00 (6.9619e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 526/5004] Time 0.238 ( 0.240) Data 0.059 ( 0.027) Loss 6.8808e+00 (6.9617e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 527/5004] Time 0.238 ( 0.240) Data 0.057 ( 0.027) Loss 6.8839e+00 (6.9616e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 528/5004] Time 0.240 ( 0.240) Data 0.056 ( 0.028) Loss 6.8565e+00 (6.9614e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 529/5004] Time 0.234 ( 0.240) Data 0.055 ( 0.028) Loss 6.8894e+00 (6.9613e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 530/5004] Time 0.241 ( 0.240) Data 0.058 ( 0.028) Loss 6.8599e+00 (6.9611e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 531/5004] Time 0.237 ( 0.240) Data 0.055 ( 0.028) Loss 6.8950e+00 (6.9609e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 532/5004] Time 0.241 ( 0.240) Data 0.057 ( 0.028) Loss 6.8481e+00 (6.9607e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 533/5004] Time 0.239 ( 0.240) Data 0.057 ( 0.028) Loss 6.8349e+00 (6.9605e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 534/5004] Time 0.241 ( 0.240) Data 0.056 ( 0.028) Loss 6.8978e+00 (6.9604e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 535/5004] Time 0.231 ( 0.240) Data 0.053 ( 0.028) Loss 6.9046e+00 (6.9603e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 536/5004] Time 0.244 ( 0.240) Data 0.060 ( 0.028) Loss 6.8670e+00 (6.9601e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 537/5004] Time 0.237 ( 0.240) Data 0.056 ( 0.028) Loss 6.8644e+00 (6.9599e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 538/5004] Time 0.237 ( 0.240) Data 0.057 ( 0.028) Loss 6.8619e+00 (6.9597e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 539/5004] Time 0.240 ( 0.240) Data 0.058 ( 0.028) Loss 6.8928e+00 (6.9596e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 540/5004] Time 0.238 ( 0.240) Data 0.057 ( 0.028) Loss 6.8695e+00 (6.9594e+00) Acc@1 0.78 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 541/5004] Time 0.239 ( 0.240) Data 0.058 ( 0.028) Loss 6.8840e+00 (6.9593e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 542/5004] Time 0.239 ( 0.240) Data 0.058 ( 0.028) Loss 6.9025e+00 (6.9592e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 543/5004] Time 0.236 ( 0.240) Data 0.056 ( 0.028) Loss 6.8495e+00 (6.9590e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 544/5004] Time 0.243 ( 0.240) Data 0.058 ( 0.028) Loss 6.8654e+00 (6.9588e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.73) +Epoch: [0][ 545/5004] Time 0.233 ( 0.240) Data 0.054 ( 0.028) Loss 6.8781e+00 (6.9587e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 546/5004] Time 0.242 ( 0.240) Data 0.061 ( 0.029) Loss 6.8466e+00 (6.9585e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 547/5004] Time 0.234 ( 0.240) Data 0.057 ( 0.029) Loss 6.8708e+00 (6.9583e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.73) +Epoch: [0][ 548/5004] Time 0.237 ( 0.240) Data 0.059 ( 0.029) Loss 6.9052e+00 (6.9582e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.73) +Epoch: [0][ 549/5004] Time 0.237 ( 0.240) Data 0.060 ( 0.029) Loss 6.8516e+00 (6.9580e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 550/5004] Time 0.238 ( 0.240) Data 0.060 ( 0.029) Loss 6.8219e+00 (6.9578e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 551/5004] Time 0.240 ( 0.240) Data 0.060 ( 0.029) Loss 6.8561e+00 (6.9576e+00) Acc@1 0.78 ( 0.16) Acc@5 1.56 ( 0.73) +Epoch: [0][ 552/5004] Time 0.238 ( 0.240) Data 0.060 ( 0.029) Loss 6.8770e+00 (6.9574e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.73) +Epoch: [0][ 553/5004] Time 0.234 ( 0.240) Data 0.060 ( 0.029) Loss 6.8457e+00 (6.9572e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 554/5004] Time 0.240 ( 0.240) Data 0.064 ( 0.029) Loss 6.8610e+00 (6.9571e+00) Acc@1 0.78 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 555/5004] Time 0.240 ( 0.240) Data 0.063 ( 0.029) Loss 6.8360e+00 (6.9569e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 556/5004] Time 0.237 ( 0.240) Data 0.060 ( 0.029) Loss 6.8726e+00 (6.9567e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 557/5004] Time 0.239 ( 0.240) Data 0.061 ( 0.029) Loss 6.8903e+00 (6.9566e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 558/5004] Time 0.237 ( 0.240) Data 0.059 ( 0.029) Loss 6.8750e+00 (6.9564e+00) Acc@1 1.17 ( 0.16) Acc@5 1.95 ( 0.74) +Epoch: [0][ 559/5004] Time 0.238 ( 0.240) Data 0.059 ( 0.029) Loss 6.8594e+00 (6.9563e+00) Acc@1 0.39 ( 0.16) Acc@5 1.95 ( 0.74) +Epoch: [0][ 560/5004] Time 0.237 ( 0.240) Data 0.060 ( 0.029) Loss 6.8458e+00 (6.9561e+00) Acc@1 0.78 ( 0.16) Acc@5 1.56 ( 0.74) +Epoch: [0][ 561/5004] Time 0.242 ( 0.240) Data 0.060 ( 0.029) Loss 6.8906e+00 (6.9560e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 562/5004] Time 0.234 ( 0.240) Data 0.057 ( 0.029) Loss 6.8777e+00 (6.9558e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 563/5004] Time 0.233 ( 0.240) Data 0.059 ( 0.029) Loss 6.8588e+00 (6.9556e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 564/5004] Time 0.244 ( 0.240) Data 0.063 ( 0.030) Loss 6.8642e+00 (6.9555e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 565/5004] Time 0.235 ( 0.240) Data 0.057 ( 0.030) Loss 6.8462e+00 (6.9553e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 566/5004] Time 0.237 ( 0.240) Data 0.059 ( 0.030) Loss 6.8409e+00 (6.9551e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 567/5004] Time 0.278 ( 0.240) Data 0.059 ( 0.030) Loss 6.8841e+00 (6.9550e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 568/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.030) Loss 6.8533e+00 (6.9548e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 569/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.030) Loss 6.8413e+00 (6.9546e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 570/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.030) Loss 6.8459e+00 (6.9544e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.74) +Epoch: [0][ 571/5004] Time 0.243 ( 0.240) Data 0.025 ( 0.030) Loss 6.8355e+00 (6.9542e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.75) +Epoch: [0][ 572/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.030) Loss 6.8458e+00 (6.9540e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 573/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.030) Loss 6.8769e+00 (6.9539e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 574/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.030) Loss 6.8525e+00 (6.9537e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 575/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.030) Loss 6.8585e+00 (6.9535e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.74) +Epoch: [0][ 576/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.030) Loss 6.8511e+00 (6.9533e+00) Acc@1 0.78 ( 0.16) Acc@5 1.56 ( 0.75) +Epoch: [0][ 577/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.030) Loss 6.8796e+00 (6.9532e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 578/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.030) Loss 6.8624e+00 (6.9531e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.74) +Epoch: [0][ 579/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.030) Loss 6.8602e+00 (6.9529e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.74) +Epoch: [0][ 580/5004] Time 0.237 ( 0.240) Data 0.018 ( 0.030) Loss 6.8486e+00 (6.9527e+00) Acc@1 0.39 ( 0.16) Acc@5 1.17 ( 0.75) +Epoch: [0][ 581/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.030) Loss 6.8382e+00 (6.9525e+00) Acc@1 0.78 ( 0.16) Acc@5 1.17 ( 0.75) +Epoch: [0][ 582/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.030) Loss 6.8569e+00 (6.9524e+00) Acc@1 0.39 ( 0.16) Acc@5 0.78 ( 0.75) +Epoch: [0][ 583/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.030) Loss 6.8210e+00 (6.9521e+00) Acc@1 0.00 ( 0.16) Acc@5 1.17 ( 0.75) +Epoch: [0][ 584/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.030) Loss 6.8327e+00 (6.9519e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.75) +Epoch: [0][ 585/5004] Time 0.248 ( 0.240) Data 0.022 ( 0.029) Loss 6.8207e+00 (6.9517e+00) Acc@1 0.39 ( 0.16) Acc@5 1.56 ( 0.75) +Epoch: [0][ 586/5004] Time 0.238 ( 0.240) Data 0.018 ( 0.029) Loss 6.8411e+00 (6.9515e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.75) +Epoch: [0][ 587/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.029) Loss 6.8434e+00 (6.9513e+00) Acc@1 0.00 ( 0.16) Acc@5 0.00 ( 0.75) +Epoch: [0][ 588/5004] Time 0.244 ( 0.240) Data 0.022 ( 0.029) Loss 6.8462e+00 (6.9512e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.75) +Epoch: [0][ 589/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.029) Loss 6.8057e+00 (6.9509e+00) Acc@1 0.39 ( 0.16) Acc@5 1.95 ( 0.75) +Epoch: [0][ 590/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.029) Loss 6.8846e+00 (6.9508e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.75) +Epoch: [0][ 591/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.8258e+00 (6.9506e+00) Acc@1 0.00 ( 0.16) Acc@5 0.78 ( 0.75) +Epoch: [0][ 592/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.8551e+00 (6.9504e+00) Acc@1 0.00 ( 0.16) Acc@5 0.39 ( 0.75) +Epoch: [0][ 593/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.029) Loss 6.8733e+00 (6.9503e+00) Acc@1 0.39 ( 0.16) Acc@5 0.39 ( 0.75) +Epoch: [0][ 594/5004] Time 0.246 ( 0.240) Data 0.026 ( 0.029) Loss 6.8327e+00 (6.9501e+00) Acc@1 0.78 ( 0.17) Acc@5 1.95 ( 0.75) +Epoch: [0][ 595/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.029) Loss 6.8706e+00 (6.9500e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.75) +Epoch: [0][ 596/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.029) Loss 6.8228e+00 (6.9497e+00) Acc@1 0.00 ( 0.16) Acc@5 1.56 ( 0.75) +Epoch: [0][ 597/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.8477e+00 (6.9496e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.75) +Epoch: [0][ 598/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.8566e+00 (6.9494e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.75) +Epoch: [0][ 599/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.8388e+00 (6.9492e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.75) +Epoch: [0][ 600/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.9730e+00 (6.9493e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.75) +Epoch: [0][ 601/5004] Time 0.248 ( 0.240) Data 0.027 ( 0.029) Loss 6.8482e+00 (6.9491e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.75) +Epoch: [0][ 602/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.029) Loss 6.8209e+00 (6.9489e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.75) +Epoch: [0][ 603/5004] Time 0.236 ( 0.240) Data 0.029 ( 0.029) Loss 6.8197e+00 (6.9487e+00) Acc@1 0.39 ( 0.17) Acc@5 1.95 ( 0.75) +Epoch: [0][ 604/5004] Time 0.239 ( 0.240) Data 0.032 ( 0.029) Loss 6.8438e+00 (6.9485e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.75) +Epoch: [0][ 605/5004] Time 0.238 ( 0.240) Data 0.034 ( 0.029) Loss 6.8413e+00 (6.9483e+00) Acc@1 0.78 ( 0.17) Acc@5 1.17 ( 0.75) +Epoch: [0][ 606/5004] Time 0.239 ( 0.240) Data 0.034 ( 0.029) Loss 6.8738e+00 (6.9482e+00) Acc@1 0.00 ( 0.17) Acc@5 1.56 ( 0.75) +Epoch: [0][ 607/5004] Time 0.238 ( 0.240) Data 0.032 ( 0.029) Loss 6.8130e+00 (6.9480e+00) Acc@1 0.78 ( 0.17) Acc@5 1.17 ( 0.75) +Epoch: [0][ 608/5004] Time 0.243 ( 0.240) Data 0.036 ( 0.029) Loss 6.8095e+00 (6.9478e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.75) +Epoch: [0][ 609/5004] Time 0.239 ( 0.240) Data 0.030 ( 0.029) Loss 6.8157e+00 (6.9475e+00) Acc@1 0.78 ( 0.17) Acc@5 1.56 ( 0.76) +Epoch: [0][ 610/5004] Time 0.233 ( 0.240) Data 0.030 ( 0.029) Loss 6.8178e+00 (6.9473e+00) Acc@1 0.39 ( 0.17) Acc@5 0.39 ( 0.76) +Epoch: [0][ 611/5004] Time 0.239 ( 0.240) Data 0.033 ( 0.029) Loss 6.8308e+00 (6.9471e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.76) +Epoch: [0][ 612/5004] Time 0.240 ( 0.240) Data 0.033 ( 0.029) Loss 6.8123e+00 (6.9469e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.76) +Epoch: [0][ 613/5004] Time 0.236 ( 0.240) Data 0.030 ( 0.029) Loss 6.8292e+00 (6.9467e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.76) +Epoch: [0][ 614/5004] Time 0.237 ( 0.240) Data 0.033 ( 0.029) Loss 6.8363e+00 (6.9466e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.76) +Epoch: [0][ 615/5004] Time 0.240 ( 0.240) Data 0.033 ( 0.029) Loss 6.8402e+00 (6.9464e+00) Acc@1 0.00 ( 0.17) Acc@5 1.95 ( 0.76) +Epoch: [0][ 616/5004] Time 0.237 ( 0.240) Data 0.031 ( 0.029) Loss 6.8062e+00 (6.9462e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.76) +Epoch: [0][ 617/5004] Time 0.239 ( 0.240) Data 0.032 ( 0.029) Loss 6.7752e+00 (6.9459e+00) Acc@1 0.39 ( 0.17) Acc@5 1.95 ( 0.76) +Epoch: [0][ 618/5004] Time 0.239 ( 0.240) Data 0.031 ( 0.029) Loss 6.8784e+00 (6.9458e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.76) +Epoch: [0][ 619/5004] Time 0.242 ( 0.240) Data 0.034 ( 0.029) Loss 6.8100e+00 (6.9455e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.76) +Epoch: [0][ 620/5004] Time 0.244 ( 0.240) Data 0.030 ( 0.029) Loss 6.8751e+00 (6.9454e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.76) +Epoch: [0][ 621/5004] Time 0.234 ( 0.240) Data 0.025 ( 0.029) Loss 6.8228e+00 (6.9452e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.76) +Epoch: [0][ 622/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.029) Loss 6.7739e+00 (6.9450e+00) Acc@1 0.78 ( 0.17) Acc@5 2.73 ( 0.76) +Epoch: [0][ 623/5004] Time 0.233 ( 0.240) Data 0.029 ( 0.029) Loss 6.8646e+00 (6.9448e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.76) +Epoch: [0][ 624/5004] Time 0.240 ( 0.240) Data 0.033 ( 0.029) Loss 6.8263e+00 (6.9446e+00) Acc@1 0.00 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 625/5004] Time 0.240 ( 0.240) Data 0.031 ( 0.029) Loss 6.8552e+00 (6.9445e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.77) +Epoch: [0][ 626/5004] Time 0.233 ( 0.240) Data 0.028 ( 0.029) Loss 6.8643e+00 (6.9444e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 627/5004] Time 0.236 ( 0.240) Data 0.032 ( 0.029) Loss 6.8539e+00 (6.9442e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 628/5004] Time 0.238 ( 0.240) Data 0.033 ( 0.029) Loss 6.8271e+00 (6.9440e+00) Acc@1 0.78 ( 0.17) Acc@5 1.17 ( 0.77) +Epoch: [0][ 629/5004] Time 0.240 ( 0.240) Data 0.033 ( 0.029) Loss 6.8123e+00 (6.9438e+00) Acc@1 0.00 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 630/5004] Time 0.236 ( 0.240) Data 0.030 ( 0.029) Loss 6.7688e+00 (6.9436e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 631/5004] Time 0.245 ( 0.240) Data 0.032 ( 0.029) Loss 6.8407e+00 (6.9434e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 632/5004] Time 0.235 ( 0.240) Data 0.025 ( 0.029) Loss 6.7822e+00 (6.9431e+00) Acc@1 0.39 ( 0.17) Acc@5 1.95 ( 0.77) +Epoch: [0][ 633/5004] Time 0.241 ( 0.240) Data 0.031 ( 0.029) Loss 6.8404e+00 (6.9430e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 634/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.029) Loss 6.8420e+00 (6.9428e+00) Acc@1 0.00 ( 0.17) Acc@5 0.00 ( 0.77) +Epoch: [0][ 635/5004] Time 0.233 ( 0.240) Data 0.028 ( 0.029) Loss 6.8305e+00 (6.9426e+00) Acc@1 0.00 ( 0.17) Acc@5 1.95 ( 0.77) +Epoch: [0][ 636/5004] Time 0.239 ( 0.240) Data 0.033 ( 0.029) Loss 6.8317e+00 (6.9425e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 637/5004] Time 0.237 ( 0.240) Data 0.032 ( 0.029) Loss 6.8067e+00 (6.9423e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.77) +Epoch: [0][ 638/5004] Time 0.239 ( 0.240) Data 0.032 ( 0.029) Loss 6.8522e+00 (6.9421e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 639/5004] Time 0.239 ( 0.240) Data 0.032 ( 0.029) Loss 6.8420e+00 (6.9420e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 640/5004] Time 0.239 ( 0.240) Data 0.032 ( 0.029) Loss 6.8416e+00 (6.9418e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.77) +Epoch: [0][ 641/5004] Time 0.241 ( 0.240) Data 0.031 ( 0.029) Loss 6.7960e+00 (6.9416e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.77) +Epoch: [0][ 642/5004] Time 0.244 ( 0.240) Data 0.028 ( 0.029) Loss 6.7582e+00 (6.9413e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 643/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.8175e+00 (6.9411e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.77) +Epoch: [0][ 644/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.7842e+00 (6.9409e+00) Acc@1 0.78 ( 0.17) Acc@5 1.95 ( 0.78) +Epoch: [0][ 645/5004] Time 0.237 ( 0.240) Data 0.024 ( 0.029) Loss 6.8666e+00 (6.9407e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.78) +Epoch: [0][ 646/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.029) Loss 6.8177e+00 (6.9405e+00) Acc@1 0.39 ( 0.17) Acc@5 0.39 ( 0.78) +Epoch: [0][ 647/5004] Time 0.246 ( 0.240) Data 0.027 ( 0.029) Loss 6.8347e+00 (6.9404e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 648/5004] Time 0.250 ( 0.240) Data 0.025 ( 0.029) Loss 6.7411e+00 (6.9401e+00) Acc@1 0.78 ( 0.17) Acc@5 2.34 ( 0.78) +Epoch: [0][ 649/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.029) Loss 6.7987e+00 (6.9399e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.78) +Epoch: [0][ 650/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.8064e+00 (6.9397e+00) Acc@1 0.39 ( 0.17) Acc@5 2.34 ( 0.78) +Epoch: [0][ 651/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.8511e+00 (6.9395e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 652/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.029) Loss 6.7996e+00 (6.9393e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.78) +Epoch: [0][ 653/5004] Time 0.244 ( 0.240) Data 0.027 ( 0.029) Loss 6.8324e+00 (6.9391e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 654/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.8182e+00 (6.9390e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 655/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.7676e+00 (6.9387e+00) Acc@1 0.00 ( 0.17) Acc@5 0.39 ( 0.78) +Epoch: [0][ 656/5004] Time 0.237 ( 0.240) Data 0.023 ( 0.029) Loss 6.8215e+00 (6.9385e+00) Acc@1 0.39 ( 0.17) Acc@5 0.39 ( 0.78) +Epoch: [0][ 657/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.8605e+00 (6.9384e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 658/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.029) Loss 6.8124e+00 (6.9382e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.78) +Epoch: [0][ 659/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.029) Loss 6.8259e+00 (6.9380e+00) Acc@1 0.39 ( 0.17) Acc@5 1.56 ( 0.78) +Epoch: [0][ 660/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.7842e+00 (6.9378e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.78) +Epoch: [0][ 661/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.8012e+00 (6.9376e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.78) +Epoch: [0][ 662/5004] Time 0.245 ( 0.240) Data 0.027 ( 0.029) Loss 6.7588e+00 (6.9373e+00) Acc@1 0.39 ( 0.17) Acc@5 1.95 ( 0.79) +Epoch: [0][ 663/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.7698e+00 (6.9371e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.79) +Epoch: [0][ 664/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.8143e+00 (6.9369e+00) Acc@1 0.00 ( 0.17) Acc@5 0.78 ( 0.79) +Epoch: [0][ 665/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.8021e+00 (6.9367e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.79) +Epoch: [0][ 666/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7903e+00 (6.9365e+00) Acc@1 0.00 ( 0.17) Acc@5 0.00 ( 0.79) +Epoch: [0][ 667/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.7716e+00 (6.9362e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.79) +Epoch: [0][ 668/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.7858e+00 (6.9360e+00) Acc@1 0.39 ( 0.17) Acc@5 0.39 ( 0.79) +Epoch: [0][ 669/5004] Time 0.245 ( 0.240) Data 0.027 ( 0.029) Loss 6.7707e+00 (6.9357e+00) Acc@1 0.39 ( 0.17) Acc@5 1.17 ( 0.79) +Epoch: [0][ 670/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.029) Loss 6.8189e+00 (6.9356e+00) Acc@1 0.00 ( 0.17) Acc@5 1.17 ( 0.79) +Epoch: [0][ 671/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.7474e+00 (6.9353e+00) Acc@1 0.39 ( 0.17) Acc@5 0.78 ( 0.79) +Epoch: [0][ 672/5004] Time 0.244 ( 0.240) Data 0.027 ( 0.029) Loss 6.7969e+00 (6.9351e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.79) +Epoch: [0][ 673/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.029) Loss 6.8350e+00 (6.9349e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.79) +Epoch: [0][ 674/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.7845e+00 (6.9347e+00) Acc@1 0.78 ( 0.18) Acc@5 1.17 ( 0.79) +Epoch: [0][ 675/5004] Time 0.246 ( 0.240) Data 0.023 ( 0.029) Loss 6.7967e+00 (6.9345e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.79) +Epoch: [0][ 676/5004] Time 0.241 ( 0.240) Data 0.022 ( 0.029) Loss 6.7227e+00 (6.9342e+00) Acc@1 1.17 ( 0.18) Acc@5 3.12 ( 0.79) +Epoch: [0][ 677/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.7978e+00 (6.9340e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.79) +Epoch: [0][ 678/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.7940e+00 (6.9338e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.80) +Epoch: [0][ 679/5004] Time 0.245 ( 0.240) Data 0.023 ( 0.029) Loss 6.8097e+00 (6.9336e+00) Acc@1 0.39 ( 0.18) Acc@5 0.39 ( 0.79) +Epoch: [0][ 680/5004] Time 0.240 ( 0.240) Data 0.021 ( 0.029) Loss 6.7249e+00 (6.9333e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 681/5004] Time 0.245 ( 0.240) Data 0.024 ( 0.029) Loss 6.8328e+00 (6.9332e+00) Acc@1 0.39 ( 0.18) Acc@5 1.56 ( 0.80) +Epoch: [0][ 682/5004] Time 0.246 ( 0.240) Data 0.022 ( 0.029) Loss 6.8061e+00 (6.9330e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 683/5004] Time 0.250 ( 0.240) Data 0.022 ( 0.029) Loss 6.7944e+00 (6.9328e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.80) +Epoch: [0][ 684/5004] Time 0.236 ( 0.240) Data 0.018 ( 0.029) Loss 6.7538e+00 (6.9325e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 685/5004] Time 0.242 ( 0.240) Data 0.023 ( 0.029) Loss 6.7928e+00 (6.9323e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 686/5004] Time 0.247 ( 0.240) Data 0.024 ( 0.029) Loss 6.8062e+00 (6.9321e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.79) +Epoch: [0][ 687/5004] Time 0.239 ( 0.240) Data 0.022 ( 0.029) Loss 6.7960e+00 (6.9319e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.80) +Epoch: [0][ 688/5004] Time 0.246 ( 0.240) Data 0.024 ( 0.029) Loss 6.7772e+00 (6.9317e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.79) +Epoch: [0][ 689/5004] Time 0.240 ( 0.240) Data 0.019 ( 0.029) Loss 6.8267e+00 (6.9315e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 690/5004] Time 0.242 ( 0.240) Data 0.022 ( 0.029) Loss 6.7962e+00 (6.9314e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.80) +Epoch: [0][ 691/5004] Time 0.246 ( 0.240) Data 0.023 ( 0.029) Loss 6.7935e+00 (6.9312e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 692/5004] Time 0.240 ( 0.240) Data 0.022 ( 0.029) Loss 6.7547e+00 (6.9309e+00) Acc@1 0.39 ( 0.18) Acc@5 0.39 ( 0.80) +Epoch: [0][ 693/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.7938e+00 (6.9307e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 694/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.029) Loss 6.7997e+00 (6.9305e+00) Acc@1 0.39 ( 0.18) Acc@5 2.34 ( 0.80) +Epoch: [0][ 695/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.7578e+00 (6.9303e+00) Acc@1 0.00 ( 0.18) Acc@5 3.12 ( 0.80) +Epoch: [0][ 696/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.029) Loss 6.8340e+00 (6.9301e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 697/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.7596e+00 (6.9299e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.80) +Epoch: [0][ 698/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.7900e+00 (6.9297e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 699/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.029) Loss 6.7942e+00 (6.9295e+00) Acc@1 0.00 ( 0.18) Acc@5 1.95 ( 0.80) +Epoch: [0][ 700/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.029) Loss 6.8207e+00 (6.9293e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 701/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.7811e+00 (6.9291e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.81) +Epoch: [0][ 702/5004] Time 0.242 ( 0.240) Data 0.023 ( 0.029) Loss 6.7903e+00 (6.9289e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.80) +Epoch: [0][ 703/5004] Time 0.243 ( 0.240) Data 0.023 ( 0.029) Loss 6.8257e+00 (6.9288e+00) Acc@1 0.39 ( 0.18) Acc@5 0.39 ( 0.80) +Epoch: [0][ 704/5004] Time 0.247 ( 0.240) Data 0.023 ( 0.029) Loss 6.7848e+00 (6.9286e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 705/5004] Time 0.247 ( 0.240) Data 0.023 ( 0.029) Loss 6.8274e+00 (6.9284e+00) Acc@1 0.00 ( 0.18) Acc@5 0.39 ( 0.80) +Epoch: [0][ 706/5004] Time 0.239 ( 0.240) Data 0.019 ( 0.029) Loss 6.8091e+00 (6.9283e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.80) +Epoch: [0][ 707/5004] Time 0.244 ( 0.240) Data 0.023 ( 0.029) Loss 6.7929e+00 (6.9281e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.80) +Epoch: [0][ 708/5004] Time 0.249 ( 0.240) Data 0.023 ( 0.029) Loss 6.7519e+00 (6.9278e+00) Acc@1 0.39 ( 0.18) Acc@5 1.95 ( 0.81) +Epoch: [0][ 709/5004] Time 0.243 ( 0.240) Data 0.020 ( 0.029) Loss 6.7715e+00 (6.9276e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.81) +Epoch: [0][ 710/5004] Time 0.244 ( 0.240) Data 0.023 ( 0.029) Loss 6.7552e+00 (6.9274e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 711/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.7935e+00 (6.9272e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.81) +Epoch: [0][ 712/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.7709e+00 (6.9269e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 713/5004] Time 0.240 ( 0.240) Data 0.023 ( 0.029) Loss 6.7507e+00 (6.9267e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 714/5004] Time 0.240 ( 0.240) Data 0.023 ( 0.029) Loss 6.8318e+00 (6.9266e+00) Acc@1 0.00 ( 0.18) Acc@5 0.39 ( 0.81) +Epoch: [0][ 715/5004] Time 0.242 ( 0.240) Data 0.023 ( 0.029) Loss 6.8196e+00 (6.9264e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.81) +Epoch: [0][ 716/5004] Time 0.242 ( 0.240) Data 0.022 ( 0.029) Loss 6.7874e+00 (6.9262e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 717/5004] Time 0.254 ( 0.240) Data 0.022 ( 0.029) Loss 6.7798e+00 (6.9260e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.81) +Epoch: [0][ 718/5004] Time 0.235 ( 0.240) Data 0.016 ( 0.029) Loss 6.7509e+00 (6.9258e+00) Acc@1 0.39 ( 0.18) Acc@5 1.95 ( 0.81) +Epoch: [0][ 719/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.029) Loss 6.7111e+00 (6.9255e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.81) +Epoch: [0][ 720/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.7982e+00 (6.9253e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 721/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.7758e+00 (6.9251e+00) Acc@1 0.39 ( 0.18) Acc@5 1.56 ( 0.81) +Epoch: [0][ 722/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.7513e+00 (6.9249e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.81) +Epoch: [0][ 723/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.8487e+00 (6.9248e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 724/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7830e+00 (6.9246e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.81) +Epoch: [0][ 725/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.029) Loss 6.7463e+00 (6.9243e+00) Acc@1 0.78 ( 0.18) Acc@5 3.12 ( 0.81) +Epoch: [0][ 726/5004] Time 0.237 ( 0.240) Data 0.019 ( 0.029) Loss 6.7603e+00 (6.9241e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.81) +Epoch: [0][ 727/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7135e+00 (6.9238e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.81) +Epoch: [0][ 728/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.029) Loss 6.7802e+00 (6.9236e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.82) +Epoch: [0][ 729/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.7733e+00 (6.9234e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.82) +Epoch: [0][ 730/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.7914e+00 (6.9232e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.82) +Epoch: [0][ 731/5004] Time 0.244 ( 0.240) Data 0.027 ( 0.029) Loss 6.7794e+00 (6.9230e+00) Acc@1 0.00 ( 0.18) Acc@5 0.39 ( 0.82) +Epoch: [0][ 732/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.8379e+00 (6.9229e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.82) +Epoch: [0][ 733/5004] Time 0.243 ( 0.240) Data 0.023 ( 0.029) Loss 6.7470e+00 (6.9227e+00) Acc@1 0.00 ( 0.18) Acc@5 0.00 ( 0.82) +Epoch: [0][ 734/5004] Time 0.238 ( 0.240) Data 0.022 ( 0.029) Loss 6.7484e+00 (6.9224e+00) Acc@1 0.78 ( 0.18) Acc@5 1.95 ( 0.82) +Epoch: [0][ 735/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.8033e+00 (6.9223e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.82) +Epoch: [0][ 736/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.7671e+00 (6.9221e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.82) +Epoch: [0][ 737/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.7491e+00 (6.9218e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.82) +Epoch: [0][ 738/5004] Time 0.245 ( 0.240) Data 0.027 ( 0.029) Loss 6.7796e+00 (6.9216e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.82) +Epoch: [0][ 739/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7394e+00 (6.9214e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.82) +Epoch: [0][ 740/5004] Time 0.246 ( 0.240) Data 0.026 ( 0.029) Loss 6.7562e+00 (6.9212e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.82) +Epoch: [0][ 741/5004] Time 0.241 ( 0.240) Data 0.027 ( 0.029) Loss 6.7607e+00 (6.9209e+00) Acc@1 0.39 ( 0.18) Acc@5 1.95 ( 0.82) +Epoch: [0][ 742/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.8022e+00 (6.9208e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.82) +Epoch: [0][ 743/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.7848e+00 (6.9206e+00) Acc@1 0.39 ( 0.18) Acc@5 2.73 ( 0.82) +Epoch: [0][ 744/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.029) Loss 6.7940e+00 (6.9204e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.82) +Epoch: [0][ 745/5004] Time 0.248 ( 0.240) Data 0.026 ( 0.029) Loss 6.7476e+00 (6.9202e+00) Acc@1 0.00 ( 0.18) Acc@5 2.34 ( 0.83) +Epoch: [0][ 746/5004] Time 0.235 ( 0.240) Data 0.022 ( 0.029) Loss 6.7598e+00 (6.9200e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.83) +Epoch: [0][ 747/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.029) Loss 6.7342e+00 (6.9197e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.83) +Epoch: [0][ 748/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7313e+00 (6.9195e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.83) +Epoch: [0][ 749/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.7544e+00 (6.9193e+00) Acc@1 0.00 ( 0.18) Acc@5 1.95 ( 0.83) +Epoch: [0][ 750/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.029) Loss 6.7663e+00 (6.9191e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.83) +Epoch: [0][ 751/5004] Time 0.247 ( 0.240) Data 0.027 ( 0.029) Loss 6.7498e+00 (6.9188e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.83) +Epoch: [0][ 752/5004] Time 0.249 ( 0.240) Data 0.025 ( 0.029) Loss 6.7318e+00 (6.9186e+00) Acc@1 0.00 ( 0.18) Acc@5 2.73 ( 0.83) +Epoch: [0][ 753/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.029) Loss 6.7261e+00 (6.9183e+00) Acc@1 0.39 ( 0.18) Acc@5 1.56 ( 0.83) +Epoch: [0][ 754/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.7644e+00 (6.9181e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.83) +Epoch: [0][ 755/5004] Time 0.250 ( 0.240) Data 0.026 ( 0.029) Loss 6.7217e+00 (6.9179e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.83) +Epoch: [0][ 756/5004] Time 0.246 ( 0.240) Data 0.025 ( 0.029) Loss 6.7608e+00 (6.9177e+00) Acc@1 0.00 ( 0.18) Acc@5 1.95 ( 0.83) +Epoch: [0][ 757/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.029) Loss 6.7668e+00 (6.9175e+00) Acc@1 0.00 ( 0.18) Acc@5 0.39 ( 0.83) +Epoch: [0][ 758/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.029) Loss 6.6999e+00 (6.9172e+00) Acc@1 0.78 ( 0.18) Acc@5 1.95 ( 0.84) +Epoch: [0][ 759/5004] Time 0.246 ( 0.240) Data 0.026 ( 0.029) Loss 6.7377e+00 (6.9169e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.84) +Epoch: [0][ 760/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.029) Loss 6.7207e+00 (6.9167e+00) Acc@1 0.39 ( 0.18) Acc@5 1.95 ( 0.84) +Epoch: [0][ 761/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.029) Loss 6.7721e+00 (6.9165e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.84) +Epoch: [0][ 762/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.029) Loss 6.7394e+00 (6.9163e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.84) +Epoch: [0][ 763/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.029) Loss 6.7596e+00 (6.9160e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.84) +Epoch: [0][ 764/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.029) Loss 6.7983e+00 (6.9159e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.84) +Epoch: [0][ 765/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.029) Loss 6.7662e+00 (6.9157e+00) Acc@1 0.39 ( 0.18) Acc@5 1.17 ( 0.84) +Epoch: [0][ 766/5004] Time 0.248 ( 0.241) Data 0.026 ( 0.029) Loss 6.7960e+00 (6.9155e+00) Acc@1 1.17 ( 0.18) Acc@5 1.95 ( 0.84) +Epoch: [0][ 767/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.029) Loss 6.7648e+00 (6.9153e+00) Acc@1 0.00 ( 0.18) Acc@5 1.56 ( 0.84) +Epoch: [0][ 768/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.029) Loss 6.6788e+00 (6.9150e+00) Acc@1 0.39 ( 0.18) Acc@5 2.34 ( 0.84) +Epoch: [0][ 769/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.029) Loss 6.7563e+00 (6.9148e+00) Acc@1 0.00 ( 0.18) Acc@5 0.78 ( 0.84) +Epoch: [0][ 770/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.029) Loss 6.7550e+00 (6.9146e+00) Acc@1 0.39 ( 0.18) Acc@5 0.78 ( 0.84) +Epoch: [0][ 771/5004] Time 0.246 ( 0.241) Data 0.027 ( 0.029) Loss 6.7234e+00 (6.9144e+00) Acc@1 0.78 ( 0.18) Acc@5 2.73 ( 0.85) +Epoch: [0][ 772/5004] Time 0.237 ( 0.241) Data 0.023 ( 0.029) Loss 6.7232e+00 (6.9141e+00) Acc@1 0.78 ( 0.18) Acc@5 1.56 ( 0.85) +Epoch: [0][ 773/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.029) Loss 6.7600e+00 (6.9139e+00) Acc@1 0.00 ( 0.18) Acc@5 1.17 ( 0.85) +Epoch: [0][ 774/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.029) Loss 6.7357e+00 (6.9137e+00) Acc@1 0.78 ( 0.19) Acc@5 1.95 ( 0.85) +Epoch: [0][ 775/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.029) Loss 6.7328e+00 (6.9135e+00) Acc@1 0.00 ( 0.19) Acc@5 0.78 ( 0.85) +Epoch: [0][ 776/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.029) Loss 6.7314e+00 (6.9132e+00) Acc@1 0.39 ( 0.19) Acc@5 0.78 ( 0.85) +Epoch: [0][ 777/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.029) Loss 6.6561e+00 (6.9129e+00) Acc@1 0.78 ( 0.19) Acc@5 2.34 ( 0.85) +Epoch: [0][ 778/5004] Time 0.244 ( 0.241) Data 0.025 ( 0.029) Loss 6.6965e+00 (6.9126e+00) Acc@1 0.00 ( 0.19) Acc@5 1.17 ( 0.85) +Epoch: [0][ 779/5004] Time 0.252 ( 0.241) Data 0.024 ( 0.029) Loss 6.7689e+00 (6.9124e+00) Acc@1 1.56 ( 0.19) Acc@5 3.52 ( 0.85) +Epoch: [0][ 780/5004] Time 0.238 ( 0.241) Data 0.017 ( 0.029) Loss 6.7023e+00 (6.9122e+00) Acc@1 1.17 ( 0.19) Acc@5 3.12 ( 0.86) +Epoch: [0][ 781/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.7325e+00 (6.9119e+00) Acc@1 0.78 ( 0.19) Acc@5 1.56 ( 0.86) +Epoch: [0][ 782/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.029) Loss 6.7458e+00 (6.9117e+00) Acc@1 0.78 ( 0.19) Acc@5 2.73 ( 0.86) +Epoch: [0][ 783/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.029) Loss 6.8207e+00 (6.9116e+00) Acc@1 0.39 ( 0.19) Acc@5 0.78 ( 0.86) +Epoch: [0][ 784/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.029) Loss 6.6930e+00 (6.9113e+00) Acc@1 0.78 ( 0.19) Acc@5 1.95 ( 0.86) +Epoch: [0][ 785/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.029) Loss 6.7238e+00 (6.9111e+00) Acc@1 0.39 ( 0.19) Acc@5 0.39 ( 0.86) +Epoch: [0][ 786/5004] Time 0.238 ( 0.241) Data 0.019 ( 0.029) Loss 6.7600e+00 (6.9109e+00) Acc@1 0.39 ( 0.19) Acc@5 1.17 ( 0.86) +Epoch: [0][ 787/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.029) Loss 6.7355e+00 (6.9107e+00) Acc@1 0.39 ( 0.19) Acc@5 0.78 ( 0.86) +Epoch: [0][ 788/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.029) Loss 6.7659e+00 (6.9105e+00) Acc@1 0.00 ( 0.19) Acc@5 0.78 ( 0.86) +Epoch: [0][ 789/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.029) Loss 6.7434e+00 (6.9103e+00) Acc@1 0.78 ( 0.19) Acc@5 1.56 ( 0.86) +Epoch: [0][ 790/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.029) Loss 6.7409e+00 (6.9101e+00) Acc@1 0.78 ( 0.19) Acc@5 0.78 ( 0.86) +Epoch: [0][ 791/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.029) Loss 6.7395e+00 (6.9099e+00) Acc@1 0.00 ( 0.19) Acc@5 1.56 ( 0.86) +Epoch: [0][ 792/5004] Time 0.242 ( 0.241) Data 0.021 ( 0.029) Loss 6.7572e+00 (6.9097e+00) Acc@1 0.78 ( 0.19) Acc@5 1.95 ( 0.86) +Epoch: [0][ 793/5004] Time 0.246 ( 0.241) Data 0.025 ( 0.029) Loss 6.7169e+00 (6.9094e+00) Acc@1 0.00 ( 0.19) Acc@5 0.78 ( 0.86) +Epoch: [0][ 794/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.029) Loss 6.7659e+00 (6.9092e+00) Acc@1 0.00 ( 0.19) Acc@5 0.00 ( 0.86) +Epoch: [0][ 795/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.029) Loss 6.7652e+00 (6.9091e+00) Acc@1 0.78 ( 0.19) Acc@5 1.17 ( 0.86) +Epoch: [0][ 796/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.029) Loss 6.7069e+00 (6.9088e+00) Acc@1 0.39 ( 0.19) Acc@5 0.39 ( 0.86) +Epoch: [0][ 797/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.029) Loss 6.7473e+00 (6.9086e+00) Acc@1 0.78 ( 0.20) Acc@5 2.34 ( 0.87) +Epoch: [0][ 798/5004] Time 0.238 ( 0.241) Data 0.023 ( 0.028) Loss 6.6947e+00 (6.9083e+00) Acc@1 0.39 ( 0.20) Acc@5 1.17 ( 0.87) +Epoch: [0][ 799/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.7111e+00 (6.9081e+00) Acc@1 0.00 ( 0.20) Acc@5 0.78 ( 0.87) +Epoch: [0][ 800/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.7774e+00 (6.9079e+00) Acc@1 0.39 ( 0.20) Acc@5 1.95 ( 0.87) +Epoch: [0][ 801/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.7340e+00 (6.9077e+00) Acc@1 0.00 ( 0.20) Acc@5 1.17 ( 0.87) +Epoch: [0][ 802/5004] Time 0.235 ( 0.241) Data 0.025 ( 0.028) Loss 6.7137e+00 (6.9075e+00) Acc@1 0.78 ( 0.20) Acc@5 1.56 ( 0.87) +Epoch: [0][ 803/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.7419e+00 (6.9073e+00) Acc@1 0.39 ( 0.20) Acc@5 1.95 ( 0.87) +Epoch: [0][ 804/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.7497e+00 (6.9071e+00) Acc@1 0.78 ( 0.20) Acc@5 2.34 ( 0.87) +Epoch: [0][ 805/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.7197e+00 (6.9068e+00) Acc@1 0.00 ( 0.20) Acc@5 0.39 ( 0.87) +Epoch: [0][ 806/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.7421e+00 (6.9066e+00) Acc@1 0.78 ( 0.20) Acc@5 1.56 ( 0.87) +Epoch: [0][ 807/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.7418e+00 (6.9064e+00) Acc@1 0.00 ( 0.20) Acc@5 0.78 ( 0.87) +Epoch: [0][ 808/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.7555e+00 (6.9062e+00) Acc@1 0.39 ( 0.20) Acc@5 1.17 ( 0.87) +Epoch: [0][ 809/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.028) Loss 6.6898e+00 (6.9060e+00) Acc@1 0.39 ( 0.20) Acc@5 1.56 ( 0.87) +Epoch: [0][ 810/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.028) Loss 6.7155e+00 (6.9057e+00) Acc@1 0.39 ( 0.20) Acc@5 1.17 ( 0.87) +Epoch: [0][ 811/5004] Time 0.244 ( 0.241) Data 0.021 ( 0.028) Loss 6.7102e+00 (6.9055e+00) Acc@1 0.78 ( 0.20) Acc@5 4.30 ( 0.88) +Epoch: [0][ 812/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.028) Loss 6.6651e+00 (6.9052e+00) Acc@1 0.78 ( 0.20) Acc@5 1.95 ( 0.88) +Epoch: [0][ 813/5004] Time 0.238 ( 0.241) Data 0.023 ( 0.028) Loss 6.6914e+00 (6.9049e+00) Acc@1 1.56 ( 0.20) Acc@5 3.12 ( 0.88) +Epoch: [0][ 814/5004] Time 0.240 ( 0.241) Data 0.023 ( 0.028) Loss 6.8272e+00 (6.9048e+00) Acc@1 0.78 ( 0.20) Acc@5 1.56 ( 0.88) +Epoch: [0][ 815/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.028) Loss 6.6330e+00 (6.9045e+00) Acc@1 0.00 ( 0.20) Acc@5 0.39 ( 0.88) +Epoch: [0][ 816/5004] Time 0.241 ( 0.241) Data 0.025 ( 0.028) Loss 6.7128e+00 (6.9043e+00) Acc@1 0.00 ( 0.20) Acc@5 0.39 ( 0.88) +Epoch: [0][ 817/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.028) Loss 6.7701e+00 (6.9041e+00) Acc@1 0.39 ( 0.20) Acc@5 0.78 ( 0.88) +Epoch: [0][ 818/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.6802e+00 (6.9038e+00) Acc@1 0.00 ( 0.20) Acc@5 1.17 ( 0.88) +Epoch: [0][ 819/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.7129e+00 (6.9036e+00) Acc@1 0.39 ( 0.20) Acc@5 1.56 ( 0.88) +Epoch: [0][ 820/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.028) Loss 6.6999e+00 (6.9034e+00) Acc@1 0.00 ( 0.20) Acc@5 1.17 ( 0.88) +Epoch: [0][ 821/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.028) Loss 6.6856e+00 (6.9031e+00) Acc@1 0.00 ( 0.20) Acc@5 0.78 ( 0.88) +Epoch: [0][ 822/5004] Time 0.235 ( 0.241) Data 0.020 ( 0.028) Loss 6.7094e+00 (6.9029e+00) Acc@1 0.39 ( 0.20) Acc@5 1.56 ( 0.88) +Epoch: [0][ 823/5004] Time 0.250 ( 0.241) Data 0.025 ( 0.028) Loss 6.6900e+00 (6.9026e+00) Acc@1 0.00 ( 0.20) Acc@5 1.56 ( 0.88) +Epoch: [0][ 824/5004] Time 0.245 ( 0.241) Data 0.020 ( 0.028) Loss 6.6879e+00 (6.9023e+00) Acc@1 0.00 ( 0.20) Acc@5 1.95 ( 0.89) +Epoch: [0][ 825/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.028) Loss 6.6856e+00 (6.9021e+00) Acc@1 0.00 ( 0.20) Acc@5 1.95 ( 0.89) +Epoch: [0][ 826/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.028) Loss 6.6618e+00 (6.9018e+00) Acc@1 1.17 ( 0.20) Acc@5 4.30 ( 0.89) +Epoch: [0][ 827/5004] Time 0.243 ( 0.241) Data 0.018 ( 0.028) Loss 6.7441e+00 (6.9016e+00) Acc@1 0.00 ( 0.20) Acc@5 1.95 ( 0.89) +Epoch: [0][ 828/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.028) Loss 6.6826e+00 (6.9013e+00) Acc@1 0.00 ( 0.20) Acc@5 2.34 ( 0.89) +Epoch: [0][ 829/5004] Time 0.241 ( 0.241) Data 0.016 ( 0.028) Loss 6.7311e+00 (6.9011e+00) Acc@1 0.39 ( 0.20) Acc@5 2.34 ( 0.90) +Epoch: [0][ 830/5004] Time 0.243 ( 0.241) Data 0.020 ( 0.028) Loss 6.7218e+00 (6.9009e+00) Acc@1 0.39 ( 0.20) Acc@5 2.34 ( 0.90) +Epoch: [0][ 831/5004] Time 0.244 ( 0.241) Data 0.022 ( 0.028) Loss 6.7127e+00 (6.9007e+00) Acc@1 0.00 ( 0.20) Acc@5 1.17 ( 0.90) +Epoch: [0][ 832/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.028) Loss 6.7441e+00 (6.9005e+00) Acc@1 0.39 ( 0.20) Acc@5 1.56 ( 0.90) +Epoch: [0][ 833/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.028) Loss 6.6563e+00 (6.9002e+00) Acc@1 0.39 ( 0.20) Acc@5 1.95 ( 0.90) +Epoch: [0][ 834/5004] Time 0.244 ( 0.241) Data 0.020 ( 0.028) Loss 6.6703e+00 (6.8999e+00) Acc@1 0.78 ( 0.20) Acc@5 2.34 ( 0.90) +Epoch: [0][ 835/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.028) Loss 6.7149e+00 (6.8997e+00) Acc@1 0.39 ( 0.20) Acc@5 1.95 ( 0.90) +Epoch: [0][ 836/5004] Time 0.245 ( 0.241) Data 0.022 ( 0.028) Loss 6.6870e+00 (6.8995e+00) Acc@1 0.00 ( 0.20) Acc@5 0.78 ( 0.90) +Epoch: [0][ 837/5004] Time 0.248 ( 0.241) Data 0.021 ( 0.028) Loss 6.6788e+00 (6.8992e+00) Acc@1 0.78 ( 0.20) Acc@5 1.56 ( 0.90) +Epoch: [0][ 838/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.028) Loss 6.7434e+00 (6.8990e+00) Acc@1 0.00 ( 0.20) Acc@5 1.56 ( 0.90) +Epoch: [0][ 839/5004] Time 0.247 ( 0.241) Data 0.021 ( 0.028) Loss 6.6562e+00 (6.8987e+00) Acc@1 0.39 ( 0.20) Acc@5 1.17 ( 0.90) +Epoch: [0][ 840/5004] Time 0.251 ( 0.241) Data 0.019 ( 0.028) Loss 6.6764e+00 (6.8985e+00) Acc@1 0.78 ( 0.20) Acc@5 2.34 ( 0.91) +Epoch: [0][ 841/5004] Time 0.244 ( 0.241) Data 0.019 ( 0.028) Loss 6.6457e+00 (6.8982e+00) Acc@1 1.56 ( 0.21) Acc@5 2.73 ( 0.91) +Epoch: [0][ 842/5004] Time 0.243 ( 0.241) Data 0.021 ( 0.028) Loss 6.6862e+00 (6.8979e+00) Acc@1 0.00 ( 0.21) Acc@5 1.56 ( 0.91) +Epoch: [0][ 843/5004] Time 0.238 ( 0.241) Data 0.021 ( 0.028) Loss 6.6416e+00 (6.8976e+00) Acc@1 0.00 ( 0.21) Acc@5 2.73 ( 0.91) +Epoch: [0][ 844/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.028) Loss 6.7771e+00 (6.8975e+00) Acc@1 0.39 ( 0.21) Acc@5 1.17 ( 0.91) +Epoch: [0][ 845/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.7240e+00 (6.8972e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.91) +Epoch: [0][ 846/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.028) Loss 6.6886e+00 (6.8970e+00) Acc@1 0.39 ( 0.21) Acc@5 1.56 ( 0.91) +Epoch: [0][ 847/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.028) Loss 6.6923e+00 (6.8968e+00) Acc@1 0.39 ( 0.21) Acc@5 1.56 ( 0.91) +Epoch: [0][ 848/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.6383e+00 (6.8965e+00) Acc@1 0.39 ( 0.21) Acc@5 1.56 ( 0.92) +Epoch: [0][ 849/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.6398e+00 (6.8962e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.92) +Epoch: [0][ 850/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.028) Loss 6.6543e+00 (6.8959e+00) Acc@1 0.00 ( 0.21) Acc@5 1.17 ( 0.92) +Epoch: [0][ 851/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6729e+00 (6.8956e+00) Acc@1 0.00 ( 0.21) Acc@5 0.39 ( 0.92) +Epoch: [0][ 852/5004] Time 0.242 ( 0.241) Data 0.031 ( 0.028) Loss 6.6319e+00 (6.8953e+00) Acc@1 0.00 ( 0.21) Acc@5 1.95 ( 0.92) +Epoch: [0][ 853/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.7144e+00 (6.8951e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.92) +Epoch: [0][ 854/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.6691e+00 (6.8948e+00) Acc@1 0.39 ( 0.21) Acc@5 1.56 ( 0.92) +Epoch: [0][ 855/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.028) Loss 6.7167e+00 (6.8946e+00) Acc@1 0.00 ( 0.21) Acc@5 1.17 ( 0.92) +Epoch: [0][ 856/5004] Time 0.236 ( 0.241) Data 0.024 ( 0.028) Loss 6.6680e+00 (6.8944e+00) Acc@1 0.00 ( 0.21) Acc@5 0.78 ( 0.92) +Epoch: [0][ 857/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.7065e+00 (6.8941e+00) Acc@1 0.00 ( 0.21) Acc@5 1.95 ( 0.92) +Epoch: [0][ 858/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.7136e+00 (6.8939e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.92) +Epoch: [0][ 859/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.7470e+00 (6.8938e+00) Acc@1 0.39 ( 0.21) Acc@5 0.39 ( 0.92) +Epoch: [0][ 860/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.028) Loss 6.6364e+00 (6.8935e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.92) +Epoch: [0][ 861/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6422e+00 (6.8932e+00) Acc@1 0.78 ( 0.21) Acc@5 1.56 ( 0.92) +Epoch: [0][ 862/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.7149e+00 (6.8930e+00) Acc@1 0.00 ( 0.21) Acc@5 0.39 ( 0.92) +Epoch: [0][ 863/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6896e+00 (6.8927e+00) Acc@1 0.00 ( 0.21) Acc@5 1.56 ( 0.92) +Epoch: [0][ 864/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.7000e+00 (6.8925e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.93) +Epoch: [0][ 865/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.6969e+00 (6.8923e+00) Acc@1 0.78 ( 0.21) Acc@5 3.12 ( 0.93) +Epoch: [0][ 866/5004] Time 0.236 ( 0.241) Data 0.024 ( 0.028) Loss 6.6869e+00 (6.8920e+00) Acc@1 0.78 ( 0.21) Acc@5 1.17 ( 0.93) +Epoch: [0][ 867/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.7326e+00 (6.8918e+00) Acc@1 0.00 ( 0.21) Acc@5 1.56 ( 0.93) +Epoch: [0][ 868/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.6978e+00 (6.8916e+00) Acc@1 0.00 ( 0.21) Acc@5 2.34 ( 0.93) +Epoch: [0][ 869/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6793e+00 (6.8914e+00) Acc@1 0.78 ( 0.21) Acc@5 0.78 ( 0.93) +Epoch: [0][ 870/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.5643e+00 (6.8910e+00) Acc@1 1.17 ( 0.21) Acc@5 3.52 ( 0.93) +Epoch: [0][ 871/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6531e+00 (6.8907e+00) Acc@1 0.00 ( 0.21) Acc@5 1.17 ( 0.93) +Epoch: [0][ 872/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.6791e+00 (6.8905e+00) Acc@1 0.39 ( 0.21) Acc@5 2.73 ( 0.94) +Epoch: [0][ 873/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.6698e+00 (6.8902e+00) Acc@1 1.56 ( 0.21) Acc@5 3.12 ( 0.94) +Epoch: [0][ 874/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.028) Loss 6.6887e+00 (6.8900e+00) Acc@1 0.39 ( 0.21) Acc@5 1.56 ( 0.94) +Epoch: [0][ 875/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.028) Loss 6.6896e+00 (6.8898e+00) Acc@1 0.39 ( 0.21) Acc@5 3.52 ( 0.94) +Epoch: [0][ 876/5004] Time 0.236 ( 0.241) Data 0.025 ( 0.028) Loss 6.6358e+00 (6.8895e+00) Acc@1 0.78 ( 0.21) Acc@5 1.56 ( 0.94) +Epoch: [0][ 877/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.7604e+00 (6.8893e+00) Acc@1 0.00 ( 0.21) Acc@5 0.39 ( 0.94) +Epoch: [0][ 878/5004] Time 0.243 ( 0.241) Data 0.025 ( 0.028) Loss 6.6488e+00 (6.8891e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.94) +Epoch: [0][ 879/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6979e+00 (6.8889e+00) Acc@1 0.00 ( 0.21) Acc@5 0.39 ( 0.94) +Epoch: [0][ 880/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6550e+00 (6.8886e+00) Acc@1 0.78 ( 0.21) Acc@5 1.95 ( 0.94) +Epoch: [0][ 881/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.7443e+00 (6.8884e+00) Acc@1 0.00 ( 0.21) Acc@5 1.17 ( 0.94) +Epoch: [0][ 882/5004] Time 0.237 ( 0.241) Data 0.024 ( 0.028) Loss 6.6944e+00 (6.8882e+00) Acc@1 0.00 ( 0.21) Acc@5 2.73 ( 0.95) +Epoch: [0][ 883/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.7200e+00 (6.8880e+00) Acc@1 0.00 ( 0.21) Acc@5 1.17 ( 0.95) +Epoch: [0][ 884/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.7008e+00 (6.8878e+00) Acc@1 0.00 ( 0.21) Acc@5 0.78 ( 0.95) +Epoch: [0][ 885/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.5638e+00 (6.8874e+00) Acc@1 0.78 ( 0.21) Acc@5 2.34 ( 0.95) +Epoch: [0][ 886/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.6463e+00 (6.8872e+00) Acc@1 0.39 ( 0.21) Acc@5 3.52 ( 0.95) +Epoch: [0][ 887/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.028) Loss 6.6758e+00 (6.8869e+00) Acc@1 0.00 ( 0.21) Acc@5 2.34 ( 0.95) +Epoch: [0][ 888/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6639e+00 (6.8867e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.95) +Epoch: [0][ 889/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.6646e+00 (6.8864e+00) Acc@1 0.78 ( 0.21) Acc@5 1.95 ( 0.95) +Epoch: [0][ 890/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6675e+00 (6.8862e+00) Acc@1 0.78 ( 0.21) Acc@5 1.56 ( 0.96) +Epoch: [0][ 891/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.6438e+00 (6.8859e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.96) +Epoch: [0][ 892/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6732e+00 (6.8857e+00) Acc@1 0.39 ( 0.21) Acc@5 1.95 ( 0.96) +Epoch: [0][ 893/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6758e+00 (6.8854e+00) Acc@1 0.78 ( 0.21) Acc@5 1.56 ( 0.96) +Epoch: [0][ 894/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.6820e+00 (6.8852e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.96) +Epoch: [0][ 895/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.7055e+00 (6.8850e+00) Acc@1 0.39 ( 0.21) Acc@5 3.52 ( 0.96) +Epoch: [0][ 896/5004] Time 0.233 ( 0.241) Data 0.024 ( 0.028) Loss 6.7264e+00 (6.8848e+00) Acc@1 0.39 ( 0.21) Acc@5 0.78 ( 0.96) +Epoch: [0][ 897/5004] Time 0.240 ( 0.241) Data 0.029 ( 0.028) Loss 6.6462e+00 (6.8846e+00) Acc@1 0.39 ( 0.21) Acc@5 2.73 ( 0.96) +Epoch: [0][ 898/5004] Time 0.236 ( 0.241) Data 0.028 ( 0.028) Loss 6.6903e+00 (6.8843e+00) Acc@1 0.00 ( 0.21) Acc@5 2.34 ( 0.97) +Epoch: [0][ 899/5004] Time 0.239 ( 0.241) Data 0.030 ( 0.028) Loss 6.6924e+00 (6.8841e+00) Acc@1 0.39 ( 0.21) Acc@5 2.34 ( 0.97) +Epoch: [0][ 900/5004] Time 0.240 ( 0.241) Data 0.030 ( 0.028) Loss 6.6891e+00 (6.8839e+00) Acc@1 0.78 ( 0.22) Acc@5 2.73 ( 0.97) +Epoch: [0][ 901/5004] Time 0.241 ( 0.241) Data 0.030 ( 0.028) Loss 6.6558e+00 (6.8837e+00) Acc@1 0.39 ( 0.22) Acc@5 0.78 ( 0.97) +Epoch: [0][ 902/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6783e+00 (6.8834e+00) Acc@1 0.39 ( 0.22) Acc@5 1.17 ( 0.97) +Epoch: [0][ 903/5004] Time 0.238 ( 0.241) Data 0.030 ( 0.028) Loss 6.6434e+00 (6.8832e+00) Acc@1 1.56 ( 0.22) Acc@5 2.73 ( 0.97) +Epoch: [0][ 904/5004] Time 0.237 ( 0.241) Data 0.029 ( 0.028) Loss 6.6480e+00 (6.8829e+00) Acc@1 0.78 ( 0.22) Acc@5 1.95 ( 0.97) +Epoch: [0][ 905/5004] Time 0.240 ( 0.241) Data 0.030 ( 0.028) Loss 6.6923e+00 (6.8827e+00) Acc@1 0.00 ( 0.22) Acc@5 2.34 ( 0.97) +Epoch: [0][ 906/5004] Time 0.238 ( 0.241) Data 0.030 ( 0.028) Loss 6.5919e+00 (6.8824e+00) Acc@1 0.78 ( 0.22) Acc@5 1.56 ( 0.98) +Epoch: [0][ 907/5004] Time 0.241 ( 0.241) Data 0.030 ( 0.028) Loss 6.6339e+00 (6.8821e+00) Acc@1 0.00 ( 0.22) Acc@5 1.17 ( 0.98) +Epoch: [0][ 908/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.028) Loss 6.6126e+00 (6.8818e+00) Acc@1 0.00 ( 0.22) Acc@5 0.39 ( 0.97) +Epoch: [0][ 909/5004] Time 0.234 ( 0.241) Data 0.025 ( 0.028) Loss 6.6787e+00 (6.8816e+00) Acc@1 1.17 ( 0.22) Acc@5 2.34 ( 0.98) +Epoch: [0][ 910/5004] Time 0.237 ( 0.241) Data 0.029 ( 0.028) Loss 6.6766e+00 (6.8814e+00) Acc@1 0.78 ( 0.22) Acc@5 1.17 ( 0.98) +Epoch: [0][ 911/5004] Time 0.239 ( 0.241) Data 0.030 ( 0.028) Loss 6.6787e+00 (6.8811e+00) Acc@1 0.39 ( 0.22) Acc@5 1.56 ( 0.98) +Epoch: [0][ 912/5004] Time 0.238 ( 0.241) Data 0.029 ( 0.028) Loss 6.7137e+00 (6.8810e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 0.98) +Epoch: [0][ 913/5004] Time 0.239 ( 0.241) Data 0.030 ( 0.028) Loss 6.6569e+00 (6.8807e+00) Acc@1 0.39 ( 0.22) Acc@5 1.95 ( 0.98) +Epoch: [0][ 914/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.7052e+00 (6.8805e+00) Acc@1 0.00 ( 0.22) Acc@5 2.34 ( 0.98) +Epoch: [0][ 915/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6411e+00 (6.8803e+00) Acc@1 0.78 ( 0.22) Acc@5 2.34 ( 0.98) +Epoch: [0][ 916/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6620e+00 (6.8800e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 0.98) +Epoch: [0][ 917/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.028) Loss 6.6799e+00 (6.8798e+00) Acc@1 0.78 ( 0.22) Acc@5 3.12 ( 0.98) +Epoch: [0][ 918/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.028) Loss 6.6059e+00 (6.8795e+00) Acc@1 0.39 ( 0.22) Acc@5 2.73 ( 0.99) +Epoch: [0][ 919/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.6981e+00 (6.8793e+00) Acc@1 1.17 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 920/5004] Time 0.243 ( 0.241) Data 0.023 ( 0.028) Loss 6.6304e+00 (6.8790e+00) Acc@1 0.39 ( 0.22) Acc@5 2.34 ( 0.99) +Epoch: [0][ 921/5004] Time 0.236 ( 0.241) Data 0.020 ( 0.028) Loss 6.6259e+00 (6.8788e+00) Acc@1 1.17 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 922/5004] Time 0.241 ( 0.241) Data 0.025 ( 0.028) Loss 6.6601e+00 (6.8785e+00) Acc@1 0.39 ( 0.22) Acc@5 1.17 ( 0.99) +Epoch: [0][ 923/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.028) Loss 6.6727e+00 (6.8783e+00) Acc@1 0.00 ( 0.22) Acc@5 0.00 ( 0.99) +Epoch: [0][ 924/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.028) Loss 6.7490e+00 (6.8782e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 925/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6613e+00 (6.8779e+00) Acc@1 0.39 ( 0.22) Acc@5 2.73 ( 0.99) +Epoch: [0][ 926/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.7060e+00 (6.8777e+00) Acc@1 0.39 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 927/5004] Time 0.236 ( 0.241) Data 0.022 ( 0.028) Loss 6.6796e+00 (6.8775e+00) Acc@1 0.39 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 928/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.6344e+00 (6.8773e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 0.99) +Epoch: [0][ 929/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.6731e+00 (6.8770e+00) Acc@1 0.00 ( 0.22) Acc@5 1.17 ( 0.99) +Epoch: [0][ 930/5004] Time 0.248 ( 0.241) Data 0.025 ( 0.028) Loss 6.6377e+00 (6.8768e+00) Acc@1 0.39 ( 0.22) Acc@5 3.12 ( 1.00) +Epoch: [0][ 931/5004] Time 0.238 ( 0.241) Data 0.019 ( 0.028) Loss 6.6461e+00 (6.8765e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 1.00) +Epoch: [0][ 932/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6613e+00 (6.8763e+00) Acc@1 0.00 ( 0.22) Acc@5 1.56 ( 1.00) +Epoch: [0][ 933/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.6293e+00 (6.8760e+00) Acc@1 0.78 ( 0.22) Acc@5 2.34 ( 1.00) +Epoch: [0][ 934/5004] Time 0.243 ( 0.241) Data 0.024 ( 0.028) Loss 6.5619e+00 (6.8757e+00) Acc@1 0.78 ( 0.22) Acc@5 2.34 ( 1.00) +Epoch: [0][ 935/5004] Time 0.240 ( 0.241) Data 0.022 ( 0.028) Loss 6.6555e+00 (6.8755e+00) Acc@1 0.00 ( 0.22) Acc@5 1.17 ( 1.00) +Epoch: [0][ 936/5004] Time 0.240 ( 0.241) Data 0.023 ( 0.028) Loss 6.7021e+00 (6.8753e+00) Acc@1 0.00 ( 0.22) Acc@5 1.17 ( 1.00) +Epoch: [0][ 937/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6675e+00 (6.8751e+00) Acc@1 0.78 ( 0.22) Acc@5 1.17 ( 1.00) +Epoch: [0][ 938/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.028) Loss 6.6884e+00 (6.8749e+00) Acc@1 1.17 ( 0.22) Acc@5 1.95 ( 1.00) +Epoch: [0][ 939/5004] Time 0.235 ( 0.241) Data 0.022 ( 0.028) Loss 6.6423e+00 (6.8746e+00) Acc@1 0.78 ( 0.23) Acc@5 3.91 ( 1.00) +Epoch: [0][ 940/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6171e+00 (6.8744e+00) Acc@1 0.78 ( 0.23) Acc@5 1.95 ( 1.00) +Epoch: [0][ 941/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.6313e+00 (6.8741e+00) Acc@1 0.39 ( 0.23) Acc@5 2.34 ( 1.01) +Epoch: [0][ 942/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.5663e+00 (6.8738e+00) Acc@1 0.78 ( 0.23) Acc@5 3.12 ( 1.01) +Epoch: [0][ 943/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6424e+00 (6.8735e+00) Acc@1 0.00 ( 0.23) Acc@5 1.56 ( 1.01) +Epoch: [0][ 944/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.6452e+00 (6.8733e+00) Acc@1 0.00 ( 0.23) Acc@5 1.17 ( 1.01) +Epoch: [0][ 945/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6069e+00 (6.8730e+00) Acc@1 0.78 ( 0.23) Acc@5 2.34 ( 1.01) +Epoch: [0][ 946/5004] Time 0.241 ( 0.241) Data 0.025 ( 0.028) Loss 6.5656e+00 (6.8727e+00) Acc@1 0.00 ( 0.23) Acc@5 1.56 ( 1.01) +Epoch: [0][ 947/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6396e+00 (6.8724e+00) Acc@1 0.00 ( 0.23) Acc@5 2.34 ( 1.01) +Epoch: [0][ 948/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.7760e+00 (6.8723e+00) Acc@1 0.00 ( 0.23) Acc@5 0.00 ( 1.01) +Epoch: [0][ 949/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.7070e+00 (6.8722e+00) Acc@1 0.39 ( 0.23) Acc@5 1.17 ( 1.01) +Epoch: [0][ 950/5004] Time 0.246 ( 0.241) Data 0.026 ( 0.028) Loss 6.6485e+00 (6.8719e+00) Acc@1 1.17 ( 0.23) Acc@5 3.52 ( 1.01) +Epoch: [0][ 951/5004] Time 0.234 ( 0.241) Data 0.021 ( 0.028) Loss 6.5912e+00 (6.8716e+00) Acc@1 0.39 ( 0.23) Acc@5 4.30 ( 1.02) +Epoch: [0][ 952/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6044e+00 (6.8713e+00) Acc@1 1.56 ( 0.23) Acc@5 2.34 ( 1.02) +Epoch: [0][ 953/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6439e+00 (6.8711e+00) Acc@1 0.39 ( 0.23) Acc@5 1.56 ( 1.02) +Epoch: [0][ 954/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6593e+00 (6.8709e+00) Acc@1 1.17 ( 0.23) Acc@5 1.95 ( 1.02) +Epoch: [0][ 955/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.5980e+00 (6.8706e+00) Acc@1 0.39 ( 0.23) Acc@5 2.73 ( 1.02) +Epoch: [0][ 956/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.5807e+00 (6.8703e+00) Acc@1 0.00 ( 0.23) Acc@5 2.73 ( 1.02) +Epoch: [0][ 957/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6284e+00 (6.8700e+00) Acc@1 0.78 ( 0.23) Acc@5 3.12 ( 1.03) +Epoch: [0][ 958/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.6066e+00 (6.8698e+00) Acc@1 1.17 ( 0.23) Acc@5 3.12 ( 1.03) +Epoch: [0][ 959/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6054e+00 (6.8695e+00) Acc@1 1.17 ( 0.23) Acc@5 2.73 ( 1.03) +Epoch: [0][ 960/5004] Time 0.246 ( 0.241) Data 0.026 ( 0.028) Loss 6.5819e+00 (6.8692e+00) Acc@1 1.56 ( 0.23) Acc@5 3.91 ( 1.03) +Epoch: [0][ 961/5004] Time 0.236 ( 0.241) Data 0.021 ( 0.028) Loss 6.6604e+00 (6.8690e+00) Acc@1 0.78 ( 0.23) Acc@5 1.95 ( 1.03) +Epoch: [0][ 962/5004] Time 0.247 ( 0.241) Data 0.028 ( 0.028) Loss 6.5904e+00 (6.8687e+00) Acc@1 0.39 ( 0.23) Acc@5 2.73 ( 1.04) +Epoch: [0][ 963/5004] Time 0.237 ( 0.241) Data 0.022 ( 0.028) Loss 6.6498e+00 (6.8685e+00) Acc@1 0.78 ( 0.24) Acc@5 2.73 ( 1.04) +Epoch: [0][ 964/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5395e+00 (6.8681e+00) Acc@1 0.39 ( 0.24) Acc@5 2.34 ( 1.04) +Epoch: [0][ 965/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.5845e+00 (6.8678e+00) Acc@1 0.00 ( 0.23) Acc@5 2.34 ( 1.04) +Epoch: [0][ 966/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.028) Loss 6.6115e+00 (6.8676e+00) Acc@1 0.39 ( 0.24) Acc@5 0.78 ( 1.04) +Epoch: [0][ 967/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.6425e+00 (6.8673e+00) Acc@1 0.39 ( 0.24) Acc@5 1.95 ( 1.04) +Epoch: [0][ 968/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.7343e+00 (6.8672e+00) Acc@1 0.00 ( 0.24) Acc@5 1.17 ( 1.04) +Epoch: [0][ 969/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6102e+00 (6.8669e+00) Acc@1 1.17 ( 0.24) Acc@5 3.52 ( 1.04) +Epoch: [0][ 970/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.028) Loss 6.6308e+00 (6.8667e+00) Acc@1 0.00 ( 0.24) Acc@5 1.17 ( 1.04) +Epoch: [0][ 971/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6767e+00 (6.8665e+00) Acc@1 0.39 ( 0.24) Acc@5 1.95 ( 1.05) +Epoch: [0][ 972/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.028) Loss 6.5974e+00 (6.8662e+00) Acc@1 0.39 ( 0.24) Acc@5 3.12 ( 1.05) +Epoch: [0][ 973/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6209e+00 (6.8660e+00) Acc@1 0.39 ( 0.24) Acc@5 1.56 ( 1.05) +Epoch: [0][ 974/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.6264e+00 (6.8657e+00) Acc@1 0.39 ( 0.24) Acc@5 0.78 ( 1.05) +Epoch: [0][ 975/5004] Time 0.235 ( 0.241) Data 0.023 ( 0.028) Loss 6.6618e+00 (6.8655e+00) Acc@1 0.00 ( 0.24) Acc@5 3.12 ( 1.05) +Epoch: [0][ 976/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.028) Loss 6.6920e+00 (6.8653e+00) Acc@1 0.00 ( 0.24) Acc@5 1.95 ( 1.05) +Epoch: [0][ 977/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6049e+00 (6.8651e+00) Acc@1 0.00 ( 0.24) Acc@5 2.73 ( 1.05) +Epoch: [0][ 978/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6440e+00 (6.8648e+00) Acc@1 0.39 ( 0.24) Acc@5 2.34 ( 1.05) +Epoch: [0][ 979/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.028) Loss 6.5973e+00 (6.8646e+00) Acc@1 0.00 ( 0.24) Acc@5 2.73 ( 1.06) +Epoch: [0][ 980/5004] Time 0.233 ( 0.241) Data 0.021 ( 0.028) Loss 6.6402e+00 (6.8643e+00) Acc@1 0.39 ( 0.24) Acc@5 2.34 ( 1.06) +Epoch: [0][ 981/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6373e+00 (6.8641e+00) Acc@1 0.39 ( 0.24) Acc@5 3.12 ( 1.06) +Epoch: [0][ 982/5004] Time 0.247 ( 0.241) Data 0.026 ( 0.028) Loss 6.6421e+00 (6.8639e+00) Acc@1 0.39 ( 0.24) Acc@5 1.95 ( 1.06) +Epoch: [0][ 983/5004] Time 0.243 ( 0.241) Data 0.025 ( 0.028) Loss 6.5987e+00 (6.8636e+00) Acc@1 1.17 ( 0.24) Acc@5 1.95 ( 1.06) +Epoch: [0][ 984/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.6493e+00 (6.8634e+00) Acc@1 0.39 ( 0.24) Acc@5 2.73 ( 1.06) +Epoch: [0][ 985/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.6595e+00 (6.8632e+00) Acc@1 0.39 ( 0.24) Acc@5 1.17 ( 1.06) +Epoch: [0][ 986/5004] Time 0.235 ( 0.241) Data 0.023 ( 0.028) Loss 6.6754e+00 (6.8630e+00) Acc@1 0.78 ( 0.24) Acc@5 2.73 ( 1.06) +Epoch: [0][ 987/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.6464e+00 (6.8628e+00) Acc@1 1.17 ( 0.24) Acc@5 4.30 ( 1.07) +Epoch: [0][ 988/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.028) Loss 6.5872e+00 (6.8625e+00) Acc@1 0.39 ( 0.24) Acc@5 2.73 ( 1.07) +Epoch: [0][ 989/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.6700e+00 (6.8623e+00) Acc@1 0.00 ( 0.24) Acc@5 0.00 ( 1.07) +Epoch: [0][ 990/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6166e+00 (6.8621e+00) Acc@1 0.78 ( 0.24) Acc@5 1.95 ( 1.07) +Epoch: [0][ 991/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5495e+00 (6.8617e+00) Acc@1 1.17 ( 0.24) Acc@5 1.95 ( 1.07) +Epoch: [0][ 992/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.6031e+00 (6.8615e+00) Acc@1 0.00 ( 0.24) Acc@5 2.34 ( 1.07) +Epoch: [0][ 993/5004] Time 0.247 ( 0.241) Data 0.026 ( 0.028) Loss 6.6210e+00 (6.8612e+00) Acc@1 0.00 ( 0.24) Acc@5 2.73 ( 1.07) +Epoch: [0][ 994/5004] Time 0.236 ( 0.241) Data 0.022 ( 0.028) Loss 6.5051e+00 (6.8609e+00) Acc@1 1.17 ( 0.24) Acc@5 3.12 ( 1.07) +Epoch: [0][ 995/5004] Time 0.240 ( 0.241) Data 0.030 ( 0.028) Loss 6.6197e+00 (6.8606e+00) Acc@1 0.39 ( 0.24) Acc@5 2.73 ( 1.08) +Epoch: [0][ 996/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.5641e+00 (6.8603e+00) Acc@1 0.39 ( 0.24) Acc@5 3.52 ( 1.08) +Epoch: [0][ 997/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6606e+00 (6.8601e+00) Acc@1 0.78 ( 0.24) Acc@5 2.73 ( 1.08) +Epoch: [0][ 998/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.6242e+00 (6.8599e+00) Acc@1 0.78 ( 0.24) Acc@5 1.56 ( 1.08) +Epoch: [0][ 999/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6478e+00 (6.8597e+00) Acc@1 0.00 ( 0.24) Acc@5 0.00 ( 1.08) +Epoch: [0][1000/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.6333e+00 (6.8595e+00) Acc@1 0.00 ( 0.24) Acc@5 1.95 ( 1.08) +Epoch: [0][1001/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.5575e+00 (6.8592e+00) Acc@1 0.78 ( 0.24) Acc@5 1.56 ( 1.08) +Epoch: [0][1002/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.5881e+00 (6.8589e+00) Acc@1 0.39 ( 0.24) Acc@5 3.91 ( 1.08) +Epoch: [0][1003/5004] Time 0.244 ( 0.241) Data 0.028 ( 0.028) Loss 6.5473e+00 (6.8586e+00) Acc@1 0.39 ( 0.24) Acc@5 1.17 ( 1.08) +Epoch: [0][1004/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.028) Loss 6.5767e+00 (6.8583e+00) Acc@1 0.39 ( 0.24) Acc@5 2.73 ( 1.09) +Epoch: [0][1005/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6105e+00 (6.8581e+00) Acc@1 0.00 ( 0.24) Acc@5 1.56 ( 1.09) +Epoch: [0][1006/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6374e+00 (6.8578e+00) Acc@1 0.78 ( 0.24) Acc@5 2.73 ( 1.09) +Epoch: [0][1007/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.5697e+00 (6.8575e+00) Acc@1 0.39 ( 0.24) Acc@5 1.56 ( 1.09) +Epoch: [0][1008/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.6380e+00 (6.8573e+00) Acc@1 0.78 ( 0.24) Acc@5 1.56 ( 1.09) +Epoch: [0][1009/5004] Time 0.247 ( 0.241) Data 0.027 ( 0.028) Loss 6.5745e+00 (6.8570e+00) Acc@1 1.56 ( 0.24) Acc@5 2.73 ( 1.09) +Epoch: [0][1010/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.5510e+00 (6.8567e+00) Acc@1 1.17 ( 0.25) Acc@5 3.12 ( 1.09) +Epoch: [0][1011/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.6642e+00 (6.8566e+00) Acc@1 1.17 ( 0.25) Acc@5 2.73 ( 1.09) +Epoch: [0][1012/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6845e+00 (6.8564e+00) Acc@1 0.39 ( 0.25) Acc@5 2.34 ( 1.10) +Epoch: [0][1013/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.5341e+00 (6.8561e+00) Acc@1 1.17 ( 0.25) Acc@5 3.91 ( 1.10) +Epoch: [0][1014/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.6511e+00 (6.8559e+00) Acc@1 0.39 ( 0.25) Acc@5 1.17 ( 1.10) +Epoch: [0][1015/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.5104e+00 (6.8555e+00) Acc@1 0.39 ( 0.25) Acc@5 1.95 ( 1.10) +Epoch: [0][1016/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.7300e+00 (6.8554e+00) Acc@1 0.00 ( 0.25) Acc@5 1.17 ( 1.10) +Epoch: [0][1017/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.5924e+00 (6.8551e+00) Acc@1 0.39 ( 0.25) Acc@5 2.34 ( 1.10) +Epoch: [0][1018/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.028) Loss 6.7619e+00 (6.8551e+00) Acc@1 0.00 ( 0.25) Acc@5 2.34 ( 1.10) +Epoch: [0][1019/5004] Time 0.246 ( 0.241) Data 0.028 ( 0.028) Loss 6.6147e+00 (6.8548e+00) Acc@1 0.00 ( 0.25) Acc@5 1.95 ( 1.10) +Epoch: [0][1020/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.028) Loss 6.5624e+00 (6.8545e+00) Acc@1 0.78 ( 0.25) Acc@5 3.52 ( 1.10) +Epoch: [0][1021/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.5996e+00 (6.8543e+00) Acc@1 1.17 ( 0.25) Acc@5 2.34 ( 1.11) +Epoch: [0][1022/5004] Time 0.237 ( 0.241) Data 0.025 ( 0.028) Loss 6.6462e+00 (6.8541e+00) Acc@1 0.00 ( 0.25) Acc@5 1.17 ( 1.11) +Epoch: [0][1023/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5859e+00 (6.8538e+00) Acc@1 0.78 ( 0.25) Acc@5 1.56 ( 1.11) +Epoch: [0][1024/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.5855e+00 (6.8536e+00) Acc@1 0.00 ( 0.25) Acc@5 2.34 ( 1.11) +Epoch: [0][1025/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.5473e+00 (6.8533e+00) Acc@1 0.78 ( 0.25) Acc@5 2.73 ( 1.11) +Epoch: [0][1026/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.5644e+00 (6.8530e+00) Acc@1 0.78 ( 0.25) Acc@5 3.91 ( 1.11) +Epoch: [0][1027/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.5261e+00 (6.8527e+00) Acc@1 0.39 ( 0.25) Acc@5 3.12 ( 1.11) +Epoch: [0][1028/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.6228e+00 (6.8524e+00) Acc@1 0.78 ( 0.25) Acc@5 1.95 ( 1.11) +Epoch: [0][1029/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5947e+00 (6.8522e+00) Acc@1 0.00 ( 0.25) Acc@5 3.12 ( 1.12) +Epoch: [0][1030/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.6140e+00 (6.8520e+00) Acc@1 0.78 ( 0.25) Acc@5 1.56 ( 1.12) +Epoch: [0][1031/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.5863e+00 (6.8517e+00) Acc@1 0.78 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1032/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.5518e+00 (6.8514e+00) Acc@1 0.39 ( 0.25) Acc@5 1.95 ( 1.12) +Epoch: [0][1033/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.6367e+00 (6.8512e+00) Acc@1 0.39 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1034/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.6277e+00 (6.8510e+00) Acc@1 0.00 ( 0.25) Acc@5 0.78 ( 1.12) +Epoch: [0][1035/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5804e+00 (6.8507e+00) Acc@1 0.78 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1036/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.5894e+00 (6.8505e+00) Acc@1 0.78 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1037/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.6114e+00 (6.8502e+00) Acc@1 0.00 ( 0.25) Acc@5 1.17 ( 1.12) +Epoch: [0][1038/5004] Time 0.249 ( 0.241) Data 0.028 ( 0.028) Loss 6.6319e+00 (6.8500e+00) Acc@1 0.39 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1039/5004] Time 0.239 ( 0.241) Data 0.024 ( 0.028) Loss 6.5901e+00 (6.8498e+00) Acc@1 0.78 ( 0.25) Acc@5 2.34 ( 1.12) +Epoch: [0][1040/5004] Time 0.236 ( 0.241) Data 0.026 ( 0.028) Loss 6.6157e+00 (6.8496e+00) Acc@1 0.00 ( 0.25) Acc@5 0.78 ( 1.12) +Epoch: [0][1041/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.5204e+00 (6.8492e+00) Acc@1 0.78 ( 0.25) Acc@5 2.73 ( 1.13) +Epoch: [0][1042/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.5613e+00 (6.8490e+00) Acc@1 0.78 ( 0.25) Acc@5 1.95 ( 1.13) +Epoch: [0][1043/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.028) Loss 6.5164e+00 (6.8486e+00) Acc@1 0.39 ( 0.25) Acc@5 2.73 ( 1.13) +Epoch: [0][1044/5004] Time 0.237 ( 0.241) Data 0.027 ( 0.028) Loss 6.6514e+00 (6.8485e+00) Acc@1 0.78 ( 0.25) Acc@5 1.17 ( 1.13) +Epoch: [0][1045/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5814e+00 (6.8482e+00) Acc@1 0.78 ( 0.25) Acc@5 3.12 ( 1.13) +Epoch: [0][1046/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.5507e+00 (6.8479e+00) Acc@1 0.39 ( 0.25) Acc@5 1.95 ( 1.13) +Epoch: [0][1047/5004] Time 0.244 ( 0.241) Data 0.025 ( 0.028) Loss 6.5464e+00 (6.8476e+00) Acc@1 0.00 ( 0.25) Acc@5 0.78 ( 1.13) +Epoch: [0][1048/5004] Time 0.237 ( 0.241) Data 0.023 ( 0.028) Loss 6.5455e+00 (6.8473e+00) Acc@1 0.39 ( 0.25) Acc@5 3.52 ( 1.13) +Epoch: [0][1049/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.6037e+00 (6.8471e+00) Acc@1 0.39 ( 0.25) Acc@5 1.56 ( 1.13) +Epoch: [0][1050/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.5907e+00 (6.8469e+00) Acc@1 0.00 ( 0.25) Acc@5 2.34 ( 1.13) +Epoch: [0][1051/5004] Time 0.242 ( 0.241) Data 0.025 ( 0.028) Loss 6.6052e+00 (6.8466e+00) Acc@1 0.00 ( 0.25) Acc@5 1.56 ( 1.14) +Epoch: [0][1052/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.028) Loss 6.5734e+00 (6.8464e+00) Acc@1 0.78 ( 0.25) Acc@5 1.56 ( 1.14) +Epoch: [0][1053/5004] Time 0.244 ( 0.241) Data 0.027 ( 0.028) Loss 6.5543e+00 (6.8461e+00) Acc@1 0.78 ( 0.26) Acc@5 2.34 ( 1.14) +Epoch: [0][1054/5004] Time 0.233 ( 0.241) Data 0.021 ( 0.028) Loss 6.5199e+00 (6.8458e+00) Acc@1 0.78 ( 0.26) Acc@5 3.12 ( 1.14) +Epoch: [0][1055/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5062e+00 (6.8455e+00) Acc@1 0.00 ( 0.26) Acc@5 1.56 ( 1.14) +Epoch: [0][1056/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.028) Loss 6.5316e+00 (6.8452e+00) Acc@1 1.17 ( 0.26) Acc@5 3.91 ( 1.14) +Epoch: [0][1057/5004] Time 0.235 ( 0.241) Data 0.024 ( 0.028) Loss 6.6779e+00 (6.8450e+00) Acc@1 0.78 ( 0.26) Acc@5 1.56 ( 1.14) +Epoch: [0][1058/5004] Time 0.251 ( 0.241) Data 0.027 ( 0.028) Loss 6.5029e+00 (6.8447e+00) Acc@1 0.39 ( 0.26) Acc@5 3.52 ( 1.14) +Epoch: [0][1059/5004] Time 0.230 ( 0.241) Data 0.018 ( 0.028) Loss 6.5954e+00 (6.8445e+00) Acc@1 0.78 ( 0.26) Acc@5 3.91 ( 1.15) +Epoch: [0][1060/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5419e+00 (6.8442e+00) Acc@1 0.00 ( 0.26) Acc@5 3.12 ( 1.15) +Epoch: [0][1061/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.028) Loss 6.5168e+00 (6.8439e+00) Acc@1 0.39 ( 0.26) Acc@5 2.73 ( 1.15) +Epoch: [0][1062/5004] Time 0.236 ( 0.241) Data 0.024 ( 0.028) Loss 6.6493e+00 (6.8437e+00) Acc@1 0.39 ( 0.26) Acc@5 1.17 ( 1.15) +Epoch: [0][1063/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.4756e+00 (6.8433e+00) Acc@1 0.78 ( 0.26) Acc@5 3.52 ( 1.15) +Epoch: [0][1064/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.028) Loss 6.5601e+00 (6.8431e+00) Acc@1 0.39 ( 0.26) Acc@5 2.34 ( 1.15) +Epoch: [0][1065/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.6356e+00 (6.8429e+00) Acc@1 0.78 ( 0.26) Acc@5 1.95 ( 1.15) +Epoch: [0][1066/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.028) Loss 6.6806e+00 (6.8427e+00) Acc@1 0.39 ( 0.26) Acc@5 2.34 ( 1.16) +Epoch: [0][1067/5004] Time 0.237 ( 0.241) Data 0.027 ( 0.028) Loss 6.5703e+00 (6.8425e+00) Acc@1 1.17 ( 0.26) Acc@5 1.56 ( 1.16) +Epoch: [0][1068/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.5498e+00 (6.8422e+00) Acc@1 0.00 ( 0.26) Acc@5 3.91 ( 1.16) +Epoch: [0][1069/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.028) Loss 6.5219e+00 (6.8419e+00) Acc@1 0.78 ( 0.26) Acc@5 2.73 ( 1.16) +Epoch: [0][1070/5004] Time 0.242 ( 0.241) Data 0.027 ( 0.028) Loss 6.6475e+00 (6.8417e+00) Acc@1 0.78 ( 0.26) Acc@5 1.56 ( 1.16) +Epoch: [0][1071/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.028) Loss 6.6552e+00 (6.8415e+00) Acc@1 0.39 ( 0.26) Acc@5 1.17 ( 1.16) +Epoch: [0][1072/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5810e+00 (6.8413e+00) Acc@1 0.00 ( 0.26) Acc@5 1.17 ( 1.16) +Epoch: [0][1073/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5474e+00 (6.8410e+00) Acc@1 0.78 ( 0.26) Acc@5 4.30 ( 1.16) +Epoch: [0][1074/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.5969e+00 (6.8408e+00) Acc@1 0.00 ( 0.26) Acc@5 2.34 ( 1.16) +Epoch: [0][1075/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5889e+00 (6.8406e+00) Acc@1 0.00 ( 0.26) Acc@5 1.17 ( 1.16) +Epoch: [0][1076/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5994e+00 (6.8403e+00) Acc@1 0.78 ( 0.26) Acc@5 1.56 ( 1.16) +Epoch: [0][1077/5004] Time 0.241 ( 0.241) Data 0.026 ( 0.028) Loss 6.5196e+00 (6.8400e+00) Acc@1 0.39 ( 0.26) Acc@5 1.56 ( 1.16) +Epoch: [0][1078/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.028) Loss 6.5625e+00 (6.8398e+00) Acc@1 0.78 ( 0.26) Acc@5 1.56 ( 1.17) +Epoch: [0][1079/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.028) Loss 6.5061e+00 (6.8395e+00) Acc@1 0.39 ( 0.26) Acc@5 2.34 ( 1.17) +Epoch: [0][1080/5004] Time 0.236 ( 0.241) Data 0.022 ( 0.028) Loss 6.6160e+00 (6.8393e+00) Acc@1 1.17 ( 0.26) Acc@5 4.30 ( 1.17) +Epoch: [0][1081/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.6218e+00 (6.8391e+00) Acc@1 0.39 ( 0.26) Acc@5 2.34 ( 1.17) +Epoch: [0][1082/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.5248e+00 (6.8388e+00) Acc@1 1.17 ( 0.26) Acc@5 3.52 ( 1.17) +Epoch: [0][1083/5004] Time 0.240 ( 0.241) Data 0.026 ( 0.028) Loss 6.5025e+00 (6.8385e+00) Acc@1 1.56 ( 0.26) Acc@5 3.91 ( 1.18) +Epoch: [0][1084/5004] Time 0.245 ( 0.241) Data 0.025 ( 0.028) Loss 6.6667e+00 (6.8383e+00) Acc@1 0.00 ( 0.26) Acc@5 2.34 ( 1.18) +Epoch: [0][1085/5004] Time 0.240 ( 0.241) Data 0.022 ( 0.028) Loss 6.6407e+00 (6.8381e+00) Acc@1 0.00 ( 0.26) Acc@5 2.34 ( 1.18) +Epoch: [0][1086/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.028) Loss 6.5809e+00 (6.8379e+00) Acc@1 0.39 ( 0.26) Acc@5 1.95 ( 1.18) +Epoch: [0][1087/5004] Time 0.241 ( 0.241) Data 0.025 ( 0.028) Loss 6.5705e+00 (6.8376e+00) Acc@1 0.78 ( 0.26) Acc@5 2.73 ( 1.18) +Epoch: [0][1088/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.5472e+00 (6.8374e+00) Acc@1 0.00 ( 0.26) Acc@5 3.12 ( 1.18) +Epoch: [0][1089/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6507e+00 (6.8372e+00) Acc@1 0.39 ( 0.26) Acc@5 1.56 ( 1.18) +Epoch: [0][1090/5004] Time 0.242 ( 0.241) Data 0.026 ( 0.028) Loss 6.5088e+00 (6.8369e+00) Acc@1 0.39 ( 0.26) Acc@5 2.34 ( 1.18) +Epoch: [0][1091/5004] Time 0.243 ( 0.241) Data 0.025 ( 0.028) Loss 6.5922e+00 (6.8367e+00) Acc@1 0.39 ( 0.26) Acc@5 2.73 ( 1.18) +Epoch: [0][1092/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.4746e+00 (6.8363e+00) Acc@1 0.39 ( 0.26) Acc@5 3.12 ( 1.19) +Epoch: [0][1093/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.028) Loss 6.5978e+00 (6.8361e+00) Acc@1 0.00 ( 0.26) Acc@5 1.56 ( 1.19) +Epoch: [0][1094/5004] Time 0.240 ( 0.241) Data 0.025 ( 0.028) Loss 6.5915e+00 (6.8359e+00) Acc@1 0.78 ( 0.27) Acc@5 1.95 ( 1.19) +Epoch: [0][1095/5004] Time 0.234 ( 0.241) Data 0.025 ( 0.028) Loss 6.4656e+00 (6.8356e+00) Acc@1 0.39 ( 0.27) Acc@5 2.34 ( 1.19) +Epoch: [0][1096/5004] Time 0.239 ( 0.241) Data 0.030 ( 0.028) Loss 6.5648e+00 (6.8353e+00) Acc@1 0.78 ( 0.27) Acc@5 1.95 ( 1.19) +Epoch: [0][1097/5004] Time 0.240 ( 0.241) Data 0.031 ( 0.028) Loss 6.6436e+00 (6.8351e+00) Acc@1 0.39 ( 0.27) Acc@5 0.78 ( 1.19) +Epoch: [0][1098/5004] Time 0.242 ( 0.241) Data 0.031 ( 0.028) Loss 6.5309e+00 (6.8349e+00) Acc@1 1.17 ( 0.27) Acc@5 2.73 ( 1.19) +Epoch: [0][1099/5004] Time 0.237 ( 0.241) Data 0.031 ( 0.028) Loss 6.5474e+00 (6.8346e+00) Acc@1 0.00 ( 0.27) Acc@5 1.95 ( 1.19) +Epoch: [0][1100/5004] Time 0.237 ( 0.241) Data 0.032 ( 0.028) Loss 6.5610e+00 (6.8344e+00) Acc@1 0.00 ( 0.27) Acc@5 3.12 ( 1.19) +Epoch: [0][1101/5004] Time 0.240 ( 0.241) Data 0.032 ( 0.028) Loss 6.4982e+00 (6.8341e+00) Acc@1 0.78 ( 0.27) Acc@5 3.52 ( 1.19) +Epoch: [0][1102/5004] Time 0.242 ( 0.241) Data 0.031 ( 0.028) Loss 6.5853e+00 (6.8338e+00) Acc@1 0.39 ( 0.27) Acc@5 2.73 ( 1.20) +Epoch: [0][1103/5004] Time 0.235 ( 0.241) Data 0.027 ( 0.028) Loss 6.5581e+00 (6.8336e+00) Acc@1 1.17 ( 0.27) Acc@5 2.73 ( 1.20) +Epoch: [0][1104/5004] Time 0.232 ( 0.241) Data 0.031 ( 0.028) Loss 6.5549e+00 (6.8333e+00) Acc@1 1.17 ( 0.27) Acc@5 3.52 ( 1.20) +Epoch: [0][1105/5004] Time 0.217 ( 0.241) Data 0.037 ( 0.028) Loss 6.5306e+00 (6.8330e+00) Acc@1 0.78 ( 0.27) Acc@5 1.56 ( 1.20) +Epoch: [0][1106/5004] Time 0.239 ( 0.241) Data 0.057 ( 0.028) Loss 6.5493e+00 (6.8328e+00) Acc@1 0.39 ( 0.27) Acc@5 2.73 ( 1.20) +Epoch: [0][1107/5004] Time 0.239 ( 0.241) Data 0.055 ( 0.028) Loss 6.5638e+00 (6.8326e+00) Acc@1 0.39 ( 0.27) Acc@5 4.30 ( 1.20) +Epoch: [0][1108/5004] Time 0.238 ( 0.241) Data 0.053 ( 0.028) Loss 6.5415e+00 (6.8323e+00) Acc@1 0.78 ( 0.27) Acc@5 3.91 ( 1.21) +Epoch: [0][1109/5004] Time 0.237 ( 0.241) Data 0.054 ( 0.028) Loss 6.5323e+00 (6.8320e+00) Acc@1 0.78 ( 0.27) Acc@5 3.52 ( 1.21) +Epoch: [0][1110/5004] Time 0.237 ( 0.241) Data 0.055 ( 0.028) Loss 6.5494e+00 (6.8318e+00) Acc@1 0.00 ( 0.27) Acc@5 1.56 ( 1.21) +Epoch: [0][1111/5004] Time 0.238 ( 0.241) Data 0.054 ( 0.028) Loss 6.5054e+00 (6.8315e+00) Acc@1 1.17 ( 0.27) Acc@5 3.91 ( 1.21) +Epoch: [0][1112/5004] Time 0.239 ( 0.241) Data 0.053 ( 0.028) Loss 6.5223e+00 (6.8312e+00) Acc@1 0.78 ( 0.27) Acc@5 4.69 ( 1.21) +Epoch: [0][1113/5004] Time 0.239 ( 0.241) Data 0.054 ( 0.028) Loss 6.6440e+00 (6.8310e+00) Acc@1 0.39 ( 0.27) Acc@5 1.95 ( 1.21) +Epoch: [0][1114/5004] Time 0.238 ( 0.241) Data 0.055 ( 0.028) Loss 6.4709e+00 (6.8307e+00) Acc@1 1.17 ( 0.27) Acc@5 4.30 ( 1.22) +Epoch: [0][1115/5004] Time 0.236 ( 0.241) Data 0.054 ( 0.028) Loss 6.6017e+00 (6.8305e+00) Acc@1 1.56 ( 0.27) Acc@5 2.34 ( 1.22) +Epoch: [0][1116/5004] Time 0.238 ( 0.241) Data 0.055 ( 0.028) Loss 6.5013e+00 (6.8302e+00) Acc@1 0.39 ( 0.27) Acc@5 3.12 ( 1.22) +Epoch: [0][1117/5004] Time 0.238 ( 0.241) Data 0.054 ( 0.028) Loss 6.4601e+00 (6.8299e+00) Acc@1 0.39 ( 0.27) Acc@5 2.73 ( 1.22) +Epoch: [0][1118/5004] Time 0.263 ( 0.241) Data 0.053 ( 0.028) Loss 6.4961e+00 (6.8296e+00) Acc@1 0.39 ( 0.27) Acc@5 3.12 ( 1.22) +Epoch: [0][1119/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.4736e+00 (6.8293e+00) Acc@1 0.00 ( 0.27) Acc@5 1.56 ( 1.22) +Epoch: [0][1120/5004] Time 0.238 ( 0.241) Data 0.028 ( 0.028) Loss 6.5305e+00 (6.8290e+00) Acc@1 0.00 ( 0.27) Acc@5 1.56 ( 1.22) +Epoch: [0][1121/5004] Time 0.245 ( 0.241) Data 0.028 ( 0.028) Loss 6.4868e+00 (6.8287e+00) Acc@1 0.78 ( 0.27) Acc@5 3.12 ( 1.23) +Epoch: [0][1122/5004] Time 0.232 ( 0.241) Data 0.022 ( 0.028) Loss 6.4555e+00 (6.8284e+00) Acc@1 0.39 ( 0.27) Acc@5 1.95 ( 1.23) +Epoch: [0][1123/5004] Time 0.239 ( 0.241) Data 0.028 ( 0.028) Loss 6.5168e+00 (6.8281e+00) Acc@1 0.78 ( 0.27) Acc@5 2.73 ( 1.23) +Epoch: [0][1124/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.4468e+00 (6.8277e+00) Acc@1 0.78 ( 0.27) Acc@5 3.91 ( 1.23) +Epoch: [0][1125/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.028) Loss 6.5879e+00 (6.8275e+00) Acc@1 0.39 ( 0.27) Acc@5 1.56 ( 1.23) +Epoch: [0][1126/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.028) Loss 6.4508e+00 (6.8272e+00) Acc@1 0.39 ( 0.27) Acc@5 1.56 ( 1.23) +Epoch: [0][1127/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.5128e+00 (6.8269e+00) Acc@1 0.00 ( 0.27) Acc@5 3.12 ( 1.23) +Epoch: [0][1128/5004] Time 0.238 ( 0.241) Data 0.027 ( 0.028) Loss 6.5561e+00 (6.8267e+00) Acc@1 0.78 ( 0.27) Acc@5 2.73 ( 1.23) +Epoch: [0][1129/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.6104e+00 (6.8265e+00) Acc@1 0.39 ( 0.27) Acc@5 2.34 ( 1.23) +Epoch: [0][1130/5004] Time 0.235 ( 0.241) Data 0.025 ( 0.028) Loss 6.5616e+00 (6.8262e+00) Acc@1 0.00 ( 0.27) Acc@5 2.73 ( 1.24) +Epoch: [0][1131/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.5288e+00 (6.8260e+00) Acc@1 1.17 ( 0.28) Acc@5 3.52 ( 1.24) +Epoch: [0][1132/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.028) Loss 6.5285e+00 (6.8257e+00) Acc@1 0.39 ( 0.28) Acc@5 2.73 ( 1.24) +Epoch: [0][1133/5004] Time 0.238 ( 0.241) Data 0.023 ( 0.028) Loss 6.4903e+00 (6.8254e+00) Acc@1 1.17 ( 0.28) Acc@5 3.12 ( 1.24) +Epoch: [0][1134/5004] Time 0.237 ( 0.241) Data 0.024 ( 0.028) Loss 6.5250e+00 (6.8252e+00) Acc@1 1.56 ( 0.28) Acc@5 2.34 ( 1.24) +Epoch: [0][1135/5004] Time 0.238 ( 0.241) Data 0.025 ( 0.028) Loss 6.6541e+00 (6.8250e+00) Acc@1 1.56 ( 0.28) Acc@5 3.52 ( 1.24) +Epoch: [0][1136/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.5366e+00 (6.8248e+00) Acc@1 0.00 ( 0.28) Acc@5 1.95 ( 1.24) +Epoch: [0][1137/5004] Time 0.239 ( 0.241) Data 0.026 ( 0.028) Loss 6.5135e+00 (6.8245e+00) Acc@1 0.78 ( 0.28) Acc@5 2.34 ( 1.25) +Epoch: [0][1138/5004] Time 0.244 ( 0.241) Data 0.025 ( 0.028) Loss 6.4438e+00 (6.8241e+00) Acc@1 1.95 ( 0.28) Acc@5 3.12 ( 1.25) +Epoch: [0][1139/5004] Time 0.236 ( 0.241) Data 0.023 ( 0.028) Loss 6.4447e+00 (6.8238e+00) Acc@1 0.00 ( 0.28) Acc@5 2.73 ( 1.25) +Epoch: [0][1140/5004] Time 0.240 ( 0.241) Data 0.024 ( 0.028) Loss 6.6344e+00 (6.8236e+00) Acc@1 0.78 ( 0.28) Acc@5 1.56 ( 1.25) +Epoch: [0][1141/5004] Time 0.235 ( 0.241) Data 0.023 ( 0.028) Loss 6.5512e+00 (6.8234e+00) Acc@1 0.39 ( 0.28) Acc@5 1.17 ( 1.25) +Epoch: [0][1142/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.028) Loss 6.5292e+00 (6.8231e+00) Acc@1 0.39 ( 0.28) Acc@5 3.12 ( 1.25) +Epoch: [0][1143/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.028) Loss 6.5443e+00 (6.8229e+00) Acc@1 0.39 ( 0.28) Acc@5 4.69 ( 1.25) +Epoch: [0][1144/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.028) Loss 6.5545e+00 (6.8227e+00) Acc@1 0.39 ( 0.28) Acc@5 1.95 ( 1.25) +Epoch: [0][1145/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.028) Loss 6.5945e+00 (6.8225e+00) Acc@1 1.56 ( 0.28) Acc@5 2.34 ( 1.25) +Epoch: [0][1146/5004] Time 0.240 ( 0.240) Data 0.023 ( 0.028) Loss 6.4738e+00 (6.8222e+00) Acc@1 0.39 ( 0.28) Acc@5 2.34 ( 1.26) +Epoch: [0][1147/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.028) Loss 6.4725e+00 (6.8219e+00) Acc@1 0.78 ( 0.28) Acc@5 3.91 ( 1.26) +Epoch: [0][1148/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.028) Loss 6.5390e+00 (6.8216e+00) Acc@1 0.78 ( 0.28) Acc@5 5.08 ( 1.26) +Epoch: [0][1149/5004] Time 0.237 ( 0.240) Data 0.022 ( 0.028) Loss 6.4270e+00 (6.8213e+00) Acc@1 1.56 ( 0.28) Acc@5 4.69 ( 1.26) +Epoch: [0][1150/5004] Time 0.238 ( 0.240) Data 0.024 ( 0.028) Loss 6.4562e+00 (6.8210e+00) Acc@1 0.78 ( 0.28) Acc@5 3.91 ( 1.27) +Epoch: [0][1151/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.028) Loss 6.4135e+00 (6.8206e+00) Acc@1 0.78 ( 0.28) Acc@5 4.69 ( 1.27) +Epoch: [0][1152/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.028) Loss 6.4431e+00 (6.8203e+00) Acc@1 0.78 ( 0.29) Acc@5 3.12 ( 1.27) +Epoch: [0][1153/5004] Time 0.239 ( 0.240) Data 0.024 ( 0.028) Loss 6.4681e+00 (6.8200e+00) Acc@1 0.00 ( 0.29) Acc@5 2.34 ( 1.27) +Epoch: [0][1154/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.028) Loss 6.4868e+00 (6.8197e+00) Acc@1 1.17 ( 0.29) Acc@5 2.73 ( 1.27) +Epoch: [0][1155/5004] Time 0.240 ( 0.240) Data 0.023 ( 0.028) Loss 6.4783e+00 (6.8194e+00) Acc@1 0.39 ( 0.29) Acc@5 1.95 ( 1.27) +Epoch: [0][1156/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.028) Loss 6.4897e+00 (6.8191e+00) Acc@1 1.17 ( 0.29) Acc@5 2.73 ( 1.28) +Epoch: [0][1157/5004] Time 0.237 ( 0.240) Data 0.024 ( 0.028) Loss 6.5253e+00 (6.8188e+00) Acc@1 0.78 ( 0.29) Acc@5 2.73 ( 1.28) +Epoch: [0][1158/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.028) Loss 6.6011e+00 (6.8187e+00) Acc@1 1.17 ( 0.29) Acc@5 2.73 ( 1.28) +Epoch: [0][1159/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.028) Loss 6.4578e+00 (6.8184e+00) Acc@1 0.39 ( 0.29) Acc@5 3.91 ( 1.28) +Epoch: [0][1160/5004] Time 0.239 ( 0.240) Data 0.024 ( 0.028) Loss 6.4633e+00 (6.8180e+00) Acc@1 0.78 ( 0.29) Acc@5 3.52 ( 1.28) +Epoch: [0][1161/5004] Time 0.239 ( 0.240) Data 0.023 ( 0.028) Loss 6.4100e+00 (6.8177e+00) Acc@1 1.56 ( 0.29) Acc@5 5.47 ( 1.29) +Epoch: [0][1162/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.028) Loss 6.5483e+00 (6.8175e+00) Acc@1 0.39 ( 0.29) Acc@5 1.95 ( 1.29) +Epoch: [0][1163/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.028) Loss 6.5265e+00 (6.8172e+00) Acc@1 0.78 ( 0.29) Acc@5 2.34 ( 1.29) +Epoch: [0][1164/5004] Time 0.241 ( 0.240) Data 0.023 ( 0.028) Loss 6.5666e+00 (6.8170e+00) Acc@1 0.00 ( 0.29) Acc@5 3.12 ( 1.29) +Epoch: [0][1165/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.028) Loss 6.5296e+00 (6.8167e+00) Acc@1 0.39 ( 0.29) Acc@5 2.34 ( 1.29) +Epoch: [0][1166/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.028) Loss 6.5031e+00 (6.8165e+00) Acc@1 1.17 ( 0.29) Acc@5 4.69 ( 1.29) +Epoch: [0][1167/5004] Time 0.237 ( 0.240) Data 0.022 ( 0.028) Loss 6.6110e+00 (6.8163e+00) Acc@1 0.78 ( 0.29) Acc@5 2.34 ( 1.29) +Epoch: [0][1168/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.028) Loss 6.4237e+00 (6.8160e+00) Acc@1 1.17 ( 0.29) Acc@5 3.12 ( 1.29) +Epoch: [0][1169/5004] Time 0.242 ( 0.240) Data 0.023 ( 0.028) Loss 6.4419e+00 (6.8156e+00) Acc@1 1.17 ( 0.29) Acc@5 3.91 ( 1.30) +Epoch: [0][1170/5004] Time 0.242 ( 0.240) Data 0.022 ( 0.028) Loss 6.5598e+00 (6.8154e+00) Acc@1 0.78 ( 0.29) Acc@5 3.12 ( 1.30) +Epoch: [0][1171/5004] Time 0.241 ( 0.240) Data 0.022 ( 0.028) Loss 6.5698e+00 (6.8152e+00) Acc@1 0.39 ( 0.29) Acc@5 1.56 ( 1.30) +Epoch: [0][1172/5004] Time 0.243 ( 0.240) Data 0.023 ( 0.028) Loss 6.4571e+00 (6.8149e+00) Acc@1 0.39 ( 0.29) Acc@5 2.34 ( 1.30) +Epoch: [0][1173/5004] Time 0.243 ( 0.240) Data 0.022 ( 0.028) Loss 6.4365e+00 (6.8146e+00) Acc@1 1.95 ( 0.29) Acc@5 3.91 ( 1.30) +Epoch: [0][1174/5004] Time 0.240 ( 0.240) Data 0.021 ( 0.028) Loss 6.4593e+00 (6.8143e+00) Acc@1 1.56 ( 0.30) Acc@5 2.73 ( 1.30) +Epoch: [0][1175/5004] Time 0.243 ( 0.240) Data 0.022 ( 0.028) Loss 6.5082e+00 (6.8140e+00) Acc@1 0.39 ( 0.30) Acc@5 4.30 ( 1.31) +Epoch: [0][1176/5004] Time 0.242 ( 0.240) Data 0.021 ( 0.028) Loss 6.5324e+00 (6.8138e+00) Acc@1 1.17 ( 0.30) Acc@5 5.47 ( 1.31) +Epoch: [0][1177/5004] Time 0.236 ( 0.240) Data 0.022 ( 0.028) Loss 6.5855e+00 (6.8136e+00) Acc@1 0.39 ( 0.30) Acc@5 2.73 ( 1.31) +Epoch: [0][1178/5004] Time 0.244 ( 0.240) Data 0.028 ( 0.028) Loss 6.4060e+00 (6.8133e+00) Acc@1 1.95 ( 0.30) Acc@5 4.30 ( 1.31) +Epoch: [0][1179/5004] Time 0.233 ( 0.240) Data 0.022 ( 0.028) Loss 6.4459e+00 (6.8129e+00) Acc@1 0.78 ( 0.30) Acc@5 2.34 ( 1.31) +Epoch: [0][1180/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.028) Loss 6.4859e+00 (6.8127e+00) Acc@1 0.78 ( 0.30) Acc@5 1.95 ( 1.31) +Epoch: [0][1181/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.028) Loss 6.6005e+00 (6.8125e+00) Acc@1 0.78 ( 0.30) Acc@5 2.73 ( 1.32) +Epoch: [0][1182/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.028) Loss 6.4756e+00 (6.8122e+00) Acc@1 0.78 ( 0.30) Acc@5 2.73 ( 1.32) +Epoch: [0][1183/5004] Time 0.242 ( 0.240) Data 0.025 ( 0.028) Loss 6.4454e+00 (6.8119e+00) Acc@1 0.39 ( 0.30) Acc@5 2.73 ( 1.32) +Epoch: [0][1184/5004] Time 0.237 ( 0.240) Data 0.022 ( 0.028) Loss 6.5951e+00 (6.8117e+00) Acc@1 0.39 ( 0.30) Acc@5 3.52 ( 1.32) +Epoch: [0][1185/5004] Time 0.234 ( 0.240) Data 0.025 ( 0.028) Loss 6.5359e+00 (6.8115e+00) Acc@1 0.78 ( 0.30) Acc@5 3.12 ( 1.32) +Epoch: [0][1186/5004] Time 0.239 ( 0.240) Data 0.029 ( 0.028) Loss 6.5574e+00 (6.8113e+00) Acc@1 0.78 ( 0.30) Acc@5 3.12 ( 1.32) +Epoch: [0][1187/5004] Time 0.238 ( 0.240) Data 0.029 ( 0.028) Loss 6.4302e+00 (6.8109e+00) Acc@1 0.00 ( 0.30) Acc@5 2.73 ( 1.32) +Epoch: [0][1188/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.028) Loss 6.4992e+00 (6.8107e+00) Acc@1 0.39 ( 0.30) Acc@5 1.95 ( 1.32) +Epoch: [0][1189/5004] Time 0.240 ( 0.240) Data 0.027 ( 0.028) Loss 6.4677e+00 (6.8104e+00) Acc@1 0.00 ( 0.30) Acc@5 5.47 ( 1.33) +Epoch: [0][1190/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.028) Loss 6.5888e+00 (6.8102e+00) Acc@1 0.39 ( 0.30) Acc@5 1.95 ( 1.33) +Epoch: [0][1191/5004] Time 0.236 ( 0.240) Data 0.026 ( 0.028) Loss 6.5119e+00 (6.8100e+00) Acc@1 1.17 ( 0.30) Acc@5 3.52 ( 1.33) +Epoch: [0][1192/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.028) Loss 6.5359e+00 (6.8097e+00) Acc@1 1.17 ( 0.30) Acc@5 2.34 ( 1.33) +Epoch: [0][1193/5004] Time 0.237 ( 0.240) Data 0.027 ( 0.028) Loss 6.5434e+00 (6.8095e+00) Acc@1 0.00 ( 0.30) Acc@5 2.73 ( 1.33) +Epoch: [0][1194/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.028) Loss 6.5234e+00 (6.8093e+00) Acc@1 0.00 ( 0.30) Acc@5 2.73 ( 1.33) +Epoch: [0][1195/5004] Time 0.243 ( 0.240) Data 0.027 ( 0.028) Loss 6.5142e+00 (6.8090e+00) Acc@1 1.17 ( 0.30) Acc@5 4.69 ( 1.34) +Epoch: [0][1196/5004] Time 0.232 ( 0.240) Data 0.022 ( 0.028) Loss 6.4809e+00 (6.8087e+00) Acc@1 0.00 ( 0.30) Acc@5 2.73 ( 1.34) +Epoch: [0][1197/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.4906e+00 (6.8085e+00) Acc@1 1.17 ( 0.30) Acc@5 3.12 ( 1.34) +Epoch: [0][1198/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.028) Loss 6.5789e+00 (6.8083e+00) Acc@1 0.78 ( 0.30) Acc@5 3.91 ( 1.34) +Epoch: [0][1199/5004] Time 0.238 ( 0.240) Data 0.026 ( 0.028) Loss 6.3823e+00 (6.8079e+00) Acc@1 1.17 ( 0.30) Acc@5 5.08 ( 1.34) +Epoch: [0][1200/5004] Time 0.237 ( 0.240) Data 0.026 ( 0.028) Loss 6.5776e+00 (6.8077e+00) Acc@1 0.00 ( 0.30) Acc@5 1.56 ( 1.34) +Epoch: [0][1201/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.028) Loss 6.5054e+00 (6.8075e+00) Acc@1 1.56 ( 0.30) Acc@5 3.12 ( 1.35) +Epoch: [0][1202/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.5691e+00 (6.8073e+00) Acc@1 0.78 ( 0.30) Acc@5 3.12 ( 1.35) +Epoch: [0][1203/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.028) Loss 6.4427e+00 (6.8070e+00) Acc@1 0.78 ( 0.30) Acc@5 3.12 ( 1.35) +Epoch: [0][1204/5004] Time 0.236 ( 0.240) Data 0.025 ( 0.028) Loss 6.5158e+00 (6.8067e+00) Acc@1 1.17 ( 0.31) Acc@5 3.52 ( 1.35) +Epoch: [0][1205/5004] Time 0.241 ( 0.240) Data 0.028 ( 0.028) Loss 6.5275e+00 (6.8065e+00) Acc@1 1.17 ( 0.31) Acc@5 2.34 ( 1.35) +Epoch: [0][1206/5004] Time 0.237 ( 0.240) Data 0.029 ( 0.028) Loss 6.4744e+00 (6.8062e+00) Acc@1 0.78 ( 0.31) Acc@5 1.95 ( 1.35) +Epoch: [0][1207/5004] Time 0.246 ( 0.240) Data 0.030 ( 0.028) Loss 6.5385e+00 (6.8060e+00) Acc@1 0.78 ( 0.31) Acc@5 3.12 ( 1.35) +Epoch: [0][1208/5004] Time 0.242 ( 0.240) Data 0.026 ( 0.028) Loss 6.4491e+00 (6.8057e+00) Acc@1 0.39 ( 0.31) Acc@5 1.17 ( 1.35) +Epoch: [0][1209/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.028) Loss 6.4146e+00 (6.8054e+00) Acc@1 0.78 ( 0.31) Acc@5 3.12 ( 1.35) +Epoch: [0][1210/5004] Time 0.236 ( 0.240) Data 0.024 ( 0.028) Loss 6.5301e+00 (6.8052e+00) Acc@1 1.95 ( 0.31) Acc@5 3.52 ( 1.36) +Epoch: [0][1211/5004] Time 0.241 ( 0.240) Data 0.030 ( 0.028) Loss 6.5043e+00 (6.8049e+00) Acc@1 0.39 ( 0.31) Acc@5 3.91 ( 1.36) +Epoch: [0][1212/5004] Time 0.242 ( 0.240) Data 0.028 ( 0.028) Loss 6.4290e+00 (6.8046e+00) Acc@1 0.39 ( 0.31) Acc@5 2.73 ( 1.36) +Epoch: [0][1213/5004] Time 0.236 ( 0.240) Data 0.025 ( 0.028) Loss 6.4379e+00 (6.8043e+00) Acc@1 1.56 ( 0.31) Acc@5 3.52 ( 1.36) +Epoch: [0][1214/5004] Time 0.237 ( 0.240) Data 0.028 ( 0.028) Loss 6.5327e+00 (6.8041e+00) Acc@1 1.17 ( 0.31) Acc@5 3.52 ( 1.36) +Epoch: [0][1215/5004] Time 0.242 ( 0.240) Data 0.030 ( 0.028) Loss 6.4306e+00 (6.8038e+00) Acc@1 0.78 ( 0.31) Acc@5 3.52 ( 1.37) +Epoch: [0][1216/5004] Time 0.237 ( 0.240) Data 0.027 ( 0.028) Loss 6.5953e+00 (6.8036e+00) Acc@1 0.78 ( 0.31) Acc@5 3.12 ( 1.37) +Epoch: [0][1217/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.5162e+00 (6.8034e+00) Acc@1 1.17 ( 0.31) Acc@5 2.34 ( 1.37) +Epoch: [0][1218/5004] Time 0.242 ( 0.240) Data 0.027 ( 0.028) Loss 6.4772e+00 (6.8031e+00) Acc@1 1.17 ( 0.31) Acc@5 5.47 ( 1.37) +Epoch: [0][1219/5004] Time 0.238 ( 0.240) Data 0.024 ( 0.028) Loss 6.5291e+00 (6.8029e+00) Acc@1 0.78 ( 0.31) Acc@5 1.95 ( 1.37) +Epoch: [0][1220/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.028) Loss 6.4888e+00 (6.8026e+00) Acc@1 0.78 ( 0.31) Acc@5 2.73 ( 1.37) +Epoch: [0][1221/5004] Time 0.235 ( 0.240) Data 0.025 ( 0.028) Loss 6.3933e+00 (6.8023e+00) Acc@1 1.17 ( 0.31) Acc@5 5.08 ( 1.38) +Epoch: [0][1222/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.028) Loss 6.4377e+00 (6.8020e+00) Acc@1 1.95 ( 0.32) Acc@5 3.12 ( 1.38) +Epoch: [0][1223/5004] Time 0.238 ( 0.240) Data 0.028 ( 0.028) Loss 6.5765e+00 (6.8018e+00) Acc@1 0.00 ( 0.32) Acc@5 1.95 ( 1.38) +Epoch: [0][1224/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.4773e+00 (6.8015e+00) Acc@1 0.00 ( 0.32) Acc@5 3.91 ( 1.38) +Epoch: [0][1225/5004] Time 0.236 ( 0.240) Data 0.027 ( 0.028) Loss 6.4497e+00 (6.8013e+00) Acc@1 0.39 ( 0.32) Acc@5 1.95 ( 1.38) +Epoch: [0][1226/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.4928e+00 (6.8010e+00) Acc@1 0.78 ( 0.32) Acc@5 3.91 ( 1.38) +Epoch: [0][1227/5004] Time 0.237 ( 0.240) Data 0.027 ( 0.028) Loss 6.3957e+00 (6.8007e+00) Acc@1 1.17 ( 0.32) Acc@5 3.91 ( 1.38) +Epoch: [0][1228/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.4891e+00 (6.8004e+00) Acc@1 1.56 ( 0.32) Acc@5 3.91 ( 1.39) +Epoch: [0][1229/5004] Time 0.236 ( 0.240) Data 0.027 ( 0.028) Loss 6.4502e+00 (6.8001e+00) Acc@1 0.78 ( 0.32) Acc@5 3.52 ( 1.39) +Epoch: [0][1230/5004] Time 0.241 ( 0.240) Data 0.029 ( 0.028) Loss 6.5640e+00 (6.7999e+00) Acc@1 1.17 ( 0.32) Acc@5 3.91 ( 1.39) +Epoch: [0][1231/5004] Time 0.237 ( 0.240) Data 0.027 ( 0.028) Loss 6.3804e+00 (6.7996e+00) Acc@1 0.39 ( 0.32) Acc@5 3.52 ( 1.39) +Epoch: [0][1232/5004] Time 0.237 ( 0.240) Data 0.028 ( 0.028) Loss 6.5117e+00 (6.7994e+00) Acc@1 0.00 ( 0.32) Acc@5 1.95 ( 1.39) +Epoch: [0][1233/5004] Time 0.240 ( 0.240) Data 0.029 ( 0.028) Loss 6.4300e+00 (6.7991e+00) Acc@1 1.17 ( 0.32) Acc@5 2.34 ( 1.39) +Epoch: [0][1234/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.028) Loss 6.4365e+00 (6.7988e+00) Acc@1 1.95 ( 0.32) Acc@5 5.08 ( 1.40) +Epoch: [0][1235/5004] Time 0.238 ( 0.240) Data 0.027 ( 0.028) Loss 6.5048e+00 (6.7985e+00) Acc@1 0.39 ( 0.32) Acc@5 3.12 ( 1.40) +Epoch: [0][1236/5004] Time 0.237 ( 0.240) Data 0.028 ( 0.028) Loss 6.5424e+00 (6.7983e+00) Acc@1 0.00 ( 0.32) Acc@5 0.39 ( 1.40) +Epoch: [0][1237/5004] Time 0.242 ( 0.240) Data 0.029 ( 0.028) Loss 6.4618e+00 (6.7981e+00) Acc@1 1.95 ( 0.32) Acc@5 5.86 ( 1.40) +Epoch: [0][1238/5004] Time 0.235 ( 0.240) Data 0.026 ( 0.028) Loss 6.3403e+00 (6.7977e+00) Acc@1 1.17 ( 0.32) Acc@5 5.08 ( 1.40) +Epoch: [0][1239/5004] Time 0.240 ( 0.240) Data 0.030 ( 0.028) Loss 6.4037e+00 (6.7974e+00) Acc@1 0.39 ( 0.32) Acc@5 2.73 ( 1.40) +Epoch: [0][1240/5004] Time 0.236 ( 0.240) Data 0.028 ( 0.028) Loss 6.4161e+00 (6.7971e+00) Acc@1 0.78 ( 0.32) Acc@5 2.34 ( 1.40) +Epoch: [0][1241/5004] Time 0.241 ( 0.240) Data 0.030 ( 0.028) Loss 6.3947e+00 (6.7967e+00) Acc@1 0.39 ( 0.32) Acc@5 4.30 ( 1.41) +Epoch: [0][1242/5004] Time 0.237 ( 0.240) Data 0.028 ( 0.028) Loss 6.4388e+00 (6.7965e+00) Acc@1 1.17 ( 0.32) Acc@5 2.73 ( 1.41) +Epoch: [0][1243/5004] Time 0.239 ( 0.240) Data 0.029 ( 0.028) Loss 6.4944e+00 (6.7962e+00) Acc@1 0.78 ( 0.32) Acc@5 1.56 ( 1.41) +Epoch: [0][1244/5004] Time 0.226 ( 0.240) Data 0.029 ( 0.028) Loss 6.4316e+00 (6.7959e+00) Acc@1 1.17 ( 0.32) Acc@5 4.30 ( 1.41) +Epoch: [0][1245/5004] Time 0.229 ( 0.240) Data 0.044 ( 0.028) Loss 6.4433e+00 (6.7956e+00) Acc@1 0.78 ( 0.32) Acc@5 2.34 ( 1.41) +Epoch: [0][1246/5004] Time 0.242 ( 0.240) Data 0.053 ( 0.028) Loss 6.4282e+00 (6.7953e+00) Acc@1 0.39 ( 0.32) Acc@5 1.95 ( 1.41) +Epoch: [0][1247/5004] Time 0.238 ( 0.240) Data 0.050 ( 0.028) Loss 6.5178e+00 (6.7951e+00) Acc@1 0.00 ( 0.32) Acc@5 2.73 ( 1.41) +Epoch: [0][1248/5004] Time 0.235 ( 0.240) Data 0.050 ( 0.028) Loss 6.5146e+00 (6.7949e+00) Acc@1 0.00 ( 0.32) Acc@5 3.52 ( 1.41) +Epoch: [0][1249/5004] Time 0.241 ( 0.240) Data 0.053 ( 0.028) Loss 6.4876e+00 (6.7946e+00) Acc@1 1.17 ( 0.32) Acc@5 5.08 ( 1.42) +Epoch: [0][1250/5004] Time 0.242 ( 0.240) Data 0.050 ( 0.028) Loss 6.4250e+00 (6.7943e+00) Acc@1 1.56 ( 0.33) Acc@5 4.30 ( 1.42) +Epoch: [0][1251/5004] Time 0.236 ( 0.240) Data 0.046 ( 0.028) Loss 6.4470e+00 (6.7941e+00) Acc@1 1.17 ( 0.33) Acc@5 4.30 ( 1.42) +Epoch: [0][1252/5004] Time 0.237 ( 0.240) Data 0.047 ( 0.028) Loss 6.4201e+00 (6.7938e+00) Acc@1 0.39 ( 0.33) Acc@5 2.34 ( 1.42) +Epoch: [0][1253/5004] Time 0.230 ( 0.240) Data 0.049 ( 0.028) Loss 6.4905e+00 (6.7935e+00) Acc@1 0.78 ( 0.33) Acc@5 2.73 ( 1.42) +Epoch: [0][1254/5004] Time 0.243 ( 0.240) Data 0.057 ( 0.028) Loss 6.3618e+00 (6.7932e+00) Acc@1 0.00 ( 0.33) Acc@5 2.73 ( 1.42) +Epoch: [0][1255/5004] Time 0.237 ( 0.240) Data 0.053 ( 0.028) Loss 6.4406e+00 (6.7929e+00) Acc@1 0.39 ( 0.33) Acc@5 2.34 ( 1.43) +Epoch: [0][1256/5004] Time 0.242 ( 0.240) Data 0.054 ( 0.028) Loss 6.4198e+00 (6.7926e+00) Acc@1 0.78 ( 0.33) Acc@5 3.12 ( 1.43) +Epoch: [0][1257/5004] Time 0.237 ( 0.240) Data 0.051 ( 0.028) Loss 6.4886e+00 (6.7924e+00) Acc@1 1.17 ( 0.33) Acc@5 3.52 ( 1.43) +Epoch: [0][1258/5004] Time 0.238 ( 0.240) Data 0.051 ( 0.028) Loss 6.3112e+00 (6.7920e+00) Acc@1 1.17 ( 0.33) Acc@5 4.30 ( 1.43) +Epoch: [0][1259/5004] Time 0.230 ( 0.240) Data 0.051 ( 0.028) Loss 6.5404e+00 (6.7918e+00) Acc@1 0.39 ( 0.33) Acc@5 1.95 ( 1.43) +Epoch: [0][1260/5004] Time 0.248 ( 0.240) Data 0.058 ( 0.028) Loss 6.5018e+00 (6.7916e+00) Acc@1 0.78 ( 0.33) Acc@5 3.52 ( 1.43) +Epoch: [0][1261/5004] Time 0.233 ( 0.240) Data 0.049 ( 0.028) Loss 6.4281e+00 (6.7913e+00) Acc@1 0.39 ( 0.33) Acc@5 3.52 ( 1.43) +Epoch: [0][1262/5004] Time 0.238 ( 0.240) Data 0.054 ( 0.028) Loss 6.4048e+00 (6.7910e+00) Acc@1 0.78 ( 0.33) Acc@5 3.12 ( 1.44) +Epoch: [0][1263/5004] Time 0.238 ( 0.240) Data 0.053 ( 0.028) Loss 6.5059e+00 (6.7907e+00) Acc@1 0.00 ( 0.33) Acc@5 3.12 ( 1.44) +Epoch: [0][1264/5004] Time 0.240 ( 0.240) Data 0.054 ( 0.028) Loss 6.3292e+00 (6.7904e+00) Acc@1 0.78 ( 0.33) Acc@5 4.30 ( 1.44) +Epoch: [0][1265/5004] Time 0.235 ( 0.240) Data 0.051 ( 0.028) Loss 6.3653e+00 (6.7900e+00) Acc@1 0.78 ( 0.33) Acc@5 3.91 ( 1.44) +Epoch: [0][1266/5004] Time 0.235 ( 0.240) Data 0.054 ( 0.028) Loss 6.3779e+00 (6.7897e+00) Acc@1 1.56 ( 0.33) Acc@5 3.91 ( 1.44) +Epoch: [0][1267/5004] Time 0.242 ( 0.240) Data 0.057 ( 0.028) Loss 6.5100e+00 (6.7895e+00) Acc@1 0.78 ( 0.33) Acc@5 1.95 ( 1.44) +Epoch: [0][1268/5004] Time 0.240 ( 0.240) Data 0.053 ( 0.028) Loss 6.4875e+00 (6.7893e+00) Acc@1 0.39 ( 0.33) Acc@5 2.73 ( 1.44) +Epoch: [0][1269/5004] Time 0.236 ( 0.240) Data 0.051 ( 0.028) Loss 6.4479e+00 (6.7890e+00) Acc@1 0.39 ( 0.33) Acc@5 1.56 ( 1.45) +Epoch: [0][1270/5004] Time 0.243 ( 0.240) Data 0.053 ( 0.028) Loss 6.3697e+00 (6.7887e+00) Acc@1 1.95 ( 0.33) Acc@5 5.08 ( 1.45) +Epoch: [0][1271/5004] Time 0.239 ( 0.240) Data 0.047 ( 0.028) Loss 6.4246e+00 (6.7884e+00) Acc@1 0.78 ( 0.33) Acc@5 4.30 ( 1.45) +Epoch: [0][1272/5004] Time 0.229 ( 0.240) Data 0.047 ( 0.028) Loss 6.5503e+00 (6.7882e+00) Acc@1 0.00 ( 0.33) Acc@5 3.52 ( 1.45) +Epoch: [0][1273/5004] Time 0.244 ( 0.240) Data 0.057 ( 0.028) Loss 6.3958e+00 (6.7879e+00) Acc@1 0.39 ( 0.33) Acc@5 2.73 ( 1.45) +Epoch: [0][1274/5004] Time 0.241 ( 0.240) Data 0.051 ( 0.028) Loss 6.4417e+00 (6.7876e+00) Acc@1 0.78 ( 0.33) Acc@5 4.69 ( 1.46) +Epoch: [0][1275/5004] Time 0.241 ( 0.240) Data 0.053 ( 0.028) Loss 6.4559e+00 (6.7873e+00) Acc@1 0.78 ( 0.33) Acc@5 3.52 ( 1.46) +Epoch: [0][1276/5004] Time 0.234 ( 0.240) Data 0.049 ( 0.028) Loss 6.5690e+00 (6.7872e+00) Acc@1 1.56 ( 0.33) Acc@5 2.73 ( 1.46) +Epoch: [0][1277/5004] Time 0.243 ( 0.240) Data 0.058 ( 0.028) Loss 6.5855e+00 (6.7870e+00) Acc@1 0.78 ( 0.33) Acc@5 2.73 ( 1.46) +Epoch: [0][1278/5004] Time 0.238 ( 0.240) Data 0.053 ( 0.028) Loss 6.5444e+00 (6.7868e+00) Acc@1 0.39 ( 0.33) Acc@5 1.56 ( 1.46) +Epoch: [0][1279/5004] Time 0.244 ( 0.240) Data 0.056 ( 0.029) Loss 6.3557e+00 (6.7865e+00) Acc@1 0.78 ( 0.34) Acc@5 4.30 ( 1.46) +Epoch: [0][1280/5004] Time 0.241 ( 0.240) Data 0.051 ( 0.029) Loss 6.3755e+00 (6.7862e+00) Acc@1 0.78 ( 0.34) Acc@5 7.03 ( 1.47) +Epoch: [0][1281/5004] Time 0.237 ( 0.240) Data 0.048 ( 0.029) Loss 6.3811e+00 (6.7858e+00) Acc@1 1.17 ( 0.34) Acc@5 5.08 ( 1.47) +Epoch: [0][1282/5004] Time 0.237 ( 0.240) Data 0.050 ( 0.029) Loss 6.4712e+00 (6.7856e+00) Acc@1 0.00 ( 0.34) Acc@5 1.95 ( 1.47) +Epoch: [0][1283/5004] Time 0.238 ( 0.240) Data 0.051 ( 0.029) Loss 6.5466e+00 (6.7854e+00) Acc@1 0.00 ( 0.34) Acc@5 1.95 ( 1.47) +Epoch: [0][1284/5004] Time 0.239 ( 0.240) Data 0.053 ( 0.029) Loss 6.4431e+00 (6.7852e+00) Acc@1 0.00 ( 0.34) Acc@5 3.91 ( 1.47) +Epoch: [0][1285/5004] Time 0.236 ( 0.240) Data 0.052 ( 0.029) Loss 6.4809e+00 (6.7849e+00) Acc@1 0.39 ( 0.34) Acc@5 3.12 ( 1.47) +Epoch: [0][1286/5004] Time 0.241 ( 0.240) Data 0.055 ( 0.029) Loss 6.5216e+00 (6.7847e+00) Acc@1 0.00 ( 0.34) Acc@5 3.91 ( 1.47) +Epoch: [0][1287/5004] Time 0.239 ( 0.240) Data 0.055 ( 0.029) Loss 6.4891e+00 (6.7845e+00) Acc@1 0.00 ( 0.33) Acc@5 0.78 ( 1.47) +Epoch: [0][1288/5004] Time 0.241 ( 0.240) Data 0.054 ( 0.029) Loss 6.3798e+00 (6.7842e+00) Acc@1 2.34 ( 0.34) Acc@5 4.69 ( 1.48) +Epoch: [0][1289/5004] Time 0.239 ( 0.240) Data 0.053 ( 0.029) Loss 6.5055e+00 (6.7839e+00) Acc@1 1.17 ( 0.34) Acc@5 3.91 ( 1.48) +Epoch: [0][1290/5004] Time 0.236 ( 0.240) Data 0.052 ( 0.029) Loss 6.4041e+00 (6.7837e+00) Acc@1 0.78 ( 0.34) Acc@5 2.73 ( 1.48) +Epoch: [0][1291/5004] Time 0.238 ( 0.240) Data 0.054 ( 0.029) Loss 6.4691e+00 (6.7834e+00) Acc@1 1.17 ( 0.34) Acc@5 3.52 ( 1.48) +Epoch: [0][1292/5004] Time 0.239 ( 0.240) Data 0.053 ( 0.029) Loss 6.5379e+00 (6.7832e+00) Acc@1 0.39 ( 0.34) Acc@5 3.12 ( 1.48) +Epoch: [0][1293/5004] Time 0.236 ( 0.240) Data 0.054 ( 0.029) Loss 6.4660e+00 (6.7830e+00) Acc@1 0.00 ( 0.34) Acc@5 2.34 ( 1.48) +Epoch: [0][1294/5004] Time 0.249 ( 0.240) Data 0.055 ( 0.029) Loss 6.4280e+00 (6.7827e+00) Acc@1 1.56 ( 0.34) Acc@5 3.91 ( 1.48) +Epoch: [0][1295/5004] Time 0.229 ( 0.240) Data 0.044 ( 0.029) Loss 6.4608e+00 (6.7825e+00) Acc@1 0.78 ( 0.34) Acc@5 3.52 ( 1.49) +Epoch: [0][1296/5004] Time 0.237 ( 0.240) Data 0.052 ( 0.029) Loss 6.4110e+00 (6.7822e+00) Acc@1 0.39 ( 0.34) Acc@5 5.86 ( 1.49) +Epoch: [0][1297/5004] Time 0.243 ( 0.240) Data 0.053 ( 0.029) Loss 6.5028e+00 (6.7820e+00) Acc@1 1.56 ( 0.34) Acc@5 5.08 ( 1.49) +Epoch: [0][1298/5004] Time 0.237 ( 0.240) Data 0.052 ( 0.029) Loss 6.4340e+00 (6.7817e+00) Acc@1 0.00 ( 0.34) Acc@5 2.34 ( 1.49) +Epoch: [0][1299/5004] Time 0.239 ( 0.240) Data 0.053 ( 0.029) Loss 6.4096e+00 (6.7814e+00) Acc@1 0.39 ( 0.34) Acc@5 2.73 ( 1.49) +Epoch: [0][1300/5004] Time 0.237 ( 0.240) Data 0.052 ( 0.029) Loss 6.3859e+00 (6.7811e+00) Acc@1 1.17 ( 0.34) Acc@5 3.52 ( 1.50) +Epoch: [0][1301/5004] Time 0.238 ( 0.240) Data 0.053 ( 0.029) Loss 6.3549e+00 (6.7808e+00) Acc@1 1.17 ( 0.34) Acc@5 3.91 ( 1.50) +Epoch: [0][1302/5004] Time 0.235 ( 0.240) Data 0.054 ( 0.029) Loss 6.3428e+00 (6.7804e+00) Acc@1 1.95 ( 0.34) Acc@5 5.86 ( 1.50) +Epoch: [0][1303/5004] Time 0.240 ( 0.240) Data 0.057 ( 0.029) Loss 6.3967e+00 (6.7801e+00) Acc@1 1.17 ( 0.34) Acc@5 4.30 ( 1.50) +Epoch: [0][1304/5004] Time 0.237 ( 0.240) Data 0.054 ( 0.029) Loss 6.4403e+00 (6.7799e+00) Acc@1 0.39 ( 0.34) Acc@5 1.17 ( 1.50) +Epoch: [0][1305/5004] Time 0.241 ( 0.240) Data 0.053 ( 0.029) Loss 6.4673e+00 (6.7796e+00) Acc@1 0.00 ( 0.34) Acc@5 2.73 ( 1.50) +Epoch: [0][1306/5004] Time 0.237 ( 0.240) Data 0.051 ( 0.029) Loss 6.2918e+00 (6.7793e+00) Acc@1 0.78 ( 0.34) Acc@5 4.69 ( 1.51) +Epoch: [0][1307/5004] Time 0.233 ( 0.240) Data 0.052 ( 0.029) Loss 6.5052e+00 (6.7791e+00) Acc@1 0.00 ( 0.34) Acc@5 2.34 ( 1.51) +Epoch: [0][1308/5004] Time 0.266 ( 0.240) Data 0.057 ( 0.029) Loss 6.3467e+00 (6.7787e+00) Acc@1 0.00 ( 0.34) Acc@5 1.95 ( 1.51) +Epoch: [0][1309/5004] Time 0.244 ( 0.240) Data 0.029 ( 0.029) Loss 6.4065e+00 (6.7784e+00) Acc@1 0.78 ( 0.34) Acc@5 6.64 ( 1.51) +Epoch: [0][1310/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.029) Loss 6.4357e+00 (6.7782e+00) Acc@1 1.56 ( 0.34) Acc@5 4.69 ( 1.51) +Epoch: [0][1311/5004] Time 0.231 ( 0.240) Data 0.023 ( 0.029) Loss 6.3781e+00 (6.7779e+00) Acc@1 0.78 ( 0.34) Acc@5 3.52 ( 1.51) +Epoch: [0][1312/5004] Time 0.239 ( 0.240) Data 0.030 ( 0.029) Loss 6.3506e+00 (6.7775e+00) Acc@1 1.17 ( 0.34) Acc@5 5.08 ( 1.52) +Epoch: [0][1313/5004] Time 0.240 ( 0.240) Data 0.028 ( 0.029) Loss 6.4241e+00 (6.7773e+00) Acc@1 0.78 ( 0.35) Acc@5 1.95 ( 1.52) +Epoch: [0][1314/5004] Time 0.235 ( 0.240) Data 0.026 ( 0.029) Loss 6.4375e+00 (6.7770e+00) Acc@1 0.39 ( 0.35) Acc@5 3.52 ( 1.52) +Epoch: [0][1315/5004] Time 0.237 ( 0.240) Data 0.029 ( 0.029) Loss 6.3504e+00 (6.7767e+00) Acc@1 1.95 ( 0.35) Acc@5 3.91 ( 1.52) +Epoch: [0][1316/5004] Time 0.241 ( 0.240) Data 0.031 ( 0.029) Loss 6.4617e+00 (6.7765e+00) Acc@1 0.39 ( 0.35) Acc@5 2.34 ( 1.52) +Epoch: [0][1317/5004] Time 0.242 ( 0.240) Data 0.028 ( 0.029) Loss 6.4214e+00 (6.7762e+00) Acc@1 1.56 ( 0.35) Acc@5 3.12 ( 1.52) +Epoch: [0][1318/5004] Time 0.235 ( 0.240) Data 0.026 ( 0.029) Loss 6.3391e+00 (6.7759e+00) Acc@1 1.56 ( 0.35) Acc@5 4.30 ( 1.52) +Epoch: [0][1319/5004] Time 0.243 ( 0.240) Data 0.028 ( 0.029) Loss 6.4163e+00 (6.7756e+00) Acc@1 0.39 ( 0.35) Acc@5 2.34 ( 1.53) +Epoch: [0][1320/5004] Time 0.237 ( 0.240) Data 0.025 ( 0.029) Loss 6.3841e+00 (6.7753e+00) Acc@1 1.56 ( 0.35) Acc@5 6.25 ( 1.53) +Epoch: [0][1321/5004] Time 0.247 ( 0.240) Data 0.028 ( 0.029) Loss 6.3572e+00 (6.7750e+00) Acc@1 1.17 ( 0.35) Acc@5 5.08 ( 1.53) +Epoch: [0][1322/5004] Time 0.233 ( 0.240) Data 0.022 ( 0.029) Loss 6.3798e+00 (6.7747e+00) Acc@1 0.00 ( 0.35) Acc@5 3.52 ( 1.53) +Epoch: [0][1323/5004] Time 0.239 ( 0.240) Data 0.027 ( 0.029) Loss 6.3804e+00 (6.7744e+00) Acc@1 0.39 ( 0.35) Acc@5 3.12 ( 1.53) +Epoch: [0][1324/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.3625e+00 (6.7741e+00) Acc@1 2.34 ( 0.35) Acc@5 5.47 ( 1.54) +Epoch: [0][1325/5004] Time 0.238 ( 0.240) Data 0.024 ( 0.029) Loss 6.4310e+00 (6.7738e+00) Acc@1 0.00 ( 0.35) Acc@5 1.95 ( 1.54) +Epoch: [0][1326/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.029) Loss 6.4898e+00 (6.7736e+00) Acc@1 0.39 ( 0.35) Acc@5 3.91 ( 1.54) +Epoch: [0][1327/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.029) Loss 6.4075e+00 (6.7733e+00) Acc@1 0.78 ( 0.35) Acc@5 2.73 ( 1.54) +Epoch: [0][1328/5004] Time 0.239 ( 0.240) Data 0.023 ( 0.029) Loss 6.5419e+00 (6.7731e+00) Acc@1 0.78 ( 0.35) Acc@5 3.52 ( 1.54) +Epoch: [0][1329/5004] Time 0.246 ( 0.240) Data 0.025 ( 0.029) Loss 6.3940e+00 (6.7729e+00) Acc@1 1.17 ( 0.35) Acc@5 2.73 ( 1.54) +Epoch: [0][1330/5004] Time 0.242 ( 0.240) Data 0.021 ( 0.029) Loss 6.3722e+00 (6.7726e+00) Acc@1 0.78 ( 0.35) Acc@5 4.69 ( 1.55) +Epoch: [0][1331/5004] Time 0.238 ( 0.240) Data 0.023 ( 0.029) Loss 6.5138e+00 (6.7724e+00) Acc@1 1.17 ( 0.35) Acc@5 3.91 ( 1.55) +Epoch: [0][1332/5004] Time 0.238 ( 0.240) Data 0.024 ( 0.029) Loss 6.5274e+00 (6.7722e+00) Acc@1 0.39 ( 0.35) Acc@5 1.17 ( 1.55) +Epoch: [0][1333/5004] Time 0.240 ( 0.240) Data 0.024 ( 0.029) Loss 6.4615e+00 (6.7719e+00) Acc@1 1.17 ( 0.35) Acc@5 3.91 ( 1.55) +Epoch: [0][1334/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.029) Loss 6.3853e+00 (6.7717e+00) Acc@1 0.78 ( 0.35) Acc@5 3.91 ( 1.55) +Epoch: [0][1335/5004] Time 0.248 ( 0.240) Data 0.025 ( 0.029) Loss 6.5334e+00 (6.7715e+00) Acc@1 0.78 ( 0.35) Acc@5 3.52 ( 1.55) +Epoch: [0][1336/5004] Time 0.237 ( 0.240) Data 0.018 ( 0.029) Loss 6.4043e+00 (6.7712e+00) Acc@1 0.78 ( 0.35) Acc@5 3.12 ( 1.55) +Epoch: [0][1337/5004] Time 0.246 ( 0.240) Data 0.022 ( 0.029) Loss 6.3497e+00 (6.7709e+00) Acc@1 0.78 ( 0.36) Acc@5 3.91 ( 1.55) +Epoch: [0][1338/5004] Time 0.241 ( 0.240) Data 0.021 ( 0.029) Loss 6.3474e+00 (6.7706e+00) Acc@1 0.39 ( 0.36) Acc@5 5.47 ( 1.56) +Epoch: [0][1339/5004] Time 0.247 ( 0.240) Data 0.024 ( 0.029) Loss 6.4821e+00 (6.7704e+00) Acc@1 1.56 ( 0.36) Acc@5 4.30 ( 1.56) +Epoch: [0][1340/5004] Time 0.245 ( 0.240) Data 0.023 ( 0.029) Loss 6.4784e+00 (6.7701e+00) Acc@1 0.00 ( 0.36) Acc@5 3.12 ( 1.56) +Epoch: [0][1341/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.3568e+00 (6.7698e+00) Acc@1 1.17 ( 0.36) Acc@5 4.30 ( 1.56) +Epoch: [0][1342/5004] Time 0.245 ( 0.240) Data 0.024 ( 0.029) Loss 6.3914e+00 (6.7695e+00) Acc@1 1.17 ( 0.36) Acc@5 4.69 ( 1.57) +Epoch: [0][1343/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.5115e+00 (6.7694e+00) Acc@1 0.39 ( 0.36) Acc@5 1.56 ( 1.57) +Epoch: [0][1344/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.3340e+00 (6.7690e+00) Acc@1 0.39 ( 0.36) Acc@5 4.69 ( 1.57) +Epoch: [0][1345/5004] Time 0.249 ( 0.240) Data 0.024 ( 0.029) Loss 6.3611e+00 (6.7687e+00) Acc@1 0.78 ( 0.36) Acc@5 4.30 ( 1.57) +Epoch: [0][1346/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.3682e+00 (6.7684e+00) Acc@1 1.17 ( 0.36) Acc@5 3.52 ( 1.57) +Epoch: [0][1347/5004] Time 0.247 ( 0.240) Data 0.024 ( 0.029) Loss 6.3658e+00 (6.7681e+00) Acc@1 0.39 ( 0.36) Acc@5 2.34 ( 1.57) +Epoch: [0][1348/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.4214e+00 (6.7679e+00) Acc@1 0.39 ( 0.36) Acc@5 3.12 ( 1.57) +Epoch: [0][1349/5004] Time 0.244 ( 0.240) Data 0.023 ( 0.029) Loss 6.2681e+00 (6.7675e+00) Acc@1 1.17 ( 0.36) Acc@5 4.30 ( 1.57) +Epoch: [0][1350/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.3793e+00 (6.7672e+00) Acc@1 0.39 ( 0.36) Acc@5 2.73 ( 1.58) +Epoch: [0][1351/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.3695e+00 (6.7669e+00) Acc@1 0.78 ( 0.36) Acc@5 3.12 ( 1.58) +Epoch: [0][1352/5004] Time 0.247 ( 0.240) Data 0.025 ( 0.029) Loss 6.2861e+00 (6.7666e+00) Acc@1 0.78 ( 0.36) Acc@5 3.52 ( 1.58) +Epoch: [0][1353/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.4391e+00 (6.7663e+00) Acc@1 0.00 ( 0.36) Acc@5 3.12 ( 1.58) +Epoch: [0][1354/5004] Time 0.238 ( 0.240) Data 0.024 ( 0.029) Loss 6.3437e+00 (6.7660e+00) Acc@1 0.00 ( 0.36) Acc@5 3.12 ( 1.58) +Epoch: [0][1355/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.029) Loss 6.3736e+00 (6.7657e+00) Acc@1 1.56 ( 0.36) Acc@5 4.69 ( 1.58) +Epoch: [0][1356/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.3678e+00 (6.7654e+00) Acc@1 0.78 ( 0.36) Acc@5 5.08 ( 1.59) +Epoch: [0][1357/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.029) Loss 6.4270e+00 (6.7652e+00) Acc@1 1.56 ( 0.36) Acc@5 5.08 ( 1.59) +Epoch: [0][1358/5004] Time 0.237 ( 0.240) Data 0.024 ( 0.029) Loss 6.5202e+00 (6.7650e+00) Acc@1 1.17 ( 0.36) Acc@5 2.34 ( 1.59) +Epoch: [0][1359/5004] Time 0.239 ( 0.240) Data 0.026 ( 0.029) Loss 6.4663e+00 (6.7648e+00) Acc@1 0.39 ( 0.36) Acc@5 2.73 ( 1.59) +Epoch: [0][1360/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.4155e+00 (6.7645e+00) Acc@1 1.56 ( 0.36) Acc@5 3.91 ( 1.59) +Epoch: [0][1361/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.029) Loss 6.3921e+00 (6.7643e+00) Acc@1 0.00 ( 0.36) Acc@5 2.34 ( 1.59) +Epoch: [0][1362/5004] Time 0.239 ( 0.240) Data 0.025 ( 0.029) Loss 6.3030e+00 (6.7639e+00) Acc@1 0.39 ( 0.36) Acc@5 2.73 ( 1.59) +Epoch: [0][1363/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.3896e+00 (6.7636e+00) Acc@1 0.00 ( 0.36) Acc@5 3.91 ( 1.59) +Epoch: [0][1364/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.4997e+00 (6.7634e+00) Acc@1 0.39 ( 0.36) Acc@5 1.17 ( 1.59) +Epoch: [0][1365/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.029) Loss 6.3610e+00 (6.7632e+00) Acc@1 2.34 ( 0.36) Acc@5 4.69 ( 1.60) +Epoch: [0][1366/5004] Time 0.238 ( 0.240) Data 0.026 ( 0.029) Loss 6.4195e+00 (6.7629e+00) Acc@1 0.78 ( 0.36) Acc@5 3.52 ( 1.60) +Epoch: [0][1367/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.4650e+00 (6.7627e+00) Acc@1 1.17 ( 0.36) Acc@5 1.95 ( 1.60) +Epoch: [0][1368/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.4012e+00 (6.7624e+00) Acc@1 0.00 ( 0.36) Acc@5 3.12 ( 1.60) +Epoch: [0][1369/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.3806e+00 (6.7621e+00) Acc@1 0.39 ( 0.36) Acc@5 2.34 ( 1.60) +Epoch: [0][1370/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.3803e+00 (6.7619e+00) Acc@1 1.56 ( 0.36) Acc@5 4.30 ( 1.60) +Epoch: [0][1371/5004] Time 0.240 ( 0.240) Data 0.026 ( 0.029) Loss 6.4176e+00 (6.7616e+00) Acc@1 0.78 ( 0.37) Acc@5 4.30 ( 1.60) +Epoch: [0][1372/5004] Time 0.241 ( 0.240) Data 0.025 ( 0.029) Loss 6.3044e+00 (6.7613e+00) Acc@1 1.17 ( 0.37) Acc@5 3.52 ( 1.60) +Epoch: [0][1373/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.3093e+00 (6.7609e+00) Acc@1 1.17 ( 0.37) Acc@5 5.86 ( 1.61) +Epoch: [0][1374/5004] Time 0.240 ( 0.240) Data 0.025 ( 0.029) Loss 6.3978e+00 (6.7607e+00) Acc@1 0.39 ( 0.37) Acc@5 3.12 ( 1.61) +Epoch: [0][1375/5004] Time 0.246 ( 0.240) Data 0.025 ( 0.029) Loss 6.3523e+00 (6.7604e+00) Acc@1 1.95 ( 0.37) Acc@5 4.69 ( 1.61) +Epoch: [0][1376/5004] Time 0.246 ( 0.240) Data 0.023 ( 0.029) Loss 6.3853e+00 (6.7601e+00) Acc@1 0.39 ( 0.37) Acc@5 1.56 ( 1.61) +Epoch: [0][1377/5004] Time 0.242 ( 0.240) Data 0.022 ( 0.029) Loss 6.3014e+00 (6.7598e+00) Acc@1 1.95 ( 0.37) Acc@5 4.69 ( 1.61) +Epoch: [0][1378/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.5711e+00 (6.7596e+00) Acc@1 1.56 ( 0.37) Acc@5 3.52 ( 1.61) +Epoch: [0][1379/5004] Time 0.238 ( 0.240) Data 0.025 ( 0.029) Loss 6.3389e+00 (6.7593e+00) Acc@1 1.17 ( 0.37) Acc@5 5.08 ( 1.62) +Epoch: [0][1380/5004] Time 0.241 ( 0.240) Data 0.026 ( 0.029) Loss 6.3254e+00 (6.7590e+00) Acc@1 2.34 ( 0.37) Acc@5 5.08 ( 1.62) +Epoch: [0][1381/5004] Time 0.252 ( 0.240) Data 0.025 ( 0.029) Loss 6.2977e+00 (6.7587e+00) Acc@1 0.78 ( 0.37) Acc@5 4.69 ( 1.62) +Epoch: [0][1382/5004] Time 0.244 ( 0.240) Data 0.023 ( 0.029) Loss 6.3900e+00 (6.7584e+00) Acc@1 1.95 ( 0.37) Acc@5 5.08 ( 1.62) +Epoch: [0][1383/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.3432e+00 (6.7581e+00) Acc@1 0.39 ( 0.37) Acc@5 6.25 ( 1.63) +Epoch: [0][1384/5004] Time 0.247 ( 0.240) Data 0.026 ( 0.029) Loss 6.3229e+00 (6.7578e+00) Acc@1 1.17 ( 0.37) Acc@5 3.52 ( 1.63) +Epoch: [0][1385/5004] Time 0.246 ( 0.240) Data 0.024 ( 0.029) Loss 6.3834e+00 (6.7575e+00) Acc@1 0.39 ( 0.37) Acc@5 3.52 ( 1.63) +Epoch: [0][1386/5004] Time 0.245 ( 0.240) Data 0.024 ( 0.029) Loss 6.2609e+00 (6.7572e+00) Acc@1 1.95 ( 0.37) Acc@5 6.25 ( 1.63) +Epoch: [0][1387/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.029) Loss 6.3489e+00 (6.7569e+00) Acc@1 0.00 ( 0.37) Acc@5 2.34 ( 1.63) +Epoch: [0][1388/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.5541e+00 (6.7567e+00) Acc@1 0.78 ( 0.37) Acc@5 2.34 ( 1.63) +Epoch: [0][1389/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3816e+00 (6.7565e+00) Acc@1 1.17 ( 0.38) Acc@5 3.12 ( 1.64) +Epoch: [0][1390/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3931e+00 (6.7562e+00) Acc@1 1.17 ( 0.38) Acc@5 4.30 ( 1.64) +Epoch: [0][1391/5004] Time 0.247 ( 0.240) Data 0.025 ( 0.029) Loss 6.3263e+00 (6.7559e+00) Acc@1 1.17 ( 0.38) Acc@5 3.91 ( 1.64) +Epoch: [0][1392/5004] Time 0.254 ( 0.240) Data 0.024 ( 0.029) Loss 6.3166e+00 (6.7556e+00) Acc@1 0.78 ( 0.38) Acc@5 6.25 ( 1.64) +Epoch: [0][1393/5004] Time 0.250 ( 0.240) Data 0.022 ( 0.029) Loss 6.3621e+00 (6.7553e+00) Acc@1 0.78 ( 0.38) Acc@5 4.30 ( 1.64) +Epoch: [0][1394/5004] Time 0.239 ( 0.240) Data 0.019 ( 0.029) Loss 6.2188e+00 (6.7549e+00) Acc@1 2.73 ( 0.38) Acc@5 7.03 ( 1.65) +Epoch: [0][1395/5004] Time 0.242 ( 0.240) Data 0.024 ( 0.029) Loss 6.4002e+00 (6.7547e+00) Acc@1 0.78 ( 0.38) Acc@5 3.12 ( 1.65) +Epoch: [0][1396/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3129e+00 (6.7544e+00) Acc@1 0.78 ( 0.38) Acc@5 3.91 ( 1.65) +Epoch: [0][1397/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3375e+00 (6.7541e+00) Acc@1 1.95 ( 0.38) Acc@5 5.86 ( 1.65) +Epoch: [0][1398/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3984e+00 (6.7538e+00) Acc@1 1.17 ( 0.38) Acc@5 3.52 ( 1.66) +Epoch: [0][1399/5004] Time 0.246 ( 0.240) Data 0.026 ( 0.029) Loss 6.3931e+00 (6.7535e+00) Acc@1 0.00 ( 0.38) Acc@5 3.91 ( 1.66) +Epoch: [0][1400/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.2205e+00 (6.7532e+00) Acc@1 0.78 ( 0.38) Acc@5 3.91 ( 1.66) +Epoch: [0][1401/5004] Time 0.251 ( 0.240) Data 0.028 ( 0.029) Loss 6.4339e+00 (6.7529e+00) Acc@1 1.17 ( 0.38) Acc@5 4.30 ( 1.66) +Epoch: [0][1402/5004] Time 0.241 ( 0.240) Data 0.024 ( 0.029) Loss 6.3401e+00 (6.7526e+00) Acc@1 0.78 ( 0.38) Acc@5 2.73 ( 1.66) +Epoch: [0][1403/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.3700e+00 (6.7524e+00) Acc@1 1.17 ( 0.38) Acc@5 4.69 ( 1.66) +Epoch: [0][1404/5004] Time 0.244 ( 0.240) Data 0.026 ( 0.029) Loss 6.3224e+00 (6.7521e+00) Acc@1 0.39 ( 0.38) Acc@5 5.08 ( 1.67) +Epoch: [0][1405/5004] Time 0.244 ( 0.240) Data 0.025 ( 0.029) Loss 6.3305e+00 (6.7518e+00) Acc@1 1.17 ( 0.38) Acc@5 4.69 ( 1.67) +Epoch: [0][1406/5004] Time 0.247 ( 0.240) Data 0.025 ( 0.029) Loss 6.4470e+00 (6.7515e+00) Acc@1 0.78 ( 0.38) Acc@5 3.12 ( 1.67) +Epoch: [0][1407/5004] Time 0.245 ( 0.240) Data 0.025 ( 0.029) Loss 6.3360e+00 (6.7512e+00) Acc@1 1.95 ( 0.38) Acc@5 3.91 ( 1.67) +Epoch: [0][1408/5004] Time 0.251 ( 0.240) Data 0.026 ( 0.029) Loss 6.1795e+00 (6.7508e+00) Acc@1 2.34 ( 0.39) Acc@5 4.69 ( 1.67) +Epoch: [0][1409/5004] Time 0.243 ( 0.240) Data 0.023 ( 0.029) Loss 6.2694e+00 (6.7505e+00) Acc@1 0.00 ( 0.39) Acc@5 4.30 ( 1.67) +Epoch: [0][1410/5004] Time 0.247 ( 0.240) Data 0.025 ( 0.029) Loss 6.2787e+00 (6.7502e+00) Acc@1 0.78 ( 0.39) Acc@5 4.30 ( 1.68) +Epoch: [0][1411/5004] Time 0.247 ( 0.240) Data 0.026 ( 0.029) Loss 6.2532e+00 (6.7498e+00) Acc@1 1.56 ( 0.39) Acc@5 5.86 ( 1.68) +Epoch: [0][1412/5004] Time 0.247 ( 0.240) Data 0.024 ( 0.029) Loss 6.4125e+00 (6.7496e+00) Acc@1 0.39 ( 0.39) Acc@5 3.52 ( 1.68) +Epoch: [0][1413/5004] Time 0.244 ( 0.240) Data 0.024 ( 0.029) Loss 6.3096e+00 (6.7493e+00) Acc@1 1.56 ( 0.39) Acc@5 3.12 ( 1.68) +Epoch: [0][1414/5004] Time 0.243 ( 0.240) Data 0.024 ( 0.029) Loss 6.2590e+00 (6.7489e+00) Acc@1 1.17 ( 0.39) Acc@5 5.08 ( 1.68) +Epoch: [0][1415/5004] Time 0.243 ( 0.240) Data 0.025 ( 0.029) Loss 6.3638e+00 (6.7486e+00) Acc@1 1.95 ( 0.39) Acc@5 6.25 ( 1.69) +Epoch: [0][1416/5004] Time 0.243 ( 0.240) Data 0.026 ( 0.029) Loss 6.2412e+00 (6.7483e+00) Acc@1 1.17 ( 0.39) Acc@5 3.91 ( 1.69) +Epoch: [0][1417/5004] Time 0.245 ( 0.240) Data 0.026 ( 0.029) Loss 6.2491e+00 (6.7479e+00) Acc@1 0.00 ( 0.39) Acc@5 3.91 ( 1.69) +Epoch: [0][1418/5004] Time 0.253 ( 0.240) Data 0.026 ( 0.029) Loss 6.3082e+00 (6.7476e+00) Acc@1 1.17 ( 0.39) Acc@5 7.03 ( 1.69) +Epoch: [0][1419/5004] Time 0.250 ( 0.240) Data 0.023 ( 0.029) Loss 6.2790e+00 (6.7473e+00) Acc@1 0.39 ( 0.39) Acc@5 3.12 ( 1.70) +Epoch: [0][1420/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.029) Loss 6.3492e+00 (6.7470e+00) Acc@1 1.17 ( 0.39) Acc@5 5.86 ( 1.70) +Epoch: [0][1421/5004] Time 0.249 ( 0.241) Data 0.024 ( 0.029) Loss 6.4170e+00 (6.7468e+00) Acc@1 2.34 ( 0.39) Acc@5 5.08 ( 1.70) +Epoch: [0][1422/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.029) Loss 6.3644e+00 (6.7465e+00) Acc@1 1.17 ( 0.39) Acc@5 3.52 ( 1.70) +Epoch: [0][1423/5004] Time 0.252 ( 0.241) Data 0.026 ( 0.029) Loss 6.3260e+00 (6.7462e+00) Acc@1 1.56 ( 0.39) Acc@5 4.30 ( 1.70) +Epoch: [0][1424/5004] Time 0.240 ( 0.241) Data 0.020 ( 0.029) Loss 6.2833e+00 (6.7459e+00) Acc@1 1.56 ( 0.39) Acc@5 5.47 ( 1.71) +Epoch: [0][1425/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.029) Loss 6.2706e+00 (6.7456e+00) Acc@1 1.17 ( 0.39) Acc@5 4.69 ( 1.71) +Epoch: [0][1426/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.4572e+00 (6.7454e+00) Acc@1 0.39 ( 0.39) Acc@5 2.34 ( 1.71) +Epoch: [0][1427/5004] Time 0.243 ( 0.241) Data 0.025 ( 0.029) Loss 6.3763e+00 (6.7451e+00) Acc@1 1.17 ( 0.40) Acc@5 4.69 ( 1.71) +Epoch: [0][1428/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.2526e+00 (6.7448e+00) Acc@1 0.00 ( 0.39) Acc@5 5.47 ( 1.71) +Epoch: [0][1429/5004] Time 0.247 ( 0.241) Data 0.026 ( 0.029) Loss 6.2076e+00 (6.7444e+00) Acc@1 1.56 ( 0.40) Acc@5 5.47 ( 1.72) +Epoch: [0][1430/5004] Time 0.242 ( 0.241) Data 0.024 ( 0.029) Loss 6.3113e+00 (6.7441e+00) Acc@1 1.17 ( 0.40) Acc@5 5.86 ( 1.72) +Epoch: [0][1431/5004] Time 0.246 ( 0.241) Data 0.026 ( 0.029) Loss 6.2884e+00 (6.7438e+00) Acc@1 0.39 ( 0.40) Acc@5 3.91 ( 1.72) +Epoch: [0][1432/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.029) Loss 6.3492e+00 (6.7435e+00) Acc@1 1.17 ( 0.40) Acc@5 3.91 ( 1.72) +Epoch: [0][1433/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.029) Loss 6.2837e+00 (6.7432e+00) Acc@1 0.39 ( 0.40) Acc@5 6.64 ( 1.73) +Epoch: [0][1434/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.029) Loss 6.4013e+00 (6.7429e+00) Acc@1 0.00 ( 0.40) Acc@5 4.30 ( 1.73) +Epoch: [0][1435/5004] Time 0.248 ( 0.241) Data 0.026 ( 0.029) Loss 6.3221e+00 (6.7426e+00) Acc@1 0.39 ( 0.40) Acc@5 3.91 ( 1.73) +Epoch: [0][1436/5004] Time 0.248 ( 0.241) Data 0.024 ( 0.029) Loss 6.3740e+00 (6.7424e+00) Acc@1 1.17 ( 0.40) Acc@5 2.73 ( 1.73) +Epoch: [0][1437/5004] Time 0.249 ( 0.241) Data 0.024 ( 0.029) Loss 6.3742e+00 (6.7421e+00) Acc@1 0.78 ( 0.40) Acc@5 3.52 ( 1.73) +Epoch: [0][1438/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.2466e+00 (6.7418e+00) Acc@1 0.39 ( 0.40) Acc@5 4.30 ( 1.73) +Epoch: [0][1439/5004] Time 0.246 ( 0.241) Data 0.023 ( 0.029) Loss 6.3644e+00 (6.7415e+00) Acc@1 1.56 ( 0.40) Acc@5 3.12 ( 1.73) +Epoch: [0][1440/5004] Time 0.244 ( 0.241) Data 0.025 ( 0.029) Loss 6.2651e+00 (6.7412e+00) Acc@1 0.78 ( 0.40) Acc@5 2.73 ( 1.73) +Epoch: [0][1441/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.2780e+00 (6.7409e+00) Acc@1 0.78 ( 0.40) Acc@5 2.34 ( 1.73) +Epoch: [0][1442/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.029) Loss 6.2412e+00 (6.7405e+00) Acc@1 1.95 ( 0.40) Acc@5 5.47 ( 1.74) +Epoch: [0][1443/5004] Time 0.243 ( 0.241) Data 0.026 ( 0.029) Loss 6.3895e+00 (6.7403e+00) Acc@1 1.17 ( 0.40) Acc@5 3.12 ( 1.74) +Epoch: [0][1444/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.2770e+00 (6.7400e+00) Acc@1 0.78 ( 0.40) Acc@5 4.69 ( 1.74) +Epoch: [0][1445/5004] Time 0.247 ( 0.241) Data 0.025 ( 0.029) Loss 6.3611e+00 (6.7397e+00) Acc@1 1.17 ( 0.40) Acc@5 4.69 ( 1.74) +Epoch: [0][1446/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.029) Loss 6.3003e+00 (6.7394e+00) Acc@1 0.78 ( 0.40) Acc@5 4.30 ( 1.74) +Epoch: [0][1447/5004] Time 0.248 ( 0.241) Data 0.025 ( 0.029) Loss 6.1737e+00 (6.7390e+00) Acc@1 1.56 ( 0.40) Acc@5 5.86 ( 1.75) +Epoch: [0][1448/5004] Time 0.243 ( 0.241) Data 0.025 ( 0.029) Loss 6.2777e+00 (6.7387e+00) Acc@1 0.78 ( 0.40) Acc@5 4.30 ( 1.75) +Epoch: [0][1449/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.029) Loss 6.2934e+00 (6.7384e+00) Acc@1 1.17 ( 0.40) Acc@5 3.91 ( 1.75) +Epoch: [0][1450/5004] Time 0.244 ( 0.241) Data 0.025 ( 0.029) Loss 6.3127e+00 (6.7381e+00) Acc@1 0.78 ( 0.40) Acc@5 3.12 ( 1.75) +Epoch: [0][1451/5004] Time 0.244 ( 0.241) Data 0.026 ( 0.029) Loss 6.2478e+00 (6.7377e+00) Acc@1 1.17 ( 0.40) Acc@5 4.69 ( 1.75) +Epoch: [0][1452/5004] Time 0.246 ( 0.241) Data 0.026 ( 0.029) Loss 6.2638e+00 (6.7374e+00) Acc@1 2.34 ( 0.40) Acc@5 6.25 ( 1.76) +Epoch: [0][1453/5004] Time 0.255 ( 0.241) Data 0.025 ( 0.029) Loss 6.2570e+00 (6.7371e+00) Acc@1 0.78 ( 0.41) Acc@5 5.08 ( 1.76) +Epoch: [0][1454/5004] Time 0.229 ( 0.241) Data 0.017 ( 0.029) Loss 6.3286e+00 (6.7368e+00) Acc@1 1.95 ( 0.41) Acc@5 5.47 ( 1.76) +Epoch: [0][1455/5004] Time 0.216 ( 0.241) Data 0.034 ( 0.029) Loss 6.2761e+00 (6.7365e+00) Acc@1 1.56 ( 0.41) Acc@5 6.64 ( 1.76) +Epoch: [0][1456/5004] Time 0.233 ( 0.241) Data 0.055 ( 0.029) Loss 6.2900e+00 (6.7362e+00) Acc@1 2.73 ( 0.41) Acc@5 7.42 ( 1.77) +Epoch: [0][1457/5004] Time 0.242 ( 0.241) Data 0.059 ( 0.029) Loss 6.2390e+00 (6.7358e+00) Acc@1 0.39 ( 0.41) Acc@5 7.42 ( 1.77) +Epoch: [0][1458/5004] Time 0.236 ( 0.241) Data 0.054 ( 0.029) Loss 6.3252e+00 (6.7356e+00) Acc@1 0.78 ( 0.41) Acc@5 2.73 ( 1.77) +Epoch: [0][1459/5004] Time 0.237 ( 0.241) Data 0.056 ( 0.029) Loss 6.2377e+00 (6.7352e+00) Acc@1 0.78 ( 0.41) Acc@5 6.25 ( 1.78) +Epoch: [0][1460/5004] Time 0.238 ( 0.241) Data 0.056 ( 0.029) Loss 6.3278e+00 (6.7349e+00) Acc@1 0.78 ( 0.41) Acc@5 3.91 ( 1.78) +Epoch: [0][1461/5004] Time 0.240 ( 0.241) Data 0.055 ( 0.029) Loss 6.2638e+00 (6.7346e+00) Acc@1 1.17 ( 0.41) Acc@5 5.08 ( 1.78) +Epoch: [0][1462/5004] Time 0.235 ( 0.241) Data 0.053 ( 0.029) Loss 6.3727e+00 (6.7344e+00) Acc@1 1.56 ( 0.41) Acc@5 5.08 ( 1.78) +Epoch: [0][1463/5004] Time 0.239 ( 0.241) Data 0.057 ( 0.029) Loss 6.2691e+00 (6.7341e+00) Acc@1 1.95 ( 0.41) Acc@5 7.42 ( 1.79) +Epoch: [0][1464/5004] Time 0.242 ( 0.241) Data 0.055 ( 0.029) Loss 6.2055e+00 (6.7337e+00) Acc@1 1.95 ( 0.41) Acc@5 6.64 ( 1.79) +Epoch: [0][1465/5004] Time 0.238 ( 0.241) Data 0.053 ( 0.029) Loss 6.2526e+00 (6.7334e+00) Acc@1 1.17 ( 0.41) Acc@5 3.12 ( 1.79) +Epoch: [0][1466/5004] Time 0.234 ( 0.241) Data 0.052 ( 0.029) Loss 6.3752e+00 (6.7331e+00) Acc@1 1.17 ( 0.41) Acc@5 4.69 ( 1.79) +Epoch: [0][1467/5004] Time 0.233 ( 0.241) Data 0.055 ( 0.029) Loss 6.1857e+00 (6.7327e+00) Acc@1 0.39 ( 0.41) Acc@5 4.69 ( 1.79) +Epoch: [0][1468/5004] Time 0.241 ( 0.241) Data 0.060 ( 0.029) Loss 6.3265e+00 (6.7325e+00) Acc@1 1.17 ( 0.41) Acc@5 3.91 ( 1.80) +Epoch: [0][1469/5004] Time 0.237 ( 0.241) Data 0.056 ( 0.029) Loss 6.3754e+00 (6.7322e+00) Acc@1 0.00 ( 0.41) Acc@5 2.34 ( 1.80) +Epoch: [0][1470/5004] Time 0.238 ( 0.241) Data 0.056 ( 0.029) Loss 6.3165e+00 (6.7319e+00) Acc@1 1.95 ( 0.42) Acc@5 6.25 ( 1.80) +Epoch: [0][1471/5004] Time 0.241 ( 0.241) Data 0.057 ( 0.029) Loss 6.2717e+00 (6.7316e+00) Acc@1 1.17 ( 0.42) Acc@5 3.52 ( 1.80) +Epoch: [0][1472/5004] Time 0.236 ( 0.241) Data 0.053 ( 0.029) Loss 6.2634e+00 (6.7313e+00) Acc@1 1.17 ( 0.42) Acc@5 5.47 ( 1.80) +Epoch: [0][1473/5004] Time 0.238 ( 0.241) Data 0.054 ( 0.029) Loss 6.3670e+00 (6.7311e+00) Acc@1 1.56 ( 0.42) Acc@5 4.69 ( 1.80) +Epoch: [0][1474/5004] Time 0.238 ( 0.241) Data 0.054 ( 0.029) Loss 6.2475e+00 (6.7307e+00) Acc@1 1.56 ( 0.42) Acc@5 4.69 ( 1.81) +Epoch: [0][1475/5004] Time 0.236 ( 0.241) Data 0.054 ( 0.029) Loss 6.2395e+00 (6.7304e+00) Acc@1 2.34 ( 0.42) Acc@5 5.08 ( 1.81) +Epoch: [0][1476/5004] Time 0.239 ( 0.241) Data 0.056 ( 0.029) Loss 6.2867e+00 (6.7301e+00) Acc@1 0.39 ( 0.42) Acc@5 1.95 ( 1.81) +Epoch: [0][1477/5004] Time 0.235 ( 0.241) Data 0.054 ( 0.029) Loss 6.3297e+00 (6.7298e+00) Acc@1 0.78 ( 0.42) Acc@5 4.30 ( 1.81) +Epoch: [0][1478/5004] Time 0.234 ( 0.241) Data 0.055 ( 0.029) Loss 6.1355e+00 (6.7294e+00) Acc@1 1.95 ( 0.42) Acc@5 7.81 ( 1.81) +Epoch: [0][1479/5004] Time 0.242 ( 0.241) Data 0.058 ( 0.029) Loss 6.1980e+00 (6.7291e+00) Acc@1 0.39 ( 0.42) Acc@5 5.47 ( 1.82) +Epoch: [0][1480/5004] Time 0.233 ( 0.241) Data 0.052 ( 0.029) Loss 6.3071e+00 (6.7288e+00) Acc@1 0.39 ( 0.42) Acc@5 4.69 ( 1.82) +Epoch: [0][1481/5004] Time 0.265 ( 0.241) Data 0.055 ( 0.029) Loss 6.1472e+00 (6.7284e+00) Acc@1 1.56 ( 0.42) Acc@5 3.91 ( 1.82) +Epoch: [0][1482/5004] Time 0.237 ( 0.241) Data 0.028 ( 0.029) Loss 6.3563e+00 (6.7281e+00) Acc@1 1.56 ( 0.42) Acc@5 5.86 ( 1.82) +Epoch: [0][1483/5004] Time 0.240 ( 0.241) Data 0.029 ( 0.029) Loss 6.2142e+00 (6.7278e+00) Acc@1 0.39 ( 0.42) Acc@5 5.86 ( 1.83) +Epoch: [0][1484/5004] Time 0.239 ( 0.241) Data 0.027 ( 0.029) Loss 6.2932e+00 (6.7275e+00) Acc@1 0.00 ( 0.42) Acc@5 3.91 ( 1.83) +Epoch: [0][1485/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.029) Loss 6.2359e+00 (6.7272e+00) Acc@1 0.39 ( 0.42) Acc@5 4.30 ( 1.83) +Epoch: [0][1486/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.029) Loss 6.3353e+00 (6.7269e+00) Acc@1 1.17 ( 0.42) Acc@5 4.69 ( 1.83) +Epoch: [0][1487/5004] Time 0.240 ( 0.241) Data 0.027 ( 0.029) Loss 6.2622e+00 (6.7266e+00) Acc@1 1.17 ( 0.42) Acc@5 3.91 ( 1.83) +Epoch: [0][1488/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.4513e+00 (6.7264e+00) Acc@1 0.39 ( 0.42) Acc@5 2.73 ( 1.83) +Epoch: [0][1489/5004] Time 0.238 ( 0.241) Data 0.024 ( 0.029) Loss 6.2995e+00 (6.7261e+00) Acc@1 0.39 ( 0.42) Acc@5 4.30 ( 1.83) +Epoch: [0][1490/5004] Time 0.239 ( 0.241) Data 0.025 ( 0.029) Loss 6.2314e+00 (6.7258e+00) Acc@1 1.17 ( 0.42) Acc@5 5.08 ( 1.84) +Epoch: [0][1491/5004] Time 0.245 ( 0.241) Data 0.026 ( 0.029) Loss 6.2915e+00 (6.7255e+00) Acc@1 0.39 ( 0.42) Acc@5 4.69 ( 1.84) +Epoch: [0][1492/5004] Time 0.241 ( 0.241) Data 0.024 ( 0.029) Loss 6.2190e+00 (6.7252e+00) Acc@1 0.78 ( 0.42) Acc@5 4.69 ( 1.84) +Epoch: [0][1493/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.029) Loss 6.3534e+00 (6.7249e+00) Acc@1 1.17 ( 0.42) Acc@5 2.73 ( 1.84) +Epoch: [0][1494/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.029) Loss 6.3487e+00 (6.7247e+00) Acc@1 1.17 ( 0.42) Acc@5 5.47 ( 1.84) +Epoch: [0][1495/5004] Time 0.241 ( 0.241) Data 0.023 ( 0.029) Loss 6.3157e+00 (6.7244e+00) Acc@1 1.56 ( 0.42) Acc@5 4.69 ( 1.85) +Epoch: [0][1496/5004] Time 0.237 ( 0.241) Data 0.024 ( 0.029) Loss 6.1931e+00 (6.7240e+00) Acc@1 0.78 ( 0.43) Acc@5 6.25 ( 1.85) +Epoch: [0][1497/5004] Time 0.238 ( 0.241) Data 0.026 ( 0.029) Loss 6.4112e+00 (6.7238e+00) Acc@1 1.17 ( 0.43) Acc@5 4.30 ( 1.85) +Epoch: [0][1498/5004] Time 0.237 ( 0.241) Data 0.026 ( 0.029) Loss 6.2980e+00 (6.7235e+00) Acc@1 2.34 ( 0.43) Acc@5 5.08 ( 1.85) +Epoch: [0][1499/5004] Time 0.249 ( 0.241) Data 0.027 ( 0.029) Loss 6.1800e+00 (6.7232e+00) Acc@1 1.95 ( 0.43) Acc@5 6.25 ( 1.85) +Epoch: [0][1500/5004] Time 0.252 ( 0.241) Data 0.024 ( 0.029) Loss 6.2490e+00 (6.7229e+00) Acc@1 0.39 ( 0.43) Acc@5 4.30 ( 1.86) +Epoch: [0][1501/5004] Time 0.248 ( 0.241) Data 0.022 ( 0.029) Loss 6.1101e+00 (6.7225e+00) Acc@1 1.95 ( 0.43) Acc@5 5.86 ( 1.86) +Epoch: [0][1502/5004] Time 0.247 ( 0.241) Data 0.023 ( 0.029) Loss 6.2451e+00 (6.7221e+00) Acc@1 2.34 ( 0.43) Acc@5 4.69 ( 1.86) +Epoch: [0][1503/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.029) Loss 6.2390e+00 (6.7218e+00) Acc@1 1.56 ( 0.43) Acc@5 7.03 ( 1.86) +Epoch: [0][1504/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.029) Loss 6.2240e+00 (6.7215e+00) Acc@1 1.95 ( 0.43) Acc@5 5.47 ( 1.87) +Epoch: [0][1505/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.029) Loss 6.1914e+00 (6.7211e+00) Acc@1 1.95 ( 0.43) Acc@5 7.03 ( 1.87) +Epoch: [0][1506/5004] Time 0.247 ( 0.241) Data 0.023 ( 0.029) Loss 6.2158e+00 (6.7208e+00) Acc@1 1.17 ( 0.43) Acc@5 5.86 ( 1.87) +Epoch: [0][1507/5004] Time 0.244 ( 0.241) Data 0.023 ( 0.029) Loss 6.2695e+00 (6.7205e+00) Acc@1 0.78 ( 0.43) Acc@5 0.78 ( 1.87) +Epoch: [0][1508/5004] Time 0.246 ( 0.241) Data 0.024 ( 0.029) Loss 6.2473e+00 (6.7202e+00) Acc@1 1.17 ( 0.43) Acc@5 4.30 ( 1.87) +Epoch: [0][1509/5004] Time 0.247 ( 0.241) Data 0.024 ( 0.029) Loss 6.3158e+00 (6.7199e+00) Acc@1 1.95 ( 0.44) Acc@5 3.52 ( 1.88) +Epoch: [0][1510/5004] Time 0.244 ( 0.241) Data 0.023 ( 0.029) Loss 6.2713e+00 (6.7196e+00) Acc@1 0.78 ( 0.44) Acc@5 3.52 ( 1.88) +Epoch: [0][1511/5004] Time 0.246 ( 0.241) Data 0.024 ( 0.029) Loss 6.2241e+00 (6.7193e+00) Acc@1 1.17 ( 0.44) Acc@5 3.52 ( 1.88) +Epoch: [0][1512/5004] Time 0.244 ( 0.241) Data 0.023 ( 0.029) Loss 6.3024e+00 (6.7190e+00) Acc@1 1.56 ( 0.44) Acc@5 5.86 ( 1.88) +Epoch: [0][1513/5004] Time 0.245 ( 0.241) Data 0.024 ( 0.029) Loss 6.3270e+00 (6.7188e+00) Acc@1 1.95 ( 0.44) Acc@5 2.73 ( 1.88) +Epoch: [0][1514/5004] Time 0.244 ( 0.241) Data 0.024 ( 0.029) Loss 6.3048e+00 (6.7185e+00) Acc@1 1.17 ( 0.44) Acc@5 4.30 ( 1.88) +Epoch: [0][1515/5004] Time 0.248 ( 0.241) Data 0.024 ( 0.029) Loss 6.3105e+00 (6.7182e+00) Acc@1 0.00 ( 0.44) Acc@5 4.69 ( 1.88) +Epoch: [0][1516/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.029) Loss 6.2362e+00 (6.7179e+00) Acc@1 1.56 ( 0.44) Acc@5 3.91 ( 1.89) +Epoch: [0][1517/5004] Time 0.245 ( 0.241) Data 0.023 ( 0.029) Loss 6.1931e+00 (6.7176e+00) Acc@1 1.17 ( 0.44) Acc@5 5.47 ( 1.89) +Epoch: [0][1518/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.2352e+00 (6.7172e+00) Acc@1 3.52 ( 0.44) Acc@5 6.25 ( 1.89) +Epoch: [0][1519/5004] Time 0.247 ( 0.241) Data 0.022 ( 0.029) Loss 6.2094e+00 (6.7169e+00) Acc@1 1.56 ( 0.44) Acc@5 4.30 ( 1.89) +Epoch: [0][1520/5004] Time 0.246 ( 0.241) Data 0.021 ( 0.029) Loss 6.3642e+00 (6.7167e+00) Acc@1 1.56 ( 0.44) Acc@5 3.91 ( 1.89) +Epoch: [0][1521/5004] Time 0.248 ( 0.241) Data 0.023 ( 0.029) Loss 6.2692e+00 (6.7164e+00) Acc@1 0.39 ( 0.44) Acc@5 3.52 ( 1.89) +Epoch: [0][1522/5004] Time 0.253 ( 0.241) Data 0.021 ( 0.029) Loss 6.2933e+00 (6.7161e+00) Acc@1 1.95 ( 0.44) Acc@5 5.47 ( 1.90) +Epoch: [0][1523/5004] Time 0.251 ( 0.241) Data 0.017 ( 0.029) Loss 6.3833e+00 (6.7159e+00) Acc@1 0.78 ( 0.44) Acc@5 5.47 ( 1.90) +Epoch: [0][1524/5004] Time 0.256 ( 0.241) Data 0.019 ( 0.029) Loss 6.1545e+00 (6.7155e+00) Acc@1 0.39 ( 0.44) Acc@5 6.25 ( 1.90) +Epoch: [0][1525/5004] Time 0.241 ( 0.241) Data 0.014 ( 0.029) Loss 6.3310e+00 (6.7153e+00) Acc@1 1.56 ( 0.44) Acc@5 4.69 ( 1.90) +Epoch: [0][1526/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.2399e+00 (6.7149e+00) Acc@1 1.17 ( 0.44) Acc@5 3.12 ( 1.90) +Epoch: [0][1527/5004] Time 0.249 ( 0.241) Data 0.021 ( 0.029) Loss 6.2470e+00 (6.7146e+00) Acc@1 0.78 ( 0.45) Acc@5 5.08 ( 1.91) +Epoch: [0][1528/5004] Time 0.251 ( 0.241) Data 0.021 ( 0.029) Loss 6.2505e+00 (6.7143e+00) Acc@1 1.17 ( 0.45) Acc@5 5.47 ( 1.91) +Epoch: [0][1529/5004] Time 0.253 ( 0.241) Data 0.020 ( 0.029) Loss 6.2150e+00 (6.7140e+00) Acc@1 1.95 ( 0.45) Acc@5 4.69 ( 1.91) +Epoch: [0][1530/5004] Time 0.250 ( 0.241) Data 0.019 ( 0.029) Loss 6.2503e+00 (6.7137e+00) Acc@1 0.78 ( 0.45) Acc@5 5.08 ( 1.91) +Epoch: [0][1531/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.029) Loss 6.3077e+00 (6.7134e+00) Acc@1 1.95 ( 0.45) Acc@5 3.52 ( 1.91) +Epoch: [0][1532/5004] Time 0.245 ( 0.241) Data 0.020 ( 0.029) Loss 6.3023e+00 (6.7132e+00) Acc@1 1.95 ( 0.45) Acc@5 4.69 ( 1.92) +Epoch: [0][1533/5004] Time 0.248 ( 0.241) Data 0.021 ( 0.029) Loss 6.2406e+00 (6.7129e+00) Acc@1 1.95 ( 0.45) Acc@5 6.64 ( 1.92) +Epoch: [0][1534/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.2438e+00 (6.7126e+00) Acc@1 1.56 ( 0.45) Acc@5 4.69 ( 1.92) +Epoch: [0][1535/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.029) Loss 6.2934e+00 (6.7123e+00) Acc@1 0.00 ( 0.45) Acc@5 4.30 ( 1.92) +Epoch: [0][1536/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.3063e+00 (6.7120e+00) Acc@1 1.95 ( 0.45) Acc@5 6.25 ( 1.92) +Epoch: [0][1537/5004] Time 0.245 ( 0.241) Data 0.019 ( 0.029) Loss 6.2277e+00 (6.7117e+00) Acc@1 0.78 ( 0.45) Acc@5 4.30 ( 1.93) +Epoch: [0][1538/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.2253e+00 (6.7114e+00) Acc@1 0.78 ( 0.45) Acc@5 4.69 ( 1.93) +Epoch: [0][1539/5004] Time 0.248 ( 0.241) Data 0.021 ( 0.029) Loss 6.2888e+00 (6.7111e+00) Acc@1 0.39 ( 0.45) Acc@5 4.30 ( 1.93) +Epoch: [0][1540/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.029) Loss 6.1503e+00 (6.7108e+00) Acc@1 1.95 ( 0.45) Acc@5 6.64 ( 1.93) +Epoch: [0][1541/5004] Time 0.246 ( 0.241) Data 0.017 ( 0.029) Loss 6.1702e+00 (6.7104e+00) Acc@1 1.17 ( 0.45) Acc@5 5.86 ( 1.94) +Epoch: [0][1542/5004] Time 0.246 ( 0.241) Data 0.019 ( 0.029) Loss 6.2719e+00 (6.7101e+00) Acc@1 0.78 ( 0.45) Acc@5 3.91 ( 1.94) +Epoch: [0][1543/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.3179e+00 (6.7099e+00) Acc@1 1.56 ( 0.45) Acc@5 4.69 ( 1.94) +Epoch: [0][1544/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.2715e+00 (6.7096e+00) Acc@1 1.56 ( 0.45) Acc@5 5.47 ( 1.94) +Epoch: [0][1545/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.3820e+00 (6.7094e+00) Acc@1 0.39 ( 0.45) Acc@5 3.52 ( 1.94) +Epoch: [0][1546/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.029) Loss 6.3044e+00 (6.7091e+00) Acc@1 0.78 ( 0.45) Acc@5 2.73 ( 1.94) +Epoch: [0][1547/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.2277e+00 (6.7088e+00) Acc@1 0.39 ( 0.45) Acc@5 5.86 ( 1.94) +Epoch: [0][1548/5004] Time 0.257 ( 0.241) Data 0.022 ( 0.029) Loss 6.1795e+00 (6.7085e+00) Acc@1 1.17 ( 0.46) Acc@5 3.52 ( 1.95) +Epoch: [0][1549/5004] Time 0.254 ( 0.241) Data 0.020 ( 0.029) Loss 6.3450e+00 (6.7082e+00) Acc@1 1.56 ( 0.46) Acc@5 2.73 ( 1.95) +Epoch: [0][1550/5004] Time 0.249 ( 0.241) Data 0.021 ( 0.029) Loss 6.1779e+00 (6.7079e+00) Acc@1 1.56 ( 0.46) Acc@5 5.47 ( 1.95) +Epoch: [0][1551/5004] Time 0.246 ( 0.241) Data 0.021 ( 0.029) Loss 6.1738e+00 (6.7075e+00) Acc@1 0.78 ( 0.46) Acc@5 5.08 ( 1.95) +Epoch: [0][1552/5004] Time 0.248 ( 0.241) Data 0.023 ( 0.029) Loss 6.1556e+00 (6.7072e+00) Acc@1 2.34 ( 0.46) Acc@5 7.42 ( 1.95) +Epoch: [0][1553/5004] Time 0.248 ( 0.241) Data 0.023 ( 0.029) Loss 6.2513e+00 (6.7069e+00) Acc@1 0.78 ( 0.46) Acc@5 5.08 ( 1.96) +Epoch: [0][1554/5004] Time 0.249 ( 0.241) Data 0.022 ( 0.029) Loss 6.2816e+00 (6.7066e+00) Acc@1 1.17 ( 0.46) Acc@5 3.91 ( 1.96) +Epoch: [0][1555/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.2324e+00 (6.7063e+00) Acc@1 1.17 ( 0.46) Acc@5 5.86 ( 1.96) +Epoch: [0][1556/5004] Time 0.255 ( 0.241) Data 0.021 ( 0.029) Loss 6.2892e+00 (6.7060e+00) Acc@1 0.39 ( 0.46) Acc@5 1.95 ( 1.96) +Epoch: [0][1557/5004] Time 0.256 ( 0.241) Data 0.020 ( 0.029) Loss 6.2318e+00 (6.7057e+00) Acc@1 0.78 ( 0.46) Acc@5 5.08 ( 1.96) +Epoch: [0][1558/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.029) Loss 6.1499e+00 (6.7054e+00) Acc@1 1.17 ( 0.46) Acc@5 7.03 ( 1.97) +Epoch: [0][1559/5004] Time 0.261 ( 0.241) Data 0.022 ( 0.029) Loss 6.1558e+00 (6.7050e+00) Acc@1 1.95 ( 0.46) Acc@5 6.64 ( 1.97) +Epoch: [0][1560/5004] Time 0.250 ( 0.241) Data 0.018 ( 0.029) Loss 6.3091e+00 (6.7048e+00) Acc@1 1.95 ( 0.46) Acc@5 7.81 ( 1.97) +Epoch: [0][1561/5004] Time 0.253 ( 0.241) Data 0.021 ( 0.029) Loss 6.1107e+00 (6.7044e+00) Acc@1 1.17 ( 0.46) Acc@5 7.03 ( 1.98) +Epoch: [0][1562/5004] Time 0.254 ( 0.241) Data 0.020 ( 0.029) Loss 6.3404e+00 (6.7042e+00) Acc@1 0.39 ( 0.46) Acc@5 3.12 ( 1.98) +Epoch: [0][1563/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.029) Loss 6.2402e+00 (6.7039e+00) Acc@1 1.56 ( 0.46) Acc@5 3.91 ( 1.98) +Epoch: [0][1564/5004] Time 0.249 ( 0.241) Data 0.022 ( 0.029) Loss 6.2289e+00 (6.7036e+00) Acc@1 0.78 ( 0.46) Acc@5 4.30 ( 1.98) +Epoch: [0][1565/5004] Time 0.251 ( 0.241) Data 0.022 ( 0.029) Loss 6.3021e+00 (6.7033e+00) Acc@1 0.39 ( 0.46) Acc@5 5.08 ( 1.98) +Epoch: [0][1566/5004] Time 0.252 ( 0.241) Data 0.020 ( 0.029) Loss 6.2117e+00 (6.7030e+00) Acc@1 1.17 ( 0.46) Acc@5 5.86 ( 1.98) +Epoch: [0][1567/5004] Time 0.252 ( 0.241) Data 0.020 ( 0.029) Loss 6.1836e+00 (6.7027e+00) Acc@1 1.17 ( 0.46) Acc@5 5.08 ( 1.99) +Epoch: [0][1568/5004] Time 0.246 ( 0.241) Data 0.020 ( 0.029) Loss 6.2755e+00 (6.7024e+00) Acc@1 1.95 ( 0.46) Acc@5 4.69 ( 1.99) +Epoch: [0][1569/5004] Time 0.248 ( 0.241) Data 0.022 ( 0.029) Loss 6.2979e+00 (6.7021e+00) Acc@1 0.78 ( 0.47) Acc@5 4.69 ( 1.99) +Epoch: [0][1570/5004] Time 0.249 ( 0.241) Data 0.022 ( 0.029) Loss 6.2580e+00 (6.7018e+00) Acc@1 0.00 ( 0.46) Acc@5 5.08 ( 1.99) +Epoch: [0][1571/5004] Time 0.250 ( 0.241) Data 0.022 ( 0.029) Loss 6.0091e+00 (6.7014e+00) Acc@1 1.17 ( 0.47) Acc@5 7.42 ( 1.99) +Epoch: [0][1572/5004] Time 0.248 ( 0.241) Data 0.021 ( 0.029) Loss 6.1477e+00 (6.7011e+00) Acc@1 1.17 ( 0.47) Acc@5 6.25 ( 2.00) +Epoch: [0][1573/5004] Time 0.246 ( 0.241) Data 0.022 ( 0.029) Loss 6.2548e+00 (6.7008e+00) Acc@1 1.17 ( 0.47) Acc@5 4.69 ( 2.00) +Epoch: [0][1574/5004] Time 0.253 ( 0.241) Data 0.023 ( 0.029) Loss 6.2265e+00 (6.7005e+00) Acc@1 0.78 ( 0.47) Acc@5 5.08 ( 2.00) +Epoch: [0][1575/5004] Time 0.243 ( 0.241) Data 0.018 ( 0.029) Loss 6.1972e+00 (6.7002e+00) Acc@1 0.39 ( 0.47) Acc@5 4.69 ( 2.00) +Epoch: [0][1576/5004] Time 0.248 ( 0.241) Data 0.023 ( 0.029) Loss 6.2239e+00 (6.6998e+00) Acc@1 1.17 ( 0.47) Acc@5 5.86 ( 2.00) +Epoch: [0][1577/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.2418e+00 (6.6996e+00) Acc@1 0.39 ( 0.47) Acc@5 6.25 ( 2.01) +Epoch: [0][1578/5004] Time 0.250 ( 0.241) Data 0.022 ( 0.029) Loss 6.1506e+00 (6.6992e+00) Acc@1 1.56 ( 0.47) Acc@5 7.03 ( 2.01) +Epoch: [0][1579/5004] Time 0.249 ( 0.241) Data 0.023 ( 0.029) Loss 6.2323e+00 (6.6989e+00) Acc@1 0.78 ( 0.47) Acc@5 7.42 ( 2.01) +Epoch: [0][1580/5004] Time 0.248 ( 0.241) Data 0.022 ( 0.029) Loss 6.1737e+00 (6.6986e+00) Acc@1 1.95 ( 0.47) Acc@5 6.25 ( 2.02) +Epoch: [0][1581/5004] Time 0.254 ( 0.241) Data 0.024 ( 0.029) Loss 6.1320e+00 (6.6982e+00) Acc@1 1.17 ( 0.47) Acc@5 5.47 ( 2.02) +Epoch: [0][1582/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.029) Loss 6.2560e+00 (6.6979e+00) Acc@1 0.78 ( 0.47) Acc@5 4.30 ( 2.02) +Epoch: [0][1583/5004] Time 0.250 ( 0.241) Data 0.022 ( 0.029) Loss 6.1821e+00 (6.6976e+00) Acc@1 1.17 ( 0.47) Acc@5 4.30 ( 2.02) +Epoch: [0][1584/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.1980e+00 (6.6973e+00) Acc@1 2.34 ( 0.47) Acc@5 7.03 ( 2.02) +Epoch: [0][1585/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.3082e+00 (6.6971e+00) Acc@1 1.17 ( 0.47) Acc@5 4.30 ( 2.03) +Epoch: [0][1586/5004] Time 0.249 ( 0.241) Data 0.021 ( 0.029) Loss 6.1652e+00 (6.6967e+00) Acc@1 1.95 ( 0.47) Acc@5 4.69 ( 2.03) +Epoch: [0][1587/5004] Time 0.252 ( 0.241) Data 0.020 ( 0.029) Loss 6.1305e+00 (6.6964e+00) Acc@1 1.95 ( 0.47) Acc@5 8.20 ( 2.03) +Epoch: [0][1588/5004] Time 0.249 ( 0.241) Data 0.019 ( 0.029) Loss 6.2058e+00 (6.6961e+00) Acc@1 2.34 ( 0.47) Acc@5 6.25 ( 2.03) +Epoch: [0][1589/5004] Time 0.252 ( 0.241) Data 0.019 ( 0.029) Loss 6.2434e+00 (6.6958e+00) Acc@1 0.78 ( 0.47) Acc@5 4.69 ( 2.04) +Epoch: [0][1590/5004] Time 0.247 ( 0.241) Data 0.018 ( 0.029) Loss 6.2432e+00 (6.6955e+00) Acc@1 1.17 ( 0.47) Acc@5 3.91 ( 2.04) +Epoch: [0][1591/5004] Time 0.253 ( 0.241) Data 0.020 ( 0.029) Loss 6.1922e+00 (6.6952e+00) Acc@1 2.73 ( 0.48) Acc@5 6.64 ( 2.04) +Epoch: [0][1592/5004] Time 0.246 ( 0.241) Data 0.018 ( 0.029) Loss 6.2959e+00 (6.6949e+00) Acc@1 1.17 ( 0.48) Acc@5 5.86 ( 2.04) +Epoch: [0][1593/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.029) Loss 6.3707e+00 (6.6947e+00) Acc@1 1.17 ( 0.48) Acc@5 2.34 ( 2.04) +Epoch: [0][1594/5004] Time 0.246 ( 0.241) Data 0.019 ( 0.029) Loss 6.2363e+00 (6.6944e+00) Acc@1 2.34 ( 0.48) Acc@5 5.86 ( 2.04) +Epoch: [0][1595/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.1636e+00 (6.6941e+00) Acc@1 2.34 ( 0.48) Acc@5 5.08 ( 2.05) +Epoch: [0][1596/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.1462e+00 (6.6938e+00) Acc@1 2.34 ( 0.48) Acc@5 8.98 ( 2.05) +Epoch: [0][1597/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.2544e+00 (6.6935e+00) Acc@1 2.34 ( 0.48) Acc@5 6.64 ( 2.05) +Epoch: [0][1598/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.3015e+00 (6.6932e+00) Acc@1 1.95 ( 0.48) Acc@5 5.08 ( 2.06) +Epoch: [0][1599/5004] Time 0.247 ( 0.241) Data 0.019 ( 0.029) Loss 6.3610e+00 (6.6930e+00) Acc@1 0.00 ( 0.48) Acc@5 3.91 ( 2.06) +Epoch: [0][1600/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.2046e+00 (6.6927e+00) Acc@1 1.56 ( 0.48) Acc@5 5.08 ( 2.06) +Epoch: [0][1601/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.029) Loss 6.3110e+00 (6.6925e+00) Acc@1 0.78 ( 0.48) Acc@5 3.12 ( 2.06) +Epoch: [0][1602/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.029) Loss 6.1909e+00 (6.6922e+00) Acc@1 1.17 ( 0.48) Acc@5 5.86 ( 2.06) +Epoch: [0][1603/5004] Time 0.254 ( 0.241) Data 0.020 ( 0.029) Loss 6.1586e+00 (6.6918e+00) Acc@1 1.95 ( 0.48) Acc@5 7.03 ( 2.07) +Epoch: [0][1604/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.2207e+00 (6.6915e+00) Acc@1 0.39 ( 0.48) Acc@5 6.25 ( 2.07) +Epoch: [0][1605/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.2503e+00 (6.6913e+00) Acc@1 0.78 ( 0.48) Acc@5 2.73 ( 2.07) +Epoch: [0][1606/5004] Time 0.247 ( 0.241) Data 0.019 ( 0.029) Loss 6.0979e+00 (6.6909e+00) Acc@1 1.95 ( 0.49) Acc@5 5.47 ( 2.07) +Epoch: [0][1607/5004] Time 0.246 ( 0.241) Data 0.020 ( 0.029) Loss 6.3842e+00 (6.6907e+00) Acc@1 0.39 ( 0.49) Acc@5 5.47 ( 2.07) +Epoch: [0][1608/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.029) Loss 6.3328e+00 (6.6905e+00) Acc@1 0.78 ( 0.49) Acc@5 3.91 ( 2.07) +Epoch: [0][1609/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.028) Loss 6.2704e+00 (6.6902e+00) Acc@1 2.34 ( 0.49) Acc@5 6.25 ( 2.08) +Epoch: [0][1610/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.028) Loss 6.2203e+00 (6.6899e+00) Acc@1 1.95 ( 0.49) Acc@5 5.47 ( 2.08) +Epoch: [0][1611/5004] Time 0.250 ( 0.241) Data 0.021 ( 0.028) Loss 6.2013e+00 (6.6896e+00) Acc@1 2.34 ( 0.49) Acc@5 5.08 ( 2.08) +Epoch: [0][1612/5004] Time 0.249 ( 0.241) Data 0.019 ( 0.028) Loss 6.2946e+00 (6.6894e+00) Acc@1 1.95 ( 0.49) Acc@5 3.91 ( 2.08) +Epoch: [0][1613/5004] Time 0.253 ( 0.241) Data 0.021 ( 0.028) Loss 6.1973e+00 (6.6891e+00) Acc@1 2.34 ( 0.49) Acc@5 5.08 ( 2.08) +Epoch: [0][1614/5004] Time 0.248 ( 0.241) Data 0.016 ( 0.028) Loss 6.1691e+00 (6.6888e+00) Acc@1 1.17 ( 0.49) Acc@5 4.69 ( 2.08) +Epoch: [0][1615/5004] Time 0.247 ( 0.241) Data 0.018 ( 0.028) Loss 6.3083e+00 (6.6885e+00) Acc@1 2.34 ( 0.49) Acc@5 5.47 ( 2.09) +Epoch: [0][1616/5004] Time 0.247 ( 0.241) Data 0.019 ( 0.028) Loss 6.2538e+00 (6.6883e+00) Acc@1 2.34 ( 0.49) Acc@5 5.86 ( 2.09) +Epoch: [0][1617/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.028) Loss 6.1893e+00 (6.6879e+00) Acc@1 0.78 ( 0.49) Acc@5 4.69 ( 2.09) +Epoch: [0][1618/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.3059e+00 (6.6877e+00) Acc@1 1.17 ( 0.49) Acc@5 4.30 ( 2.09) +Epoch: [0][1619/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.3325e+00 (6.6875e+00) Acc@1 1.95 ( 0.50) Acc@5 4.69 ( 2.09) +Epoch: [0][1620/5004] Time 0.252 ( 0.241) Data 0.021 ( 0.028) Loss 6.1155e+00 (6.6871e+00) Acc@1 0.78 ( 0.50) Acc@5 5.86 ( 2.10) +Epoch: [0][1621/5004] Time 0.250 ( 0.241) Data 0.019 ( 0.028) Loss 6.3222e+00 (6.6869e+00) Acc@1 1.17 ( 0.50) Acc@5 4.30 ( 2.10) +Epoch: [0][1622/5004] Time 0.248 ( 0.241) Data 0.018 ( 0.028) Loss 6.2158e+00 (6.6866e+00) Acc@1 0.78 ( 0.50) Acc@5 4.30 ( 2.10) +Epoch: [0][1623/5004] Time 0.253 ( 0.241) Data 0.019 ( 0.028) Loss 6.2599e+00 (6.6864e+00) Acc@1 0.78 ( 0.50) Acc@5 3.12 ( 2.10) +Epoch: [0][1624/5004] Time 0.259 ( 0.241) Data 0.019 ( 0.028) Loss 6.2362e+00 (6.6861e+00) Acc@1 1.56 ( 0.50) Acc@5 6.64 ( 2.10) +Epoch: [0][1625/5004] Time 0.244 ( 0.241) Data 0.015 ( 0.028) Loss 6.2405e+00 (6.6858e+00) Acc@1 0.78 ( 0.50) Acc@5 3.91 ( 2.10) +Epoch: [0][1626/5004] Time 0.254 ( 0.241) Data 0.020 ( 0.028) Loss 6.2532e+00 (6.6855e+00) Acc@1 1.56 ( 0.50) Acc@5 5.08 ( 2.11) +Epoch: [0][1627/5004] Time 0.246 ( 0.241) Data 0.015 ( 0.028) Loss 6.2763e+00 (6.6853e+00) Acc@1 1.17 ( 0.50) Acc@5 3.91 ( 2.11) +Epoch: [0][1628/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.028) Loss 6.1422e+00 (6.6850e+00) Acc@1 1.95 ( 0.50) Acc@5 7.42 ( 2.11) +Epoch: [0][1629/5004] Time 0.253 ( 0.241) Data 0.020 ( 0.028) Loss 6.2447e+00 (6.6847e+00) Acc@1 0.78 ( 0.50) Acc@5 4.69 ( 2.11) +Epoch: [0][1630/5004] Time 0.244 ( 0.241) Data 0.016 ( 0.028) Loss 6.2154e+00 (6.6844e+00) Acc@1 0.78 ( 0.50) Acc@5 5.47 ( 2.11) +Epoch: [0][1631/5004] Time 0.254 ( 0.241) Data 0.021 ( 0.028) Loss 6.1191e+00 (6.6841e+00) Acc@1 1.17 ( 0.50) Acc@5 7.03 ( 2.12) +Epoch: [0][1632/5004] Time 0.260 ( 0.241) Data 0.018 ( 0.028) Loss 6.1192e+00 (6.6837e+00) Acc@1 3.52 ( 0.50) Acc@5 8.20 ( 2.12) +Epoch: [0][1633/5004] Time 0.242 ( 0.241) Data 0.013 ( 0.028) Loss 6.1314e+00 (6.6834e+00) Acc@1 1.95 ( 0.50) Acc@5 5.47 ( 2.12) +Epoch: [0][1634/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.2342e+00 (6.6831e+00) Acc@1 1.17 ( 0.50) Acc@5 5.47 ( 2.12) +Epoch: [0][1635/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.2519e+00 (6.6828e+00) Acc@1 3.52 ( 0.50) Acc@5 9.38 ( 2.13) +Epoch: [0][1636/5004] Time 0.250 ( 0.241) Data 0.019 ( 0.028) Loss 6.1882e+00 (6.6825e+00) Acc@1 1.17 ( 0.51) Acc@5 4.69 ( 2.13) +Epoch: [0][1637/5004] Time 0.254 ( 0.241) Data 0.020 ( 0.028) Loss 6.2924e+00 (6.6823e+00) Acc@1 1.56 ( 0.51) Acc@5 6.25 ( 2.13) +Epoch: [0][1638/5004] Time 0.246 ( 0.241) Data 0.015 ( 0.028) Loss 6.1657e+00 (6.6820e+00) Acc@1 0.78 ( 0.51) Acc@5 6.25 ( 2.13) +Epoch: [0][1639/5004] Time 0.253 ( 0.241) Data 0.019 ( 0.028) Loss 6.1998e+00 (6.6817e+00) Acc@1 0.78 ( 0.51) Acc@5 2.73 ( 2.14) +Epoch: [0][1640/5004] Time 0.259 ( 0.241) Data 0.018 ( 0.028) Loss 6.1405e+00 (6.6814e+00) Acc@1 0.78 ( 0.51) Acc@5 4.30 ( 2.14) +Epoch: [0][1641/5004] Time 0.249 ( 0.241) Data 0.019 ( 0.028) Loss 6.2610e+00 (6.6811e+00) Acc@1 0.39 ( 0.51) Acc@5 5.08 ( 2.14) +Epoch: [0][1642/5004] Time 0.249 ( 0.241) Data 0.019 ( 0.028) Loss 6.1499e+00 (6.6808e+00) Acc@1 1.95 ( 0.51) Acc@5 5.47 ( 2.14) +Epoch: [0][1643/5004] Time 0.246 ( 0.241) Data 0.019 ( 0.028) Loss 6.3120e+00 (6.6806e+00) Acc@1 0.39 ( 0.51) Acc@5 6.25 ( 2.14) +Epoch: [0][1644/5004] Time 0.250 ( 0.241) Data 0.021 ( 0.028) Loss 6.2073e+00 (6.6803e+00) Acc@1 1.95 ( 0.51) Acc@5 4.69 ( 2.14) +Epoch: [0][1645/5004] Time 0.248 ( 0.241) Data 0.018 ( 0.028) Loss 6.1608e+00 (6.6799e+00) Acc@1 0.78 ( 0.51) Acc@5 3.91 ( 2.15) +Epoch: [0][1646/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.028) Loss 6.1852e+00 (6.6796e+00) Acc@1 1.56 ( 0.51) Acc@5 3.91 ( 2.15) +Epoch: [0][1647/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.028) Loss 6.3017e+00 (6.6794e+00) Acc@1 1.95 ( 0.51) Acc@5 5.86 ( 2.15) +Epoch: [0][1648/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.028) Loss 6.1838e+00 (6.6791e+00) Acc@1 1.95 ( 0.51) Acc@5 5.47 ( 2.15) +Epoch: [0][1649/5004] Time 0.250 ( 0.241) Data 0.019 ( 0.028) Loss 6.2170e+00 (6.6788e+00) Acc@1 0.78 ( 0.51) Acc@5 3.91 ( 2.15) +Epoch: [0][1650/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.2075e+00 (6.6786e+00) Acc@1 0.39 ( 0.51) Acc@5 5.47 ( 2.15) +Epoch: [0][1651/5004] Time 0.252 ( 0.241) Data 0.020 ( 0.028) Loss 6.1706e+00 (6.6782e+00) Acc@1 3.12 ( 0.51) Acc@5 7.42 ( 2.16) +Epoch: [0][1652/5004] Time 0.250 ( 0.241) Data 0.019 ( 0.028) Loss 6.1297e+00 (6.6779e+00) Acc@1 1.56 ( 0.51) Acc@5 5.86 ( 2.16) +Epoch: [0][1653/5004] Time 0.255 ( 0.241) Data 0.019 ( 0.028) Loss 6.2389e+00 (6.6776e+00) Acc@1 1.56 ( 0.51) Acc@5 5.86 ( 2.16) +Epoch: [0][1654/5004] Time 0.252 ( 0.241) Data 0.019 ( 0.028) Loss 6.1402e+00 (6.6773e+00) Acc@1 1.95 ( 0.51) Acc@5 6.64 ( 2.16) +Epoch: [0][1655/5004] Time 0.248 ( 0.241) Data 0.018 ( 0.028) Loss 6.2667e+00 (6.6771e+00) Acc@1 1.56 ( 0.51) Acc@5 4.69 ( 2.17) +Epoch: [0][1656/5004] Time 0.249 ( 0.241) Data 0.019 ( 0.028) Loss 6.2832e+00 (6.6768e+00) Acc@1 1.95 ( 0.52) Acc@5 5.08 ( 2.17) +Epoch: [0][1657/5004] Time 0.247 ( 0.241) Data 0.020 ( 0.028) Loss 6.1954e+00 (6.6765e+00) Acc@1 0.00 ( 0.52) Acc@5 5.08 ( 2.17) +Epoch: [0][1658/5004] Time 0.252 ( 0.241) Data 0.020 ( 0.028) Loss 6.1516e+00 (6.6762e+00) Acc@1 0.39 ( 0.52) Acc@5 4.69 ( 2.17) +Epoch: [0][1659/5004] Time 0.247 ( 0.241) Data 0.019 ( 0.028) Loss 6.2377e+00 (6.6760e+00) Acc@1 0.78 ( 0.52) Acc@5 5.08 ( 2.17) +Epoch: [0][1660/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.1120e+00 (6.6756e+00) Acc@1 0.78 ( 0.52) Acc@5 7.81 ( 2.18) +Epoch: [0][1661/5004] Time 0.250 ( 0.241) Data 0.020 ( 0.028) Loss 6.3711e+00 (6.6754e+00) Acc@1 0.39 ( 0.52) Acc@5 3.12 ( 2.18) +Epoch: [0][1662/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.0187e+00 (6.6750e+00) Acc@1 1.17 ( 0.52) Acc@5 7.42 ( 2.18) +Epoch: [0][1663/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.2844e+00 (6.6748e+00) Acc@1 1.95 ( 0.52) Acc@5 6.25 ( 2.18) +Epoch: [0][1664/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.1311e+00 (6.6745e+00) Acc@1 1.56 ( 0.52) Acc@5 5.47 ( 2.18) +Epoch: [0][1665/5004] Time 0.255 ( 0.241) Data 0.020 ( 0.028) Loss 6.1943e+00 (6.6742e+00) Acc@1 1.17 ( 0.52) Acc@5 6.64 ( 2.19) +Epoch: [0][1666/5004] Time 0.252 ( 0.241) Data 0.019 ( 0.028) Loss 6.1019e+00 (6.6739e+00) Acc@1 1.56 ( 0.52) Acc@5 5.86 ( 2.19) +Epoch: [0][1667/5004] Time 0.251 ( 0.241) Data 0.019 ( 0.028) Loss 6.2087e+00 (6.6736e+00) Acc@1 1.17 ( 0.52) Acc@5 6.25 ( 2.19) +Epoch: [0][1668/5004] Time 0.251 ( 0.241) Data 0.019 ( 0.028) Loss 6.0433e+00 (6.6732e+00) Acc@1 1.17 ( 0.52) Acc@5 6.64 ( 2.19) +Epoch: [0][1669/5004] Time 0.248 ( 0.241) Data 0.019 ( 0.028) Loss 6.1208e+00 (6.6729e+00) Acc@1 2.34 ( 0.52) Acc@5 7.81 ( 2.20) +Epoch: [0][1670/5004] Time 0.251 ( 0.241) Data 0.020 ( 0.028) Loss 6.1447e+00 (6.6726e+00) Acc@1 2.34 ( 0.52) Acc@5 7.03 ( 2.20) +Epoch: [0][1671/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.2045e+00 (6.6723e+00) Acc@1 0.78 ( 0.52) Acc@5 6.25 ( 2.20) +Epoch: [0][1672/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.1229e+00 (6.6719e+00) Acc@1 3.91 ( 0.52) Acc@5 8.59 ( 2.21) +Epoch: [0][1673/5004] Time 0.248 ( 0.241) Data 0.020 ( 0.028) Loss 6.1547e+00 (6.6716e+00) Acc@1 1.17 ( 0.52) Acc@5 5.47 ( 2.21) +Epoch: [0][1674/5004] Time 0.249 ( 0.241) Data 0.020 ( 0.028) Loss 6.2099e+00 (6.6714e+00) Acc@1 2.34 ( 0.53) Acc@5 3.91 ( 2.21) +Epoch: [0][1675/5004] Time 0.246 ( 0.241) Data 0.020 ( 0.028) Loss 6.2601e+00 (6.6711e+00) Acc@1 0.78 ( 0.53) Acc@5 5.08 ( 2.21) +Epoch: [0][1676/5004] Time 0.249 ( 0.241) Data 0.021 ( 0.028) Loss 6.0653e+00 (6.6708e+00) Acc@1 1.95 ( 0.53) Acc@5 7.03 ( 2.21) +Epoch: [0][1677/5004] Time 0.232 ( 0.241) Data 0.020 ( 0.028) Loss 6.1612e+00 (6.6705e+00) Acc@1 0.39 ( 0.53) Acc@5 3.52 ( 2.22) +Epoch: [0][1678/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.1563e+00 (6.6701e+00) Acc@1 1.17 ( 0.53) Acc@5 6.25 ( 2.22) +Epoch: [0][1679/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.1880e+00 (6.6699e+00) Acc@1 1.17 ( 0.53) Acc@5 7.42 ( 2.22) +Epoch: [0][1680/5004] Time 0.244 ( 0.241) Data 0.030 ( 0.028) Loss 6.2453e+00 (6.6696e+00) Acc@1 1.56 ( 0.53) Acc@5 5.08 ( 2.22) +Epoch: [0][1681/5004] Time 0.244 ( 0.241) Data 0.030 ( 0.028) Loss 6.0937e+00 (6.6693e+00) Acc@1 2.73 ( 0.53) Acc@5 7.42 ( 2.23) +Epoch: [0][1682/5004] Time 0.241 ( 0.241) Data 0.027 ( 0.028) Loss 6.2553e+00 (6.6690e+00) Acc@1 0.78 ( 0.53) Acc@5 4.69 ( 2.23) +Epoch: [0][1683/5004] Time 0.243 ( 0.241) Data 0.030 ( 0.028) Loss 6.1586e+00 (6.6687e+00) Acc@1 0.78 ( 0.53) Acc@5 4.69 ( 2.23) +Epoch: [0][1684/5004] Time 0.239 ( 0.241) Data 0.029 ( 0.028) Loss 6.2422e+00 (6.6685e+00) Acc@1 1.95 ( 0.53) Acc@5 5.47 ( 2.23) +Epoch: [0][1685/5004] Time 0.243 ( 0.241) Data 0.030 ( 0.028) Loss 6.2275e+00 (6.6682e+00) Acc@1 1.17 ( 0.53) Acc@5 5.08 ( 2.23) +Epoch: [0][1686/5004] Time 0.245 ( 0.241) Data 0.030 ( 0.028) Loss 6.2906e+00 (6.6680e+00) Acc@1 1.17 ( 0.53) Acc@5 3.52 ( 2.23) +Epoch: [0][1687/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.2221e+00 (6.6677e+00) Acc@1 0.78 ( 0.53) Acc@5 5.08 ( 2.23) +Epoch: [0][1688/5004] Time 0.246 ( 0.241) Data 0.030 ( 0.028) Loss 6.0901e+00 (6.6674e+00) Acc@1 3.52 ( 0.53) Acc@5 7.81 ( 2.24) +Epoch: [0][1689/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.1900e+00 (6.6671e+00) Acc@1 0.78 ( 0.53) Acc@5 5.47 ( 2.24) +Epoch: [0][1690/5004] Time 0.256 ( 0.241) Data 0.030 ( 0.028) Loss 6.1244e+00 (6.6668e+00) Acc@1 2.34 ( 0.53) Acc@5 5.86 ( 2.24) +Epoch: [0][1691/5004] Time 0.242 ( 0.241) Data 0.023 ( 0.028) Loss 6.1125e+00 (6.6664e+00) Acc@1 2.73 ( 0.54) Acc@5 6.25 ( 2.24) +Epoch: [0][1692/5004] Time 0.243 ( 0.241) Data 0.027 ( 0.028) Loss 6.1855e+00 (6.6662e+00) Acc@1 2.34 ( 0.54) Acc@5 6.25 ( 2.25) +Epoch: [0][1693/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.1510e+00 (6.6658e+00) Acc@1 2.73 ( 0.54) Acc@5 5.08 ( 2.25) +Epoch: [0][1694/5004] Time 0.245 ( 0.241) Data 0.029 ( 0.028) Loss 6.1798e+00 (6.6656e+00) Acc@1 1.17 ( 0.54) Acc@5 5.86 ( 2.25) +Epoch: [0][1695/5004] Time 0.242 ( 0.241) Data 0.028 ( 0.028) Loss 6.1608e+00 (6.6653e+00) Acc@1 0.78 ( 0.54) Acc@5 7.03 ( 2.25) +Epoch: [0][1696/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.0458e+00 (6.6649e+00) Acc@1 3.91 ( 0.54) Acc@5 11.33 ( 2.26) +Epoch: [0][1697/5004] Time 0.243 ( 0.241) Data 0.030 ( 0.028) Loss 6.1492e+00 (6.6646e+00) Acc@1 2.34 ( 0.54) Acc@5 4.69 ( 2.26) +Epoch: [0][1698/5004] Time 0.245 ( 0.241) Data 0.029 ( 0.028) Loss 6.0680e+00 (6.6642e+00) Acc@1 2.34 ( 0.54) Acc@5 6.64 ( 2.26) +Epoch: [0][1699/5004] Time 0.249 ( 0.241) Data 0.029 ( 0.028) Loss 6.2087e+00 (6.6640e+00) Acc@1 1.17 ( 0.54) Acc@5 3.91 ( 2.26) +Epoch: [0][1700/5004] Time 0.241 ( 0.241) Data 0.028 ( 0.028) Loss 6.1310e+00 (6.6637e+00) Acc@1 1.17 ( 0.54) Acc@5 5.47 ( 2.27) +Epoch: [0][1701/5004] Time 0.243 ( 0.241) Data 0.030 ( 0.028) Loss 6.1316e+00 (6.6634e+00) Acc@1 2.73 ( 0.54) Acc@5 7.03 ( 2.27) +Epoch: [0][1702/5004] Time 0.246 ( 0.241) Data 0.029 ( 0.028) Loss 6.1747e+00 (6.6631e+00) Acc@1 1.95 ( 0.54) Acc@5 4.69 ( 2.27) +Epoch: [0][1703/5004] Time 0.243 ( 0.241) Data 0.028 ( 0.028) Loss 6.1172e+00 (6.6627e+00) Acc@1 1.95 ( 0.55) Acc@5 6.64 ( 2.27) +Epoch: [0][1704/5004] Time 0.241 ( 0.241) Data 0.029 ( 0.028) Loss 6.1110e+00 (6.6624e+00) Acc@1 2.34 ( 0.55) Acc@5 8.20 ( 2.28) +Epoch: [0][1705/5004] Time 0.243 ( 0.241) Data 0.030 ( 0.028) Loss 6.1383e+00 (6.6621e+00) Acc@1 1.95 ( 0.55) Acc@5 4.69 ( 2.28) +Epoch: [0][1706/5004] Time 0.242 ( 0.241) Data 0.030 ( 0.028) Loss 6.1165e+00 (6.6618e+00) Acc@1 1.17 ( 0.55) Acc@5 7.03 ( 2.28) +Epoch: [0][1707/5004] Time 0.248 ( 0.241) Data 0.029 ( 0.028) Loss 6.0949e+00 (6.6615e+00) Acc@1 3.52 ( 0.55) Acc@5 9.77 ( 2.28) +Epoch: [0][1708/5004] Time 0.246 ( 0.241) Data 0.029 ( 0.028) Loss 6.2561e+00 (6.6612e+00) Acc@1 1.17 ( 0.55) Acc@5 3.91 ( 2.29) +Epoch: [0][1709/5004] Time 0.245 ( 0.241) Data 0.029 ( 0.028) Loss 6.2271e+00 (6.6610e+00) Acc@1 0.78 ( 0.55) Acc@5 3.52 ( 2.29) +Epoch: [0][1710/5004] Time 0.240 ( 0.241) Data 0.028 ( 0.028) Loss 6.1370e+00 (6.6607e+00) Acc@1 0.78 ( 0.55) Acc@5 6.25 ( 2.29) +Epoch: [0][1711/5004] Time 0.244 ( 0.242) Data 0.030 ( 0.028) Loss 6.1528e+00 (6.6604e+00) Acc@1 1.95 ( 0.55) Acc@5 8.59 ( 2.29) +Epoch: [0][1712/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.028) Loss 6.1146e+00 (6.6600e+00) Acc@1 1.17 ( 0.55) Acc@5 7.03 ( 2.29) +Epoch: [0][1713/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 6.1604e+00 (6.6598e+00) Acc@1 1.56 ( 0.55) Acc@5 6.64 ( 2.30) +Epoch: [0][1714/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.028) Loss 6.1704e+00 (6.6595e+00) Acc@1 0.78 ( 0.55) Acc@5 3.91 ( 2.30) +Epoch: [0][1715/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.028) Loss 6.1208e+00 (6.6592e+00) Acc@1 0.78 ( 0.55) Acc@5 5.86 ( 2.30) +Epoch: [0][1716/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 6.2547e+00 (6.6589e+00) Acc@1 1.56 ( 0.55) Acc@5 4.69 ( 2.30) +Epoch: [0][1717/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 6.1287e+00 (6.6586e+00) Acc@1 1.17 ( 0.55) Acc@5 7.81 ( 2.30) +Epoch: [0][1718/5004] Time 0.257 ( 0.242) Data 0.028 ( 0.028) Loss 6.1600e+00 (6.6583e+00) Acc@1 2.34 ( 0.55) Acc@5 6.64 ( 2.31) +Epoch: [0][1719/5004] Time 0.258 ( 0.242) Data 0.025 ( 0.028) Loss 6.1823e+00 (6.6580e+00) Acc@1 0.39 ( 0.55) Acc@5 5.86 ( 2.31) +Epoch: [0][1720/5004] Time 0.269 ( 0.242) Data 0.025 ( 0.028) Loss 6.1246e+00 (6.6577e+00) Acc@1 1.95 ( 0.56) Acc@5 5.86 ( 2.31) +Epoch: [0][1721/5004] Time 0.262 ( 0.242) Data 0.016 ( 0.028) Loss 6.1511e+00 (6.6574e+00) Acc@1 2.34 ( 0.56) Acc@5 8.59 ( 2.31) +Epoch: [0][1722/5004] Time 0.259 ( 0.242) Data 0.016 ( 0.028) Loss 6.0582e+00 (6.6571e+00) Acc@1 2.73 ( 0.56) Acc@5 7.03 ( 2.32) +Epoch: [0][1723/5004] Time 0.261 ( 0.242) Data 0.018 ( 0.028) Loss 6.1691e+00 (6.6568e+00) Acc@1 1.17 ( 0.56) Acc@5 5.86 ( 2.32) +Epoch: [0][1724/5004] Time 0.258 ( 0.242) Data 0.018 ( 0.028) Loss 6.2556e+00 (6.6566e+00) Acc@1 1.95 ( 0.56) Acc@5 5.08 ( 2.32) +Epoch: [0][1725/5004] Time 0.260 ( 0.242) Data 0.018 ( 0.028) Loss 6.0511e+00 (6.6562e+00) Acc@1 0.78 ( 0.56) Acc@5 6.25 ( 2.32) +Epoch: [0][1726/5004] Time 0.261 ( 0.242) Data 0.019 ( 0.028) Loss 6.0548e+00 (6.6559e+00) Acc@1 1.95 ( 0.56) Acc@5 5.86 ( 2.33) +Epoch: [0][1727/5004] Time 0.259 ( 0.242) Data 0.018 ( 0.028) Loss 6.1456e+00 (6.6556e+00) Acc@1 1.56 ( 0.56) Acc@5 5.86 ( 2.33) +Epoch: [0][1728/5004] Time 0.259 ( 0.242) Data 0.019 ( 0.028) Loss 6.1391e+00 (6.6553e+00) Acc@1 1.56 ( 0.56) Acc@5 5.86 ( 2.33) +Epoch: [0][1729/5004] Time 0.243 ( 0.242) Data 0.018 ( 0.028) Loss 6.1972e+00 (6.6550e+00) Acc@1 1.17 ( 0.56) Acc@5 6.64 ( 2.33) +Epoch: [0][1730/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.028) Loss 6.1704e+00 (6.6547e+00) Acc@1 1.17 ( 0.56) Acc@5 5.08 ( 2.33) +Epoch: [0][1731/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.028) Loss 6.1348e+00 (6.6544e+00) Acc@1 1.95 ( 0.56) Acc@5 7.81 ( 2.34) +Epoch: [0][1732/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.028) Loss 6.1420e+00 (6.6541e+00) Acc@1 1.56 ( 0.56) Acc@5 5.08 ( 2.34) +Epoch: [0][1733/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.1865e+00 (6.6539e+00) Acc@1 3.52 ( 0.56) Acc@5 8.20 ( 2.34) +Epoch: [0][1734/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 6.0599e+00 (6.6535e+00) Acc@1 2.34 ( 0.57) Acc@5 6.64 ( 2.34) +Epoch: [0][1735/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.028) Loss 6.1069e+00 (6.6532e+00) Acc@1 1.17 ( 0.57) Acc@5 5.08 ( 2.35) +Epoch: [0][1736/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.028) Loss 6.1867e+00 (6.6530e+00) Acc@1 1.17 ( 0.57) Acc@5 4.69 ( 2.35) +Epoch: [0][1737/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.028) Loss 6.1279e+00 (6.6526e+00) Acc@1 1.56 ( 0.57) Acc@5 5.86 ( 2.35) +Epoch: [0][1738/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 6.0872e+00 (6.6523e+00) Acc@1 2.34 ( 0.57) Acc@5 5.86 ( 2.35) +Epoch: [0][1739/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.028) Loss 6.1161e+00 (6.6520e+00) Acc@1 0.78 ( 0.57) Acc@5 3.91 ( 2.35) +Epoch: [0][1740/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.028) Loss 6.1532e+00 (6.6517e+00) Acc@1 1.17 ( 0.57) Acc@5 7.03 ( 2.35) +Epoch: [0][1741/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.028) Loss 6.1203e+00 (6.6514e+00) Acc@1 1.17 ( 0.57) Acc@5 5.86 ( 2.36) +Epoch: [0][1742/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.028) Loss 6.0742e+00 (6.6511e+00) Acc@1 3.12 ( 0.57) Acc@5 8.59 ( 2.36) +Epoch: [0][1743/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.028) Loss 6.0750e+00 (6.6508e+00) Acc@1 0.39 ( 0.57) Acc@5 5.08 ( 2.36) +Epoch: [0][1744/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.028) Loss 6.2615e+00 (6.6505e+00) Acc@1 0.39 ( 0.57) Acc@5 3.12 ( 2.36) +Epoch: [0][1745/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.028) Loss 6.0949e+00 (6.6502e+00) Acc@1 2.73 ( 0.57) Acc@5 5.47 ( 2.36) +Epoch: [0][1746/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.028) Loss 6.2251e+00 (6.6500e+00) Acc@1 0.39 ( 0.57) Acc@5 3.12 ( 2.36) +Epoch: [0][1747/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.028) Loss 6.2348e+00 (6.6497e+00) Acc@1 0.78 ( 0.57) Acc@5 5.08 ( 2.37) +Epoch: [0][1748/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.028) Loss 6.2127e+00 (6.6495e+00) Acc@1 2.34 ( 0.57) Acc@5 7.42 ( 2.37) +Epoch: [0][1749/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 6.0923e+00 (6.6492e+00) Acc@1 1.56 ( 0.57) Acc@5 8.59 ( 2.37) +Epoch: [0][1750/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 6.1035e+00 (6.6489e+00) Acc@1 0.78 ( 0.57) Acc@5 3.91 ( 2.37) +Epoch: [0][1751/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.028) Loss 6.2271e+00 (6.6486e+00) Acc@1 1.56 ( 0.57) Acc@5 5.47 ( 2.38) +Epoch: [0][1752/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.028) Loss 6.1105e+00 (6.6483e+00) Acc@1 1.95 ( 0.57) Acc@5 5.86 ( 2.38) +Epoch: [0][1753/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 6.0466e+00 (6.6480e+00) Acc@1 1.95 ( 0.58) Acc@5 7.42 ( 2.38) +Epoch: [0][1754/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.028) Loss 6.1138e+00 (6.6477e+00) Acc@1 0.78 ( 0.58) Acc@5 5.86 ( 2.38) +Epoch: [0][1755/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 6.2065e+00 (6.6474e+00) Acc@1 0.00 ( 0.57) Acc@5 5.08 ( 2.38) +Epoch: [0][1756/5004] Time 0.257 ( 0.242) Data 0.020 ( 0.028) Loss 6.1114e+00 (6.6471e+00) Acc@1 1.95 ( 0.58) Acc@5 5.47 ( 2.39) +Epoch: [0][1757/5004] Time 0.242 ( 0.242) Data 0.016 ( 0.028) Loss 6.1120e+00 (6.6468e+00) Acc@1 3.12 ( 0.58) Acc@5 9.38 ( 2.39) +Epoch: [0][1758/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.028) Loss 6.2484e+00 (6.6466e+00) Acc@1 2.34 ( 0.58) Acc@5 8.59 ( 2.39) +Epoch: [0][1759/5004] Time 0.242 ( 0.242) Data 0.017 ( 0.028) Loss 6.1748e+00 (6.6463e+00) Acc@1 1.56 ( 0.58) Acc@5 6.64 ( 2.40) +Epoch: [0][1760/5004] Time 0.254 ( 0.242) Data 0.021 ( 0.028) Loss 6.2653e+00 (6.6461e+00) Acc@1 2.34 ( 0.58) Acc@5 5.86 ( 2.40) +Epoch: [0][1761/5004] Time 0.242 ( 0.242) Data 0.017 ( 0.028) Loss 6.1549e+00 (6.6458e+00) Acc@1 2.34 ( 0.58) Acc@5 6.25 ( 2.40) +Epoch: [0][1762/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 6.2230e+00 (6.6456e+00) Acc@1 0.00 ( 0.58) Acc@5 2.73 ( 2.40) +Epoch: [0][1763/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.028) Loss 6.1842e+00 (6.6453e+00) Acc@1 1.56 ( 0.58) Acc@5 5.08 ( 2.40) +Epoch: [0][1764/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.028) Loss 6.0838e+00 (6.6450e+00) Acc@1 2.34 ( 0.58) Acc@5 7.42 ( 2.40) +Epoch: [0][1765/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.028) Loss 6.0433e+00 (6.6447e+00) Acc@1 1.17 ( 0.58) Acc@5 7.42 ( 2.41) +Epoch: [0][1766/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.028) Loss 6.0443e+00 (6.6443e+00) Acc@1 0.78 ( 0.58) Acc@5 6.64 ( 2.41) +Epoch: [0][1767/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.028) Loss 6.1498e+00 (6.6440e+00) Acc@1 1.17 ( 0.58) Acc@5 6.64 ( 2.41) +Epoch: [0][1768/5004] Time 0.254 ( 0.242) Data 0.020 ( 0.028) Loss 6.0596e+00 (6.6437e+00) Acc@1 0.78 ( 0.58) Acc@5 4.69 ( 2.41) +Epoch: [0][1769/5004] Time 0.247 ( 0.242) Data 0.016 ( 0.028) Loss 6.1914e+00 (6.6434e+00) Acc@1 2.34 ( 0.58) Acc@5 5.86 ( 2.42) +Epoch: [0][1770/5004] Time 0.274 ( 0.242) Data 0.019 ( 0.028) Loss 6.0309e+00 (6.6431e+00) Acc@1 1.17 ( 0.58) Acc@5 7.03 ( 2.42) +Epoch: [0][1771/5004] Time 0.247 ( 0.242) Data 0.007 ( 0.028) Loss 6.0861e+00 (6.6428e+00) Acc@1 1.56 ( 0.58) Acc@5 5.08 ( 2.42) +Epoch: [0][1772/5004] Time 0.243 ( 0.242) Data 0.018 ( 0.028) Loss 5.9340e+00 (6.6424e+00) Acc@1 3.91 ( 0.59) Acc@5 8.59 ( 2.42) +Epoch: [0][1773/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.028) Loss 6.0812e+00 (6.6421e+00) Acc@1 2.34 ( 0.59) Acc@5 6.64 ( 2.43) +Epoch: [0][1774/5004] Time 0.252 ( 0.242) Data 0.021 ( 0.028) Loss 6.1495e+00 (6.6418e+00) Acc@1 1.56 ( 0.59) Acc@5 5.47 ( 2.43) +Epoch: [0][1775/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.028) Loss 6.1003e+00 (6.6415e+00) Acc@1 1.56 ( 0.59) Acc@5 7.42 ( 2.43) +Epoch: [0][1776/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.0937e+00 (6.6412e+00) Acc@1 2.73 ( 0.59) Acc@5 5.47 ( 2.43) +Epoch: [0][1777/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.9172e+00 (6.6408e+00) Acc@1 2.34 ( 0.59) Acc@5 8.98 ( 2.43) +Epoch: [0][1778/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 5.9841e+00 (6.6404e+00) Acc@1 2.34 ( 0.59) Acc@5 6.64 ( 2.44) +Epoch: [0][1779/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.028) Loss 6.1055e+00 (6.6401e+00) Acc@1 1.56 ( 0.59) Acc@5 6.64 ( 2.44) +Epoch: [0][1780/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.028) Loss 6.0576e+00 (6.6398e+00) Acc@1 1.17 ( 0.59) Acc@5 3.12 ( 2.44) +Epoch: [0][1781/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.028) Loss 6.1577e+00 (6.6395e+00) Acc@1 1.56 ( 0.59) Acc@5 4.69 ( 2.44) +Epoch: [0][1782/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.028) Loss 6.0781e+00 (6.6392e+00) Acc@1 0.00 ( 0.59) Acc@5 6.64 ( 2.44) +Epoch: [0][1783/5004] Time 0.251 ( 0.242) Data 0.024 ( 0.028) Loss 6.2285e+00 (6.6390e+00) Acc@1 0.78 ( 0.59) Acc@5 5.08 ( 2.45) +Epoch: [0][1784/5004] Time 0.244 ( 0.242) Data 0.018 ( 0.028) Loss 6.0485e+00 (6.6386e+00) Acc@1 2.34 ( 0.59) Acc@5 5.47 ( 2.45) +Epoch: [0][1785/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.028) Loss 6.1462e+00 (6.6384e+00) Acc@1 3.52 ( 0.60) Acc@5 8.59 ( 2.45) +Epoch: [0][1786/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.028) Loss 6.0954e+00 (6.6381e+00) Acc@1 1.17 ( 0.60) Acc@5 7.42 ( 2.45) +Epoch: [0][1787/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.028) Loss 6.1748e+00 (6.6378e+00) Acc@1 2.73 ( 0.60) Acc@5 8.20 ( 2.46) +Epoch: [0][1788/5004] Time 0.238 ( 0.242) Data 0.021 ( 0.028) Loss 6.2707e+00 (6.6376e+00) Acc@1 1.17 ( 0.60) Acc@5 6.25 ( 2.46) +Epoch: [0][1789/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.028) Loss 6.1001e+00 (6.6373e+00) Acc@1 3.52 ( 0.60) Acc@5 7.42 ( 2.46) +Epoch: [0][1790/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.028) Loss 6.1933e+00 (6.6370e+00) Acc@1 0.78 ( 0.60) Acc@5 4.30 ( 2.46) +Epoch: [0][1791/5004] Time 0.236 ( 0.242) Data 0.019 ( 0.028) Loss 6.2395e+00 (6.6368e+00) Acc@1 0.78 ( 0.60) Acc@5 3.91 ( 2.46) +Epoch: [0][1792/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.028) Loss 6.0913e+00 (6.6365e+00) Acc@1 0.78 ( 0.60) Acc@5 7.42 ( 2.47) +Epoch: [0][1793/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.028) Loss 6.1195e+00 (6.6362e+00) Acc@1 1.95 ( 0.60) Acc@5 5.08 ( 2.47) +Epoch: [0][1794/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.028) Loss 6.0370e+00 (6.6359e+00) Acc@1 3.12 ( 0.60) Acc@5 7.03 ( 2.47) +Epoch: [0][1795/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.028) Loss 6.0369e+00 (6.6356e+00) Acc@1 1.17 ( 0.60) Acc@5 5.47 ( 2.47) +Epoch: [0][1796/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.028) Loss 6.1822e+00 (6.6353e+00) Acc@1 1.95 ( 0.60) Acc@5 8.98 ( 2.48) +Epoch: [0][1797/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.028) Loss 6.2212e+00 (6.6351e+00) Acc@1 1.17 ( 0.60) Acc@5 4.30 ( 2.48) +Epoch: [0][1798/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.028) Loss 6.0950e+00 (6.6348e+00) Acc@1 3.12 ( 0.60) Acc@5 5.47 ( 2.48) +Epoch: [0][1799/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.028) Loss 6.0732e+00 (6.6345e+00) Acc@1 1.17 ( 0.60) Acc@5 5.86 ( 2.48) +Epoch: [0][1800/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.028) Loss 6.1707e+00 (6.6342e+00) Acc@1 1.95 ( 0.61) Acc@5 6.64 ( 2.48) +Epoch: [0][1801/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.028) Loss 6.1881e+00 (6.6340e+00) Acc@1 0.78 ( 0.61) Acc@5 6.25 ( 2.48) +Epoch: [0][1802/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.028) Loss 6.1594e+00 (6.6337e+00) Acc@1 1.56 ( 0.61) Acc@5 6.25 ( 2.49) +Epoch: [0][1803/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.8065e+00 (6.6332e+00) Acc@1 2.34 ( 0.61) Acc@5 10.94 ( 2.49) +Epoch: [0][1804/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.028) Loss 6.0659e+00 (6.6329e+00) Acc@1 3.52 ( 0.61) Acc@5 6.64 ( 2.49) +Epoch: [0][1805/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.028) Loss 5.9919e+00 (6.6326e+00) Acc@1 1.56 ( 0.61) Acc@5 6.25 ( 2.50) +Epoch: [0][1806/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.028) Loss 6.0433e+00 (6.6322e+00) Acc@1 3.12 ( 0.61) Acc@5 8.59 ( 2.50) +Epoch: [0][1807/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.028) Loss 6.1407e+00 (6.6320e+00) Acc@1 1.95 ( 0.61) Acc@5 5.47 ( 2.50) +Epoch: [0][1808/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.028) Loss 6.2211e+00 (6.6317e+00) Acc@1 2.34 ( 0.61) Acc@5 5.47 ( 2.50) +Epoch: [0][1809/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.028) Loss 5.9636e+00 (6.6314e+00) Acc@1 1.56 ( 0.61) Acc@5 9.38 ( 2.51) +Epoch: [0][1810/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.028) Loss 5.9459e+00 (6.6310e+00) Acc@1 3.12 ( 0.61) Acc@5 10.16 ( 2.51) +Epoch: [0][1811/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.028) Loss 6.0432e+00 (6.6307e+00) Acc@1 1.95 ( 0.61) Acc@5 7.42 ( 2.51) +Epoch: [0][1812/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.028) Loss 6.1375e+00 (6.6304e+00) Acc@1 0.00 ( 0.61) Acc@5 1.56 ( 2.51) +Epoch: [0][1813/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.028) Loss 6.0789e+00 (6.6301e+00) Acc@1 1.17 ( 0.61) Acc@5 5.86 ( 2.51) +Epoch: [0][1814/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.028) Loss 6.1382e+00 (6.6298e+00) Acc@1 1.17 ( 0.62) Acc@5 8.59 ( 2.52) +Epoch: [0][1815/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.028) Loss 6.0653e+00 (6.6295e+00) Acc@1 1.17 ( 0.62) Acc@5 6.25 ( 2.52) +Epoch: [0][1816/5004] Time 0.292 ( 0.242) Data 0.023 ( 0.028) Loss 6.0367e+00 (6.6292e+00) Acc@1 2.34 ( 0.62) Acc@5 7.42 ( 2.52) +Epoch: [0][1817/5004] Time 0.249 ( 0.242) Data 0.015 ( 0.028) Loss 6.0638e+00 (6.6289e+00) Acc@1 2.34 ( 0.62) Acc@5 6.25 ( 2.52) +Epoch: [0][1818/5004] Time 0.253 ( 0.242) Data 0.020 ( 0.028) Loss 6.1218e+00 (6.6286e+00) Acc@1 1.17 ( 0.62) Acc@5 5.47 ( 2.53) +Epoch: [0][1819/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.028) Loss 6.0586e+00 (6.6283e+00) Acc@1 1.17 ( 0.62) Acc@5 5.86 ( 2.53) +Epoch: [0][1820/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.028) Loss 6.1248e+00 (6.6280e+00) Acc@1 2.73 ( 0.62) Acc@5 5.47 ( 2.53) +Epoch: [0][1821/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.028) Loss 6.0495e+00 (6.6277e+00) Acc@1 3.12 ( 0.62) Acc@5 7.81 ( 2.53) +Epoch: [0][1822/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.028) Loss 6.0315e+00 (6.6274e+00) Acc@1 0.39 ( 0.62) Acc@5 5.86 ( 2.53) +Epoch: [0][1823/5004] Time 0.248 ( 0.242) Data 0.019 ( 0.028) Loss 6.0527e+00 (6.6270e+00) Acc@1 4.69 ( 0.62) Acc@5 7.81 ( 2.54) +Epoch: [0][1824/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.028) Loss 6.0548e+00 (6.6267e+00) Acc@1 3.91 ( 0.62) Acc@5 8.20 ( 2.54) +Epoch: [0][1825/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.028) Loss 5.9845e+00 (6.6264e+00) Acc@1 2.34 ( 0.63) Acc@5 9.77 ( 2.54) +Epoch: [0][1826/5004] Time 0.252 ( 0.242) Data 0.019 ( 0.028) Loss 6.0269e+00 (6.6261e+00) Acc@1 1.56 ( 0.63) Acc@5 6.25 ( 2.55) +Epoch: [0][1827/5004] Time 0.250 ( 0.242) Data 0.018 ( 0.028) Loss 6.1214e+00 (6.6258e+00) Acc@1 0.78 ( 0.63) Acc@5 3.91 ( 2.55) +Epoch: [0][1828/5004] Time 0.252 ( 0.242) Data 0.021 ( 0.028) Loss 5.9683e+00 (6.6254e+00) Acc@1 1.17 ( 0.63) Acc@5 5.86 ( 2.55) +Epoch: [0][1829/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.028) Loss 6.0032e+00 (6.6251e+00) Acc@1 3.12 ( 0.63) Acc@5 8.98 ( 2.55) +Epoch: [0][1830/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.028) Loss 6.0998e+00 (6.6248e+00) Acc@1 1.56 ( 0.63) Acc@5 7.42 ( 2.55) +Epoch: [0][1831/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.028) Loss 6.0621e+00 (6.6245e+00) Acc@1 1.17 ( 0.63) Acc@5 7.42 ( 2.56) +Epoch: [0][1832/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.028) Loss 5.9694e+00 (6.6241e+00) Acc@1 2.73 ( 0.63) Acc@5 8.59 ( 2.56) +Epoch: [0][1833/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.1650e+00 (6.6239e+00) Acc@1 1.17 ( 0.63) Acc@5 5.08 ( 2.56) +Epoch: [0][1834/5004] Time 0.252 ( 0.242) Data 0.021 ( 0.028) Loss 6.2593e+00 (6.6237e+00) Acc@1 1.56 ( 0.63) Acc@5 6.25 ( 2.56) +Epoch: [0][1835/5004] Time 0.255 ( 0.242) Data 0.020 ( 0.028) Loss 5.9943e+00 (6.6233e+00) Acc@1 1.56 ( 0.63) Acc@5 5.86 ( 2.57) +Epoch: [0][1836/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.028) Loss 5.9903e+00 (6.6230e+00) Acc@1 2.34 ( 0.63) Acc@5 7.81 ( 2.57) +Epoch: [0][1837/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.028) Loss 6.0900e+00 (6.6227e+00) Acc@1 1.56 ( 0.63) Acc@5 8.20 ( 2.57) +Epoch: [0][1838/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.028) Loss 6.0092e+00 (6.6224e+00) Acc@1 1.56 ( 0.63) Acc@5 5.08 ( 2.57) +Epoch: [0][1839/5004] Time 0.254 ( 0.242) Data 0.021 ( 0.028) Loss 6.0758e+00 (6.6221e+00) Acc@1 3.12 ( 0.63) Acc@5 7.81 ( 2.58) +Epoch: [0][1840/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.028) Loss 5.9855e+00 (6.6217e+00) Acc@1 1.56 ( 0.63) Acc@5 7.42 ( 2.58) +Epoch: [0][1841/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.028) Loss 6.1232e+00 (6.6215e+00) Acc@1 1.95 ( 0.64) Acc@5 5.47 ( 2.58) +Epoch: [0][1842/5004] Time 0.252 ( 0.242) Data 0.021 ( 0.028) Loss 6.1651e+00 (6.6212e+00) Acc@1 1.56 ( 0.64) Acc@5 5.08 ( 2.58) +Epoch: [0][1843/5004] Time 0.246 ( 0.242) Data 0.019 ( 0.028) Loss 6.0622e+00 (6.6209e+00) Acc@1 1.56 ( 0.64) Acc@5 6.25 ( 2.58) +Epoch: [0][1844/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 5.9588e+00 (6.6205e+00) Acc@1 2.34 ( 0.64) Acc@5 10.94 ( 2.59) +Epoch: [0][1845/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.9450e+00 (6.6202e+00) Acc@1 2.34 ( 0.64) Acc@5 10.55 ( 2.59) +Epoch: [0][1846/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.028) Loss 5.9684e+00 (6.6198e+00) Acc@1 1.56 ( 0.64) Acc@5 3.52 ( 2.59) +Epoch: [0][1847/5004] Time 0.254 ( 0.242) Data 0.023 ( 0.028) Loss 5.9261e+00 (6.6194e+00) Acc@1 2.34 ( 0.64) Acc@5 8.59 ( 2.60) +Epoch: [0][1848/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 6.1173e+00 (6.6192e+00) Acc@1 1.95 ( 0.64) Acc@5 4.69 ( 2.60) +Epoch: [0][1849/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.028) Loss 6.0845e+00 (6.6189e+00) Acc@1 1.56 ( 0.64) Acc@5 7.42 ( 2.60) +Epoch: [0][1850/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.028) Loss 6.0911e+00 (6.6186e+00) Acc@1 2.34 ( 0.64) Acc@5 6.64 ( 2.60) +Epoch: [0][1851/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.028) Loss 5.9977e+00 (6.6183e+00) Acc@1 0.78 ( 0.64) Acc@5 7.03 ( 2.60) +Epoch: [0][1852/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.028) Loss 6.0402e+00 (6.6180e+00) Acc@1 3.12 ( 0.64) Acc@5 8.59 ( 2.61) +Epoch: [0][1853/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.028) Loss 6.0924e+00 (6.6177e+00) Acc@1 1.56 ( 0.64) Acc@5 6.64 ( 2.61) +Epoch: [0][1854/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 6.0855e+00 (6.6174e+00) Acc@1 2.34 ( 0.64) Acc@5 7.03 ( 2.61) +Epoch: [0][1855/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.0890e+00 (6.6171e+00) Acc@1 2.34 ( 0.65) Acc@5 8.59 ( 2.62) +Epoch: [0][1856/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 5.9302e+00 (6.6167e+00) Acc@1 1.95 ( 0.65) Acc@5 6.64 ( 2.62) +Epoch: [0][1857/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 6.2334e+00 (6.6165e+00) Acc@1 2.73 ( 0.65) Acc@5 5.86 ( 2.62) +Epoch: [0][1858/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.028) Loss 6.1144e+00 (6.6163e+00) Acc@1 1.17 ( 0.65) Acc@5 5.47 ( 2.62) +Epoch: [0][1859/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.028) Loss 5.9035e+00 (6.6159e+00) Acc@1 1.56 ( 0.65) Acc@5 9.77 ( 2.62) +Epoch: [0][1860/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.2051e+00 (6.6157e+00) Acc@1 0.78 ( 0.65) Acc@5 6.64 ( 2.63) +Epoch: [0][1861/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 6.0656e+00 (6.6154e+00) Acc@1 1.56 ( 0.65) Acc@5 5.86 ( 2.63) +Epoch: [0][1862/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.9300e+00 (6.6150e+00) Acc@1 2.73 ( 0.65) Acc@5 8.20 ( 2.63) +Epoch: [0][1863/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.028) Loss 5.9045e+00 (6.6146e+00) Acc@1 1.17 ( 0.65) Acc@5 8.98 ( 2.63) +Epoch: [0][1864/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 5.9920e+00 (6.6143e+00) Acc@1 2.34 ( 0.65) Acc@5 8.59 ( 2.64) +Epoch: [0][1865/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.028) Loss 6.0314e+00 (6.6140e+00) Acc@1 0.78 ( 0.65) Acc@5 7.03 ( 2.64) +Epoch: [0][1866/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.9396e+00 (6.6136e+00) Acc@1 2.34 ( 0.65) Acc@5 6.25 ( 2.64) +Epoch: [0][1867/5004] Time 0.252 ( 0.242) Data 0.023 ( 0.028) Loss 6.1314e+00 (6.6133e+00) Acc@1 1.56 ( 0.65) Acc@5 7.03 ( 2.64) +Epoch: [0][1868/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.1426e+00 (6.6131e+00) Acc@1 1.17 ( 0.65) Acc@5 4.69 ( 2.65) +Epoch: [0][1869/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.1165e+00 (6.6128e+00) Acc@1 1.95 ( 0.65) Acc@5 6.25 ( 2.65) +Epoch: [0][1870/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.028) Loss 6.0661e+00 (6.6125e+00) Acc@1 3.12 ( 0.65) Acc@5 7.03 ( 2.65) +Epoch: [0][1871/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.028) Loss 5.9897e+00 (6.6122e+00) Acc@1 3.12 ( 0.66) Acc@5 8.59 ( 2.65) +Epoch: [0][1872/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.028) Loss 6.0113e+00 (6.6119e+00) Acc@1 1.95 ( 0.66) Acc@5 8.59 ( 2.66) +Epoch: [0][1873/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.028) Loss 5.9804e+00 (6.6115e+00) Acc@1 2.34 ( 0.66) Acc@5 8.20 ( 2.66) +Epoch: [0][1874/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.028) Loss 5.9925e+00 (6.6112e+00) Acc@1 0.78 ( 0.66) Acc@5 8.59 ( 2.66) +Epoch: [0][1875/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.028) Loss 6.0146e+00 (6.6109e+00) Acc@1 1.95 ( 0.66) Acc@5 6.64 ( 2.66) +Epoch: [0][1876/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.028) Loss 6.1596e+00 (6.6107e+00) Acc@1 2.34 ( 0.66) Acc@5 6.25 ( 2.67) +Epoch: [0][1877/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.028) Loss 6.0826e+00 (6.6104e+00) Acc@1 1.56 ( 0.66) Acc@5 5.86 ( 2.67) +Epoch: [0][1878/5004] Time 0.255 ( 0.242) Data 0.021 ( 0.028) Loss 5.8912e+00 (6.6100e+00) Acc@1 3.12 ( 0.66) Acc@5 9.38 ( 2.67) +Epoch: [0][1879/5004] Time 0.244 ( 0.242) Data 0.017 ( 0.028) Loss 6.0025e+00 (6.6097e+00) Acc@1 3.52 ( 0.66) Acc@5 8.20 ( 2.67) +Epoch: [0][1880/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.028) Loss 6.1222e+00 (6.6094e+00) Acc@1 1.17 ( 0.66) Acc@5 6.64 ( 2.68) +Epoch: [0][1881/5004] Time 0.251 ( 0.242) Data 0.019 ( 0.028) Loss 5.9999e+00 (6.6091e+00) Acc@1 1.95 ( 0.66) Acc@5 8.98 ( 2.68) +Epoch: [0][1882/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.028) Loss 6.0775e+00 (6.6088e+00) Acc@1 2.73 ( 0.66) Acc@5 7.03 ( 2.68) +Epoch: [0][1883/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.028) Loss 6.1352e+00 (6.6085e+00) Acc@1 2.73 ( 0.67) Acc@5 7.03 ( 2.68) +Epoch: [0][1884/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.028) Loss 6.0019e+00 (6.6082e+00) Acc@1 1.56 ( 0.67) Acc@5 7.03 ( 2.69) +Epoch: [0][1885/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.028) Loss 6.0047e+00 (6.6079e+00) Acc@1 2.73 ( 0.67) Acc@5 7.81 ( 2.69) +Epoch: [0][1886/5004] Time 0.250 ( 0.242) Data 0.028 ( 0.028) Loss 6.1633e+00 (6.6077e+00) Acc@1 2.73 ( 0.67) Acc@5 7.42 ( 2.69) +Epoch: [0][1887/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.9517e+00 (6.6073e+00) Acc@1 1.95 ( 0.67) Acc@5 6.64 ( 2.69) +Epoch: [0][1888/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 5.9941e+00 (6.6070e+00) Acc@1 1.17 ( 0.67) Acc@5 6.64 ( 2.70) +Epoch: [0][1889/5004] Time 0.249 ( 0.242) Data 0.030 ( 0.028) Loss 5.9421e+00 (6.6066e+00) Acc@1 1.95 ( 0.67) Acc@5 8.59 ( 2.70) +Epoch: [0][1890/5004] Time 0.252 ( 0.242) Data 0.028 ( 0.028) Loss 5.9198e+00 (6.6063e+00) Acc@1 1.17 ( 0.67) Acc@5 6.64 ( 2.70) +Epoch: [0][1891/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.028) Loss 6.0120e+00 (6.6060e+00) Acc@1 2.73 ( 0.67) Acc@5 5.47 ( 2.70) +Epoch: [0][1892/5004] Time 0.247 ( 0.242) Data 0.026 ( 0.028) Loss 5.9919e+00 (6.6056e+00) Acc@1 1.95 ( 0.67) Acc@5 7.42 ( 2.71) +Epoch: [0][1893/5004] Time 0.248 ( 0.242) Data 0.027 ( 0.028) Loss 6.0123e+00 (6.6053e+00) Acc@1 2.34 ( 0.67) Acc@5 7.42 ( 2.71) +Epoch: [0][1894/5004] Time 0.250 ( 0.242) Data 0.028 ( 0.028) Loss 6.0338e+00 (6.6050e+00) Acc@1 1.95 ( 0.67) Acc@5 8.59 ( 2.71) +Epoch: [0][1895/5004] Time 0.251 ( 0.242) Data 0.028 ( 0.028) Loss 5.9574e+00 (6.6047e+00) Acc@1 2.34 ( 0.67) Acc@5 9.77 ( 2.72) +Epoch: [0][1896/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.028) Loss 6.0715e+00 (6.6044e+00) Acc@1 1.95 ( 0.68) Acc@5 6.25 ( 2.72) +Epoch: [0][1897/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.9572e+00 (6.6041e+00) Acc@1 1.56 ( 0.68) Acc@5 7.03 ( 2.72) +Epoch: [0][1898/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 6.0069e+00 (6.6038e+00) Acc@1 4.30 ( 0.68) Acc@5 11.33 ( 2.72) +Epoch: [0][1899/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.028) Loss 5.9899e+00 (6.6034e+00) Acc@1 5.08 ( 0.68) Acc@5 9.77 ( 2.73) +Epoch: [0][1900/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.028) Loss 6.1474e+00 (6.6032e+00) Acc@1 1.56 ( 0.68) Acc@5 8.59 ( 2.73) +Epoch: [0][1901/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 6.2308e+00 (6.6030e+00) Acc@1 1.17 ( 0.68) Acc@5 4.69 ( 2.73) +Epoch: [0][1902/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.028) Loss 6.0127e+00 (6.6027e+00) Acc@1 1.17 ( 0.68) Acc@5 6.64 ( 2.73) +Epoch: [0][1903/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.028) Loss 6.0737e+00 (6.6024e+00) Acc@1 2.73 ( 0.68) Acc@5 7.42 ( 2.74) +Epoch: [0][1904/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.028) Loss 6.1558e+00 (6.6022e+00) Acc@1 1.17 ( 0.68) Acc@5 6.64 ( 2.74) +Epoch: [0][1905/5004] Time 0.247 ( 0.242) Data 0.028 ( 0.028) Loss 6.0268e+00 (6.6019e+00) Acc@1 0.78 ( 0.68) Acc@5 5.86 ( 2.74) +Epoch: [0][1906/5004] Time 0.263 ( 0.242) Data 0.029 ( 0.028) Loss 6.1370e+00 (6.6016e+00) Acc@1 1.17 ( 0.68) Acc@5 3.12 ( 2.74) +Epoch: [0][1907/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.028) Loss 5.9557e+00 (6.6013e+00) Acc@1 1.95 ( 0.68) Acc@5 8.20 ( 2.74) +Epoch: [0][1908/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.028) Loss 5.9012e+00 (6.6009e+00) Acc@1 1.95 ( 0.68) Acc@5 6.25 ( 2.74) +Epoch: [0][1909/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.028) Loss 6.0767e+00 (6.6006e+00) Acc@1 1.56 ( 0.68) Acc@5 5.47 ( 2.75) +Epoch: [0][1910/5004] Time 0.245 ( 0.242) Data 0.028 ( 0.028) Loss 6.0052e+00 (6.6003e+00) Acc@1 2.73 ( 0.69) Acc@5 7.42 ( 2.75) +Epoch: [0][1911/5004] Time 0.252 ( 0.242) Data 0.029 ( 0.028) Loss 6.0097e+00 (6.6000e+00) Acc@1 2.34 ( 0.69) Acc@5 5.86 ( 2.75) +Epoch: [0][1912/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.028) Loss 6.0374e+00 (6.5997e+00) Acc@1 2.73 ( 0.69) Acc@5 7.42 ( 2.75) +Epoch: [0][1913/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 6.1072e+00 (6.5995e+00) Acc@1 2.73 ( 0.69) Acc@5 5.47 ( 2.75) +Epoch: [0][1914/5004] Time 0.248 ( 0.242) Data 0.028 ( 0.028) Loss 5.9392e+00 (6.5991e+00) Acc@1 3.12 ( 0.69) Acc@5 8.20 ( 2.76) +Epoch: [0][1915/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 6.1855e+00 (6.5989e+00) Acc@1 1.56 ( 0.69) Acc@5 5.86 ( 2.76) +Epoch: [0][1916/5004] Time 0.244 ( 0.242) Data 0.030 ( 0.028) Loss 6.0241e+00 (6.5986e+00) Acc@1 1.17 ( 0.69) Acc@5 6.25 ( 2.76) +Epoch: [0][1917/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 5.9896e+00 (6.5983e+00) Acc@1 1.95 ( 0.69) Acc@5 8.20 ( 2.76) +Epoch: [0][1918/5004] Time 0.247 ( 0.242) Data 0.031 ( 0.028) Loss 6.1185e+00 (6.5980e+00) Acc@1 1.56 ( 0.69) Acc@5 6.64 ( 2.77) +Epoch: [0][1919/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.9917e+00 (6.5977e+00) Acc@1 2.73 ( 0.69) Acc@5 5.47 ( 2.77) +Epoch: [0][1920/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.028) Loss 6.0658e+00 (6.5975e+00) Acc@1 1.56 ( 0.69) Acc@5 8.20 ( 2.77) +Epoch: [0][1921/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 6.0110e+00 (6.5971e+00) Acc@1 1.95 ( 0.69) Acc@5 6.25 ( 2.77) +Epoch: [0][1922/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 6.0169e+00 (6.5968e+00) Acc@1 4.30 ( 0.70) Acc@5 8.20 ( 2.77) +Epoch: [0][1923/5004] Time 0.247 ( 0.242) Data 0.030 ( 0.028) Loss 6.0112e+00 (6.5965e+00) Acc@1 2.34 ( 0.70) Acc@5 8.20 ( 2.78) +Epoch: [0][1924/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 6.0556e+00 (6.5963e+00) Acc@1 1.56 ( 0.70) Acc@5 6.25 ( 2.78) +Epoch: [0][1925/5004] Time 0.251 ( 0.242) Data 0.031 ( 0.028) Loss 5.8792e+00 (6.5959e+00) Acc@1 1.56 ( 0.70) Acc@5 8.20 ( 2.78) +Epoch: [0][1926/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.0188e+00 (6.5956e+00) Acc@1 4.69 ( 0.70) Acc@5 9.77 ( 2.79) +Epoch: [0][1927/5004] Time 0.247 ( 0.242) Data 0.031 ( 0.028) Loss 6.1237e+00 (6.5953e+00) Acc@1 3.12 ( 0.70) Acc@5 8.98 ( 2.79) +Epoch: [0][1928/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.0402e+00 (6.5951e+00) Acc@1 2.34 ( 0.70) Acc@5 7.03 ( 2.79) +Epoch: [0][1929/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9867e+00 (6.5947e+00) Acc@1 5.08 ( 0.70) Acc@5 8.20 ( 2.79) +Epoch: [0][1930/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 5.9492e+00 (6.5944e+00) Acc@1 3.52 ( 0.71) Acc@5 9.38 ( 2.80) +Epoch: [0][1931/5004] Time 0.245 ( 0.242) Data 0.028 ( 0.028) Loss 6.1214e+00 (6.5942e+00) Acc@1 1.95 ( 0.71) Acc@5 4.69 ( 2.80) +Epoch: [0][1932/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.9829e+00 (6.5938e+00) Acc@1 1.56 ( 0.71) Acc@5 7.81 ( 2.80) +Epoch: [0][1933/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.028) Loss 5.9468e+00 (6.5935e+00) Acc@1 1.17 ( 0.71) Acc@5 5.86 ( 2.80) +Epoch: [0][1934/5004] Time 0.247 ( 0.242) Data 0.030 ( 0.028) Loss 5.8616e+00 (6.5931e+00) Acc@1 1.56 ( 0.71) Acc@5 9.38 ( 2.81) +Epoch: [0][1935/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.028) Loss 5.8081e+00 (6.5927e+00) Acc@1 3.12 ( 0.71) Acc@5 9.38 ( 2.81) +Epoch: [0][1936/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 6.0418e+00 (6.5924e+00) Acc@1 2.34 ( 0.71) Acc@5 5.86 ( 2.81) +Epoch: [0][1937/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.9114e+00 (6.5921e+00) Acc@1 1.95 ( 0.71) Acc@5 11.33 ( 2.81) +Epoch: [0][1938/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.028) Loss 6.0987e+00 (6.5918e+00) Acc@1 0.39 ( 0.71) Acc@5 5.47 ( 2.82) +Epoch: [0][1939/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.8739e+00 (6.5915e+00) Acc@1 4.30 ( 0.71) Acc@5 9.38 ( 2.82) +Epoch: [0][1940/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.9725e+00 (6.5911e+00) Acc@1 5.08 ( 0.71) Acc@5 8.20 ( 2.82) +Epoch: [0][1941/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 6.1321e+00 (6.5909e+00) Acc@1 1.95 ( 0.71) Acc@5 7.42 ( 2.82) +Epoch: [0][1942/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.028) Loss 5.9141e+00 (6.5906e+00) Acc@1 4.69 ( 0.72) Acc@5 12.89 ( 2.83) +Epoch: [0][1943/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 5.9960e+00 (6.5903e+00) Acc@1 3.91 ( 0.72) Acc@5 5.47 ( 2.83) +Epoch: [0][1944/5004] Time 0.250 ( 0.242) Data 0.030 ( 0.028) Loss 5.9443e+00 (6.5899e+00) Acc@1 1.95 ( 0.72) Acc@5 8.59 ( 2.83) +Epoch: [0][1945/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.0335e+00 (6.5896e+00) Acc@1 1.17 ( 0.72) Acc@5 6.25 ( 2.84) +Epoch: [0][1946/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 6.1037e+00 (6.5894e+00) Acc@1 2.34 ( 0.72) Acc@5 7.03 ( 2.84) +Epoch: [0][1947/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.028) Loss 5.9687e+00 (6.5891e+00) Acc@1 1.95 ( 0.72) Acc@5 8.20 ( 2.84) +Epoch: [0][1948/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.028) Loss 5.9866e+00 (6.5888e+00) Acc@1 4.30 ( 0.72) Acc@5 8.59 ( 2.84) +Epoch: [0][1949/5004] Time 0.249 ( 0.242) Data 0.027 ( 0.028) Loss 5.9921e+00 (6.5885e+00) Acc@1 1.56 ( 0.72) Acc@5 6.64 ( 2.85) +Epoch: [0][1950/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.028) Loss 6.0327e+00 (6.5882e+00) Acc@1 3.52 ( 0.72) Acc@5 7.03 ( 2.85) +Epoch: [0][1951/5004] Time 0.256 ( 0.242) Data 0.029 ( 0.028) Loss 5.9912e+00 (6.5879e+00) Acc@1 1.95 ( 0.72) Acc@5 8.98 ( 2.85) +Epoch: [0][1952/5004] Time 0.248 ( 0.242) Data 0.026 ( 0.028) Loss 5.9756e+00 (6.5876e+00) Acc@1 1.95 ( 0.73) Acc@5 7.42 ( 2.85) +Epoch: [0][1953/5004] Time 0.249 ( 0.242) Data 0.029 ( 0.028) Loss 6.0451e+00 (6.5873e+00) Acc@1 3.12 ( 0.73) Acc@5 7.03 ( 2.86) +Epoch: [0][1954/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.028) Loss 6.0157e+00 (6.5870e+00) Acc@1 2.34 ( 0.73) Acc@5 6.64 ( 2.86) +Epoch: [0][1955/5004] Time 0.248 ( 0.242) Data 0.027 ( 0.028) Loss 5.9688e+00 (6.5867e+00) Acc@1 2.34 ( 0.73) Acc@5 7.81 ( 2.86) +Epoch: [0][1956/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.028) Loss 5.8886e+00 (6.5863e+00) Acc@1 3.91 ( 0.73) Acc@5 10.55 ( 2.86) +Epoch: [0][1957/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.8466e+00 (6.5859e+00) Acc@1 2.34 ( 0.73) Acc@5 9.38 ( 2.87) +Epoch: [0][1958/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.8956e+00 (6.5856e+00) Acc@1 1.56 ( 0.73) Acc@5 9.77 ( 2.87) +Epoch: [0][1959/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.9688e+00 (6.5853e+00) Acc@1 1.95 ( 0.73) Acc@5 8.20 ( 2.87) +Epoch: [0][1960/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9942e+00 (6.5850e+00) Acc@1 1.17 ( 0.73) Acc@5 5.47 ( 2.87) +Epoch: [0][1961/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 6.0276e+00 (6.5847e+00) Acc@1 1.56 ( 0.73) Acc@5 7.03 ( 2.88) +Epoch: [0][1962/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.9884e+00 (6.5844e+00) Acc@1 2.34 ( 0.73) Acc@5 7.03 ( 2.88) +Epoch: [0][1963/5004] Time 0.248 ( 0.242) Data 0.028 ( 0.028) Loss 5.7954e+00 (6.5840e+00) Acc@1 2.73 ( 0.73) Acc@5 10.16 ( 2.88) +Epoch: [0][1964/5004] Time 0.253 ( 0.242) Data 0.030 ( 0.028) Loss 5.9892e+00 (6.5837e+00) Acc@1 0.78 ( 0.73) Acc@5 4.30 ( 2.88) +Epoch: [0][1965/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.028) Loss 6.0576e+00 (6.5834e+00) Acc@1 1.56 ( 0.73) Acc@5 5.47 ( 2.88) +Epoch: [0][1966/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.028) Loss 6.0374e+00 (6.5831e+00) Acc@1 0.78 ( 0.73) Acc@5 6.25 ( 2.89) +Epoch: [0][1967/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.028) Loss 6.1042e+00 (6.5829e+00) Acc@1 1.56 ( 0.74) Acc@5 7.81 ( 2.89) +Epoch: [0][1968/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 6.0168e+00 (6.5826e+00) Acc@1 0.39 ( 0.73) Acc@5 6.64 ( 2.89) +Epoch: [0][1969/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.1416e+00 (6.5824e+00) Acc@1 1.56 ( 0.74) Acc@5 7.03 ( 2.89) +Epoch: [0][1970/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.0121e+00 (6.5821e+00) Acc@1 1.56 ( 0.74) Acc@5 6.64 ( 2.89) +Epoch: [0][1971/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 6.0888e+00 (6.5818e+00) Acc@1 2.73 ( 0.74) Acc@5 6.25 ( 2.90) +Epoch: [0][1972/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 6.1364e+00 (6.5816e+00) Acc@1 1.56 ( 0.74) Acc@5 5.86 ( 2.90) +Epoch: [0][1973/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.028) Loss 5.9949e+00 (6.5813e+00) Acc@1 1.95 ( 0.74) Acc@5 5.08 ( 2.90) +Epoch: [0][1974/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.028) Loss 6.0629e+00 (6.5810e+00) Acc@1 1.56 ( 0.74) Acc@5 6.64 ( 2.90) +Epoch: [0][1975/5004] Time 0.251 ( 0.242) Data 0.030 ( 0.028) Loss 6.1133e+00 (6.5808e+00) Acc@1 1.17 ( 0.74) Acc@5 5.08 ( 2.90) +Epoch: [0][1976/5004] Time 0.247 ( 0.242) Data 0.028 ( 0.028) Loss 5.9585e+00 (6.5805e+00) Acc@1 2.73 ( 0.74) Acc@5 7.81 ( 2.90) +Epoch: [0][1977/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 6.1257e+00 (6.5803e+00) Acc@1 3.12 ( 0.74) Acc@5 9.38 ( 2.91) +Epoch: [0][1978/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.028) Loss 5.9141e+00 (6.5799e+00) Acc@1 2.73 ( 0.74) Acc@5 8.20 ( 2.91) +Epoch: [0][1979/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 5.9143e+00 (6.5796e+00) Acc@1 2.73 ( 0.74) Acc@5 9.38 ( 2.91) +Epoch: [0][1980/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 6.0018e+00 (6.5793e+00) Acc@1 1.56 ( 0.74) Acc@5 10.94 ( 2.92) +Epoch: [0][1981/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 5.9938e+00 (6.5790e+00) Acc@1 1.56 ( 0.74) Acc@5 7.42 ( 2.92) +Epoch: [0][1982/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 6.0544e+00 (6.5787e+00) Acc@1 1.56 ( 0.74) Acc@5 7.81 ( 2.92) +Epoch: [0][1983/5004] Time 0.244 ( 0.242) Data 0.030 ( 0.028) Loss 5.9936e+00 (6.5784e+00) Acc@1 1.17 ( 0.74) Acc@5 7.42 ( 2.92) +Epoch: [0][1984/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 6.0161e+00 (6.5782e+00) Acc@1 3.12 ( 0.75) Acc@5 8.59 ( 2.93) +Epoch: [0][1985/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.9068e+00 (6.5778e+00) Acc@1 2.34 ( 0.75) Acc@5 8.59 ( 2.93) +Epoch: [0][1986/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 6.0421e+00 (6.5776e+00) Acc@1 1.56 ( 0.75) Acc@5 7.42 ( 2.93) +Epoch: [0][1987/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.028) Loss 5.9807e+00 (6.5773e+00) Acc@1 1.95 ( 0.75) Acc@5 8.98 ( 2.94) +Epoch: [0][1988/5004] Time 0.247 ( 0.242) Data 0.030 ( 0.028) Loss 5.9405e+00 (6.5769e+00) Acc@1 3.91 ( 0.75) Acc@5 10.16 ( 2.94) +Epoch: [0][1989/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.8365e+00 (6.5766e+00) Acc@1 2.34 ( 0.75) Acc@5 11.33 ( 2.94) +Epoch: [0][1990/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.8715e+00 (6.5762e+00) Acc@1 3.52 ( 0.75) Acc@5 8.98 ( 2.95) +Epoch: [0][1991/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 6.0791e+00 (6.5760e+00) Acc@1 3.12 ( 0.75) Acc@5 8.20 ( 2.95) +Epoch: [0][1992/5004] Time 0.251 ( 0.242) Data 0.029 ( 0.028) Loss 5.9537e+00 (6.5756e+00) Acc@1 1.95 ( 0.75) Acc@5 7.81 ( 2.95) +Epoch: [0][1993/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 5.8042e+00 (6.5753e+00) Acc@1 4.30 ( 0.75) Acc@5 12.89 ( 2.96) +Epoch: [0][1994/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.028) Loss 6.0225e+00 (6.5750e+00) Acc@1 1.95 ( 0.76) Acc@5 7.03 ( 2.96) +Epoch: [0][1995/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.028) Loss 5.9325e+00 (6.5747e+00) Acc@1 3.52 ( 0.76) Acc@5 5.86 ( 2.96) +Epoch: [0][1996/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9694e+00 (6.5744e+00) Acc@1 2.73 ( 0.76) Acc@5 6.64 ( 2.96) +Epoch: [0][1997/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 5.9379e+00 (6.5740e+00) Acc@1 2.73 ( 0.76) Acc@5 6.25 ( 2.96) +Epoch: [0][1998/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 6.1620e+00 (6.5738e+00) Acc@1 2.73 ( 0.76) Acc@5 6.25 ( 2.97) +Epoch: [0][1999/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 6.0152e+00 (6.5736e+00) Acc@1 1.95 ( 0.76) Acc@5 6.25 ( 2.97) +Epoch: [0][2000/5004] Time 0.247 ( 0.242) Data 0.030 ( 0.028) Loss 5.9895e+00 (6.5733e+00) Acc@1 2.73 ( 0.76) Acc@5 7.42 ( 2.97) +Epoch: [0][2001/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.028) Loss 5.8409e+00 (6.5729e+00) Acc@1 3.52 ( 0.76) Acc@5 9.38 ( 2.97) +Epoch: [0][2002/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.028) Loss 5.9589e+00 (6.5726e+00) Acc@1 3.12 ( 0.76) Acc@5 10.55 ( 2.98) +Epoch: [0][2003/5004] Time 0.248 ( 0.242) Data 0.028 ( 0.028) Loss 5.8399e+00 (6.5722e+00) Acc@1 1.56 ( 0.76) Acc@5 12.11 ( 2.98) +Epoch: [0][2004/5004] Time 0.255 ( 0.242) Data 0.028 ( 0.028) Loss 5.8988e+00 (6.5719e+00) Acc@1 2.73 ( 0.76) Acc@5 9.38 ( 2.98) +Epoch: [0][2005/5004] Time 0.249 ( 0.242) Data 0.025 ( 0.028) Loss 5.9288e+00 (6.5716e+00) Acc@1 3.12 ( 0.77) Acc@5 8.98 ( 2.99) +Epoch: [0][2006/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.028) Loss 6.0114e+00 (6.5713e+00) Acc@1 1.56 ( 0.77) Acc@5 5.86 ( 2.99) +Epoch: [0][2007/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.9575e+00 (6.5710e+00) Acc@1 2.73 ( 0.77) Acc@5 9.38 ( 2.99) +Epoch: [0][2008/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9549e+00 (6.5707e+00) Acc@1 2.73 ( 0.77) Acc@5 9.77 ( 2.99) +Epoch: [0][2009/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.9477e+00 (6.5704e+00) Acc@1 3.91 ( 0.77) Acc@5 7.81 ( 3.00) +Epoch: [0][2010/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 5.8826e+00 (6.5700e+00) Acc@1 5.47 ( 0.77) Acc@5 10.94 ( 3.00) +Epoch: [0][2011/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.028) Loss 6.0914e+00 (6.5698e+00) Acc@1 0.78 ( 0.77) Acc@5 6.25 ( 3.00) +Epoch: [0][2012/5004] Time 0.248 ( 0.242) Data 0.030 ( 0.028) Loss 5.8012e+00 (6.5694e+00) Acc@1 3.52 ( 0.77) Acc@5 10.16 ( 3.01) +Epoch: [0][2013/5004] Time 0.246 ( 0.242) Data 0.030 ( 0.028) Loss 5.9086e+00 (6.5691e+00) Acc@1 1.95 ( 0.77) Acc@5 10.94 ( 3.01) +Epoch: [0][2014/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.9897e+00 (6.5688e+00) Acc@1 3.52 ( 0.78) Acc@5 7.42 ( 3.01) +Epoch: [0][2015/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.028) Loss 5.8610e+00 (6.5684e+00) Acc@1 2.34 ( 0.78) Acc@5 6.25 ( 3.01) +Epoch: [0][2016/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.028) Loss 5.9041e+00 (6.5681e+00) Acc@1 3.12 ( 0.78) Acc@5 7.81 ( 3.02) +Epoch: [0][2017/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.028) Loss 5.8540e+00 (6.5678e+00) Acc@1 2.34 ( 0.78) Acc@5 7.81 ( 3.02) +Epoch: [0][2018/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9422e+00 (6.5674e+00) Acc@1 3.91 ( 0.78) Acc@5 8.59 ( 3.02) +Epoch: [0][2019/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 6.0304e+00 (6.5672e+00) Acc@1 1.56 ( 0.78) Acc@5 8.20 ( 3.02) +Epoch: [0][2020/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.8840e+00 (6.5668e+00) Acc@1 3.91 ( 0.78) Acc@5 10.94 ( 3.03) +Epoch: [0][2021/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.9754e+00 (6.5665e+00) Acc@1 0.78 ( 0.78) Acc@5 4.69 ( 3.03) +Epoch: [0][2022/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.028) Loss 5.8764e+00 (6.5662e+00) Acc@1 3.12 ( 0.78) Acc@5 10.94 ( 3.03) +Epoch: [0][2023/5004] Time 0.245 ( 0.242) Data 0.029 ( 0.028) Loss 5.9434e+00 (6.5659e+00) Acc@1 3.91 ( 0.78) Acc@5 9.38 ( 3.04) +Epoch: [0][2024/5004] Time 0.249 ( 0.242) Data 0.029 ( 0.028) Loss 5.8338e+00 (6.5655e+00) Acc@1 2.34 ( 0.79) Acc@5 9.77 ( 3.04) +Epoch: [0][2025/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.028) Loss 5.8620e+00 (6.5652e+00) Acc@1 3.12 ( 0.79) Acc@5 11.33 ( 3.04) +Epoch: [0][2026/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.028) Loss 6.0048e+00 (6.5649e+00) Acc@1 1.56 ( 0.79) Acc@5 6.25 ( 3.05) +Epoch: [0][2027/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.028) Loss 5.8864e+00 (6.5646e+00) Acc@1 1.95 ( 0.79) Acc@5 9.38 ( 3.05) +Epoch: [0][2028/5004] Time 0.258 ( 0.242) Data 0.030 ( 0.028) Loss 6.0824e+00 (6.5643e+00) Acc@1 3.12 ( 0.79) Acc@5 6.64 ( 3.05) +Epoch: [0][2029/5004] Time 0.244 ( 0.242) Data 0.018 ( 0.028) Loss 5.9145e+00 (6.5640e+00) Acc@1 3.52 ( 0.79) Acc@5 10.55 ( 3.05) +Epoch: [0][2030/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.028) Loss 5.8193e+00 (6.5637e+00) Acc@1 3.52 ( 0.79) Acc@5 7.81 ( 3.06) +Epoch: [0][2031/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.028) Loss 6.0788e+00 (6.5634e+00) Acc@1 2.34 ( 0.79) Acc@5 10.94 ( 3.06) +Epoch: [0][2032/5004] Time 0.246 ( 0.242) Data 0.019 ( 0.028) Loss 5.8428e+00 (6.5631e+00) Acc@1 1.95 ( 0.79) Acc@5 10.16 ( 3.06) +Epoch: [0][2033/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.028) Loss 5.8613e+00 (6.5627e+00) Acc@1 1.56 ( 0.79) Acc@5 7.81 ( 3.07) +Epoch: [0][2034/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.028) Loss 5.7906e+00 (6.5623e+00) Acc@1 4.69 ( 0.79) Acc@5 14.45 ( 3.07) +Epoch: [0][2035/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.028) Loss 5.8872e+00 (6.5620e+00) Acc@1 1.95 ( 0.80) Acc@5 12.50 ( 3.08) +Epoch: [0][2036/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.028) Loss 5.8682e+00 (6.5617e+00) Acc@1 2.34 ( 0.80) Acc@5 7.81 ( 3.08) +Epoch: [0][2037/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.028) Loss 5.9745e+00 (6.5614e+00) Acc@1 2.34 ( 0.80) Acc@5 8.59 ( 3.08) +Epoch: [0][2038/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.028) Loss 5.7857e+00 (6.5610e+00) Acc@1 3.91 ( 0.80) Acc@5 10.16 ( 3.08) +Epoch: [0][2039/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.028) Loss 5.9021e+00 (6.5607e+00) Acc@1 2.73 ( 0.80) Acc@5 7.42 ( 3.09) +Epoch: [0][2040/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.028) Loss 5.8503e+00 (6.5603e+00) Acc@1 5.47 ( 0.80) Acc@5 10.94 ( 3.09) +Epoch: [0][2041/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.028) Loss 5.8827e+00 (6.5600e+00) Acc@1 3.12 ( 0.80) Acc@5 11.33 ( 3.09) +Epoch: [0][2042/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.028) Loss 6.0456e+00 (6.5597e+00) Acc@1 3.12 ( 0.80) Acc@5 7.81 ( 3.10) +Epoch: [0][2043/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.028) Loss 5.7930e+00 (6.5594e+00) Acc@1 0.78 ( 0.80) Acc@5 8.98 ( 3.10) +Epoch: [0][2044/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.028) Loss 6.0142e+00 (6.5591e+00) Acc@1 1.56 ( 0.80) Acc@5 5.86 ( 3.10) +Epoch: [0][2045/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.028) Loss 6.0560e+00 (6.5589e+00) Acc@1 2.73 ( 0.81) Acc@5 8.20 ( 3.10) +Epoch: [0][2046/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.028) Loss 5.8860e+00 (6.5585e+00) Acc@1 2.34 ( 0.81) Acc@5 9.77 ( 3.11) +Epoch: [0][2047/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.028) Loss 5.9062e+00 (6.5582e+00) Acc@1 2.34 ( 0.81) Acc@5 9.77 ( 3.11) +Epoch: [0][2048/5004] Time 0.232 ( 0.242) Data 0.018 ( 0.028) Loss 5.7776e+00 (6.5578e+00) Acc@1 2.73 ( 0.81) Acc@5 12.11 ( 3.11) +Epoch: [0][2049/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.028) Loss 6.0026e+00 (6.5576e+00) Acc@1 2.34 ( 0.81) Acc@5 7.03 ( 3.12) +Epoch: [0][2050/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.028) Loss 5.8630e+00 (6.5572e+00) Acc@1 3.12 ( 0.81) Acc@5 11.33 ( 3.12) +Epoch: [0][2051/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.028) Loss 5.8193e+00 (6.5569e+00) Acc@1 1.56 ( 0.81) Acc@5 10.16 ( 3.12) +Epoch: [0][2052/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.028) Loss 5.9056e+00 (6.5565e+00) Acc@1 1.95 ( 0.81) Acc@5 9.38 ( 3.13) +Epoch: [0][2053/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.028) Loss 5.9643e+00 (6.5563e+00) Acc@1 1.95 ( 0.81) Acc@5 10.55 ( 3.13) +Epoch: [0][2054/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.028) Loss 5.8846e+00 (6.5559e+00) Acc@1 2.34 ( 0.81) Acc@5 8.59 ( 3.13) +Epoch: [0][2055/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.028) Loss 5.8601e+00 (6.5556e+00) Acc@1 2.34 ( 0.81) Acc@5 10.55 ( 3.14) +Epoch: [0][2056/5004] Time 0.248 ( 0.242) Data 0.025 ( 0.028) Loss 5.9434e+00 (6.5553e+00) Acc@1 3.12 ( 0.81) Acc@5 10.55 ( 3.14) +Epoch: [0][2057/5004] Time 0.233 ( 0.242) Data 0.020 ( 0.028) Loss 5.9664e+00 (6.5550e+00) Acc@1 1.95 ( 0.81) Acc@5 5.86 ( 3.14) +Epoch: [0][2058/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.028) Loss 5.9856e+00 (6.5547e+00) Acc@1 0.78 ( 0.81) Acc@5 8.20 ( 3.14) +Epoch: [0][2059/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.028) Loss 5.8161e+00 (6.5544e+00) Acc@1 2.34 ( 0.82) Acc@5 9.38 ( 3.15) +Epoch: [0][2060/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.028) Loss 5.8699e+00 (6.5540e+00) Acc@1 3.12 ( 0.82) Acc@5 9.38 ( 3.15) +Epoch: [0][2061/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.028) Loss 5.9174e+00 (6.5537e+00) Acc@1 2.34 ( 0.82) Acc@5 9.38 ( 3.15) +Epoch: [0][2062/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.028) Loss 5.9008e+00 (6.5534e+00) Acc@1 2.34 ( 0.82) Acc@5 8.20 ( 3.16) +Epoch: [0][2063/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.028) Loss 6.0884e+00 (6.5532e+00) Acc@1 1.56 ( 0.82) Acc@5 5.08 ( 3.16) +Epoch: [0][2064/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.028) Loss 5.8733e+00 (6.5529e+00) Acc@1 3.91 ( 0.82) Acc@5 10.16 ( 3.16) +Epoch: [0][2065/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.028) Loss 5.9692e+00 (6.5526e+00) Acc@1 2.73 ( 0.82) Acc@5 7.03 ( 3.16) +Epoch: [0][2066/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.028) Loss 5.8624e+00 (6.5522e+00) Acc@1 3.12 ( 0.82) Acc@5 8.20 ( 3.16) +Epoch: [0][2067/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.028) Loss 5.9450e+00 (6.5519e+00) Acc@1 3.91 ( 0.82) Acc@5 8.98 ( 3.17) +Epoch: [0][2068/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.028) Loss 5.8981e+00 (6.5516e+00) Acc@1 3.12 ( 0.82) Acc@5 9.77 ( 3.17) +Epoch: [0][2069/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.028) Loss 6.0162e+00 (6.5514e+00) Acc@1 2.34 ( 0.82) Acc@5 8.59 ( 3.17) +Epoch: [0][2070/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.028) Loss 5.9350e+00 (6.5511e+00) Acc@1 3.52 ( 0.83) Acc@5 6.25 ( 3.17) +Epoch: [0][2071/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.028) Loss 5.9278e+00 (6.5508e+00) Acc@1 3.91 ( 0.83) Acc@5 9.77 ( 3.18) +Epoch: [0][2072/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.028) Loss 5.9670e+00 (6.5505e+00) Acc@1 0.78 ( 0.83) Acc@5 5.47 ( 3.18) +Epoch: [0][2073/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.028) Loss 5.9824e+00 (6.5502e+00) Acc@1 1.95 ( 0.83) Acc@5 5.86 ( 3.18) +Epoch: [0][2074/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.028) Loss 5.8647e+00 (6.5499e+00) Acc@1 2.73 ( 0.83) Acc@5 12.50 ( 3.18) +Epoch: [0][2075/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.028) Loss 5.9682e+00 (6.5496e+00) Acc@1 1.95 ( 0.83) Acc@5 8.20 ( 3.19) +Epoch: [0][2076/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.028) Loss 5.9358e+00 (6.5493e+00) Acc@1 1.95 ( 0.83) Acc@5 11.72 ( 3.19) +Epoch: [0][2077/5004] Time 0.251 ( 0.242) Data 0.024 ( 0.028) Loss 5.8024e+00 (6.5490e+00) Acc@1 4.69 ( 0.83) Acc@5 13.67 ( 3.20) +Epoch: [0][2078/5004] Time 0.236 ( 0.242) Data 0.016 ( 0.028) Loss 6.0844e+00 (6.5487e+00) Acc@1 1.56 ( 0.83) Acc@5 5.86 ( 3.20) +Epoch: [0][2079/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.028) Loss 5.9816e+00 (6.5485e+00) Acc@1 2.34 ( 0.83) Acc@5 10.16 ( 3.20) +Epoch: [0][2080/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 5.8619e+00 (6.5481e+00) Acc@1 3.12 ( 0.83) Acc@5 7.81 ( 3.20) +Epoch: [0][2081/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 6.0808e+00 (6.5479e+00) Acc@1 3.52 ( 0.84) Acc@5 7.81 ( 3.20) +Epoch: [0][2082/5004] Time 0.239 ( 0.242) Data 0.019 ( 0.027) Loss 6.0119e+00 (6.5476e+00) Acc@1 2.34 ( 0.84) Acc@5 7.03 ( 3.21) +Epoch: [0][2083/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.9539e+00 (6.5474e+00) Acc@1 2.34 ( 0.84) Acc@5 9.77 ( 3.21) +Epoch: [0][2084/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 5.8887e+00 (6.5470e+00) Acc@1 3.91 ( 0.84) Acc@5 8.98 ( 3.21) +Epoch: [0][2085/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.027) Loss 5.8032e+00 (6.5467e+00) Acc@1 3.91 ( 0.84) Acc@5 8.59 ( 3.22) +Epoch: [0][2086/5004] Time 0.253 ( 0.242) Data 0.024 ( 0.027) Loss 5.8994e+00 (6.5464e+00) Acc@1 3.52 ( 0.84) Acc@5 9.77 ( 3.22) +Epoch: [0][2087/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.027) Loss 5.9913e+00 (6.5461e+00) Acc@1 3.52 ( 0.84) Acc@5 8.59 ( 3.22) +Epoch: [0][2088/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 5.7999e+00 (6.5458e+00) Acc@1 1.56 ( 0.84) Acc@5 10.55 ( 3.22) +Epoch: [0][2089/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.9834e+00 (6.5455e+00) Acc@1 1.56 ( 0.84) Acc@5 7.81 ( 3.23) +Epoch: [0][2090/5004] Time 0.252 ( 0.243) Data 0.022 ( 0.027) Loss 5.9327e+00 (6.5452e+00) Acc@1 3.91 ( 0.84) Acc@5 9.77 ( 3.23) +Epoch: [0][2091/5004] Time 0.243 ( 0.243) Data 0.019 ( 0.027) Loss 5.9495e+00 (6.5449e+00) Acc@1 1.95 ( 0.85) Acc@5 11.33 ( 3.23) +Epoch: [0][2092/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.8878e+00 (6.5446e+00) Acc@1 0.78 ( 0.85) Acc@5 7.42 ( 3.24) +Epoch: [0][2093/5004] Time 0.247 ( 0.243) Data 0.022 ( 0.027) Loss 6.0339e+00 (6.5443e+00) Acc@1 3.12 ( 0.85) Acc@5 7.03 ( 3.24) +Epoch: [0][2094/5004] Time 0.250 ( 0.243) Data 0.021 ( 0.027) Loss 6.0302e+00 (6.5441e+00) Acc@1 3.12 ( 0.85) Acc@5 7.42 ( 3.24) +Epoch: [0][2095/5004] Time 0.235 ( 0.243) Data 0.015 ( 0.027) Loss 5.9281e+00 (6.5438e+00) Acc@1 2.34 ( 0.85) Acc@5 10.16 ( 3.24) +Epoch: [0][2096/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.9763e+00 (6.5435e+00) Acc@1 2.34 ( 0.85) Acc@5 6.25 ( 3.24) +Epoch: [0][2097/5004] Time 0.237 ( 0.243) Data 0.018 ( 0.027) Loss 5.8048e+00 (6.5432e+00) Acc@1 2.34 ( 0.85) Acc@5 8.59 ( 3.25) +Epoch: [0][2098/5004] Time 0.242 ( 0.243) Data 0.024 ( 0.027) Loss 6.0138e+00 (6.5429e+00) Acc@1 0.39 ( 0.85) Acc@5 6.25 ( 3.25) +Epoch: [0][2099/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.9200e+00 (6.5426e+00) Acc@1 3.52 ( 0.85) Acc@5 9.77 ( 3.25) +Epoch: [0][2100/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.8339e+00 (6.5423e+00) Acc@1 2.34 ( 0.85) Acc@5 10.16 ( 3.25) +Epoch: [0][2101/5004] Time 0.240 ( 0.243) Data 0.023 ( 0.027) Loss 5.8638e+00 (6.5420e+00) Acc@1 2.73 ( 0.85) Acc@5 10.94 ( 3.26) +Epoch: [0][2102/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8095e+00 (6.5416e+00) Acc@1 3.52 ( 0.85) Acc@5 13.28 ( 3.26) +Epoch: [0][2103/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.8449e+00 (6.5413e+00) Acc@1 4.69 ( 0.86) Acc@5 8.59 ( 3.27) +Epoch: [0][2104/5004] Time 0.253 ( 0.243) Data 0.025 ( 0.027) Loss 5.9644e+00 (6.5410e+00) Acc@1 3.12 ( 0.86) Acc@5 6.64 ( 3.27) +Epoch: [0][2105/5004] Time 0.233 ( 0.243) Data 0.016 ( 0.027) Loss 5.7913e+00 (6.5407e+00) Acc@1 3.12 ( 0.86) Acc@5 8.98 ( 3.27) +Epoch: [0][2106/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.8011e+00 (6.5403e+00) Acc@1 2.73 ( 0.86) Acc@5 10.16 ( 3.27) +Epoch: [0][2107/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.9184e+00 (6.5400e+00) Acc@1 1.17 ( 0.86) Acc@5 8.59 ( 3.28) +Epoch: [0][2108/5004] Time 0.249 ( 0.243) Data 0.022 ( 0.027) Loss 5.8091e+00 (6.5397e+00) Acc@1 3.12 ( 0.86) Acc@5 10.55 ( 3.28) +Epoch: [0][2109/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.8889e+00 (6.5394e+00) Acc@1 2.34 ( 0.86) Acc@5 11.33 ( 3.28) +Epoch: [0][2110/5004] Time 0.246 ( 0.243) Data 0.023 ( 0.027) Loss 5.8140e+00 (6.5390e+00) Acc@1 1.95 ( 0.86) Acc@5 6.25 ( 3.28) +Epoch: [0][2111/5004] Time 0.239 ( 0.243) Data 0.018 ( 0.027) Loss 5.7781e+00 (6.5387e+00) Acc@1 1.95 ( 0.86) Acc@5 9.77 ( 3.29) +Epoch: [0][2112/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 5.8968e+00 (6.5384e+00) Acc@1 2.34 ( 0.86) Acc@5 7.03 ( 3.29) +Epoch: [0][2113/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.8197e+00 (6.5380e+00) Acc@1 2.73 ( 0.86) Acc@5 11.72 ( 3.29) +Epoch: [0][2114/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.9279e+00 (6.5377e+00) Acc@1 2.73 ( 0.86) Acc@5 6.64 ( 3.29) +Epoch: [0][2115/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.8592e+00 (6.5374e+00) Acc@1 4.30 ( 0.87) Acc@5 9.77 ( 3.30) +Epoch: [0][2116/5004] Time 0.250 ( 0.243) Data 0.023 ( 0.027) Loss 5.8295e+00 (6.5371e+00) Acc@1 2.73 ( 0.87) Acc@5 9.38 ( 3.30) +Epoch: [0][2117/5004] Time 0.249 ( 0.243) Data 0.020 ( 0.027) Loss 5.7980e+00 (6.5367e+00) Acc@1 2.73 ( 0.87) Acc@5 10.55 ( 3.30) +Epoch: [0][2118/5004] Time 0.244 ( 0.243) Data 0.020 ( 0.027) Loss 5.6988e+00 (6.5363e+00) Acc@1 3.12 ( 0.87) Acc@5 11.72 ( 3.31) +Epoch: [0][2119/5004] Time 0.242 ( 0.243) Data 0.022 ( 0.027) Loss 5.8664e+00 (6.5360e+00) Acc@1 2.73 ( 0.87) Acc@5 9.38 ( 3.31) +Epoch: [0][2120/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.9330e+00 (6.5357e+00) Acc@1 1.95 ( 0.87) Acc@5 8.59 ( 3.31) +Epoch: [0][2121/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 6.0490e+00 (6.5355e+00) Acc@1 0.39 ( 0.87) Acc@5 5.86 ( 3.31) +Epoch: [0][2122/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.7167e+00 (6.5351e+00) Acc@1 3.52 ( 0.87) Acc@5 6.64 ( 3.32) +Epoch: [0][2123/5004] Time 0.250 ( 0.243) Data 0.026 ( 0.027) Loss 5.8518e+00 (6.5348e+00) Acc@1 2.73 ( 0.87) Acc@5 8.59 ( 3.32) +Epoch: [0][2124/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 6.0362e+00 (6.5346e+00) Acc@1 2.34 ( 0.87) Acc@5 7.03 ( 3.32) +Epoch: [0][2125/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.7891e+00 (6.5342e+00) Acc@1 3.12 ( 0.87) Acc@5 7.42 ( 3.32) +Epoch: [0][2126/5004] Time 0.248 ( 0.243) Data 0.024 ( 0.027) Loss 5.7855e+00 (6.5339e+00) Acc@1 2.34 ( 0.87) Acc@5 10.16 ( 3.33) +Epoch: [0][2127/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.027) Loss 5.8951e+00 (6.5336e+00) Acc@1 3.91 ( 0.88) Acc@5 13.67 ( 3.33) +Epoch: [0][2128/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.9346e+00 (6.5333e+00) Acc@1 4.30 ( 0.88) Acc@5 11.72 ( 3.33) +Epoch: [0][2129/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.9133e+00 (6.5330e+00) Acc@1 1.56 ( 0.88) Acc@5 8.98 ( 3.34) +Epoch: [0][2130/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.8255e+00 (6.5327e+00) Acc@1 2.34 ( 0.88) Acc@5 7.81 ( 3.34) +Epoch: [0][2131/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.9455e+00 (6.5324e+00) Acc@1 2.73 ( 0.88) Acc@5 8.59 ( 3.34) +Epoch: [0][2132/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.8678e+00 (6.5321e+00) Acc@1 3.12 ( 0.88) Acc@5 11.72 ( 3.35) +Epoch: [0][2133/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 6.0361e+00 (6.5318e+00) Acc@1 2.34 ( 0.88) Acc@5 8.98 ( 3.35) +Epoch: [0][2134/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.6729e+00 (6.5314e+00) Acc@1 3.91 ( 0.88) Acc@5 12.11 ( 3.35) +Epoch: [0][2135/5004] Time 0.247 ( 0.243) Data 0.023 ( 0.027) Loss 5.9632e+00 (6.5312e+00) Acc@1 4.30 ( 0.88) Acc@5 10.55 ( 3.36) +Epoch: [0][2136/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 5.8744e+00 (6.5309e+00) Acc@1 2.34 ( 0.88) Acc@5 8.20 ( 3.36) +Epoch: [0][2137/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.027) Loss 5.8039e+00 (6.5305e+00) Acc@1 3.91 ( 0.89) Acc@5 9.38 ( 3.36) +Epoch: [0][2138/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 6.1014e+00 (6.5303e+00) Acc@1 1.17 ( 0.89) Acc@5 6.64 ( 3.36) +Epoch: [0][2139/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.9379e+00 (6.5300e+00) Acc@1 3.12 ( 0.89) Acc@5 8.98 ( 3.36) +Epoch: [0][2140/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.8855e+00 (6.5297e+00) Acc@1 3.91 ( 0.89) Acc@5 9.77 ( 3.37) +Epoch: [0][2141/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.8670e+00 (6.5294e+00) Acc@1 2.34 ( 0.89) Acc@5 8.20 ( 3.37) +Epoch: [0][2142/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.8268e+00 (6.5291e+00) Acc@1 4.69 ( 0.89) Acc@5 10.94 ( 3.37) +Epoch: [0][2143/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8919e+00 (6.5288e+00) Acc@1 1.95 ( 0.89) Acc@5 8.59 ( 3.38) +Epoch: [0][2144/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.8918e+00 (6.5285e+00) Acc@1 3.91 ( 0.89) Acc@5 8.98 ( 3.38) +Epoch: [0][2145/5004] Time 0.241 ( 0.243) Data 0.022 ( 0.027) Loss 5.9585e+00 (6.5282e+00) Acc@1 0.78 ( 0.89) Acc@5 8.20 ( 3.38) +Epoch: [0][2146/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 6.0008e+00 (6.5280e+00) Acc@1 2.73 ( 0.89) Acc@5 8.98 ( 3.38) +Epoch: [0][2147/5004] Time 0.239 ( 0.243) Data 0.020 ( 0.027) Loss 6.0698e+00 (6.5278e+00) Acc@1 1.56 ( 0.89) Acc@5 9.77 ( 3.39) +Epoch: [0][2148/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.9662e+00 (6.5275e+00) Acc@1 1.95 ( 0.89) Acc@5 10.55 ( 3.39) +Epoch: [0][2149/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.9095e+00 (6.5272e+00) Acc@1 3.52 ( 0.90) Acc@5 9.38 ( 3.39) +Epoch: [0][2150/5004] Time 0.242 ( 0.243) Data 0.022 ( 0.027) Loss 5.8971e+00 (6.5269e+00) Acc@1 1.56 ( 0.90) Acc@5 8.59 ( 3.40) +Epoch: [0][2151/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.7985e+00 (6.5266e+00) Acc@1 4.30 ( 0.90) Acc@5 12.11 ( 3.40) +Epoch: [0][2152/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.8820e+00 (6.5263e+00) Acc@1 2.34 ( 0.90) Acc@5 8.98 ( 3.40) +Epoch: [0][2153/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.8930e+00 (6.5260e+00) Acc@1 4.69 ( 0.90) Acc@5 9.77 ( 3.40) +Epoch: [0][2154/5004] Time 0.241 ( 0.243) Data 0.022 ( 0.027) Loss 5.9247e+00 (6.5257e+00) Acc@1 3.12 ( 0.90) Acc@5 7.42 ( 3.41) +Epoch: [0][2155/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.9281e+00 (6.5255e+00) Acc@1 5.86 ( 0.90) Acc@5 9.38 ( 3.41) +Epoch: [0][2156/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.9409e+00 (6.5252e+00) Acc@1 1.56 ( 0.90) Acc@5 6.64 ( 3.41) +Epoch: [0][2157/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.8453e+00 (6.5249e+00) Acc@1 1.17 ( 0.90) Acc@5 8.59 ( 3.41) +Epoch: [0][2158/5004] Time 0.247 ( 0.243) Data 0.022 ( 0.027) Loss 5.9049e+00 (6.5246e+00) Acc@1 3.52 ( 0.90) Acc@5 9.77 ( 3.42) +Epoch: [0][2159/5004] Time 0.244 ( 0.243) Data 0.020 ( 0.027) Loss 5.7563e+00 (6.5242e+00) Acc@1 3.91 ( 0.91) Acc@5 12.11 ( 3.42) +Epoch: [0][2160/5004] Time 0.254 ( 0.243) Data 0.022 ( 0.027) Loss 5.7883e+00 (6.5239e+00) Acc@1 3.12 ( 0.91) Acc@5 7.42 ( 3.42) +Epoch: [0][2161/5004] Time 0.240 ( 0.243) Data 0.018 ( 0.027) Loss 5.9086e+00 (6.5236e+00) Acc@1 4.69 ( 0.91) Acc@5 12.11 ( 3.43) +Epoch: [0][2162/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 6.0362e+00 (6.5234e+00) Acc@1 2.34 ( 0.91) Acc@5 7.42 ( 3.43) +Epoch: [0][2163/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.9312e+00 (6.5231e+00) Acc@1 3.12 ( 0.91) Acc@5 13.28 ( 3.43) +Epoch: [0][2164/5004] Time 0.238 ( 0.243) Data 0.022 ( 0.027) Loss 5.8872e+00 (6.5228e+00) Acc@1 3.52 ( 0.91) Acc@5 11.33 ( 3.44) +Epoch: [0][2165/5004] Time 0.245 ( 0.243) Data 0.026 ( 0.027) Loss 5.7634e+00 (6.5225e+00) Acc@1 4.69 ( 0.91) Acc@5 13.28 ( 3.44) +Epoch: [0][2166/5004] Time 0.236 ( 0.243) Data 0.020 ( 0.027) Loss 5.8251e+00 (6.5221e+00) Acc@1 4.30 ( 0.92) Acc@5 10.55 ( 3.44) +Epoch: [0][2167/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.8679e+00 (6.5218e+00) Acc@1 2.73 ( 0.92) Acc@5 10.16 ( 3.45) +Epoch: [0][2168/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.9161e+00 (6.5216e+00) Acc@1 2.34 ( 0.92) Acc@5 9.38 ( 3.45) +Epoch: [0][2169/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.9183e+00 (6.5213e+00) Acc@1 2.73 ( 0.92) Acc@5 7.03 ( 3.45) +Epoch: [0][2170/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.7592e+00 (6.5209e+00) Acc@1 2.34 ( 0.92) Acc@5 10.55 ( 3.45) +Epoch: [0][2171/5004] Time 0.248 ( 0.243) Data 0.029 ( 0.027) Loss 5.8421e+00 (6.5206e+00) Acc@1 4.30 ( 0.92) Acc@5 10.16 ( 3.46) +Epoch: [0][2172/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.8326e+00 (6.5203e+00) Acc@1 4.69 ( 0.92) Acc@5 10.55 ( 3.46) +Epoch: [0][2173/5004] Time 0.249 ( 0.243) Data 0.029 ( 0.027) Loss 5.9787e+00 (6.5200e+00) Acc@1 3.12 ( 0.92) Acc@5 11.72 ( 3.46) +Epoch: [0][2174/5004] Time 0.235 ( 0.243) Data 0.021 ( 0.027) Loss 6.0362e+00 (6.5198e+00) Acc@1 1.56 ( 0.92) Acc@5 7.81 ( 3.47) +Epoch: [0][2175/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.9595e+00 (6.5196e+00) Acc@1 2.34 ( 0.92) Acc@5 10.55 ( 3.47) +Epoch: [0][2176/5004] Time 0.242 ( 0.243) Data 0.027 ( 0.027) Loss 5.8831e+00 (6.5193e+00) Acc@1 1.95 ( 0.92) Acc@5 9.77 ( 3.47) +Epoch: [0][2177/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.9568e+00 (6.5190e+00) Acc@1 1.17 ( 0.92) Acc@5 7.03 ( 3.47) +Epoch: [0][2178/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.9892e+00 (6.5188e+00) Acc@1 1.17 ( 0.92) Acc@5 6.64 ( 3.48) +Epoch: [0][2179/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.8595e+00 (6.5185e+00) Acc@1 3.52 ( 0.93) Acc@5 9.38 ( 3.48) +Epoch: [0][2180/5004] Time 0.243 ( 0.243) Data 0.026 ( 0.027) Loss 5.9504e+00 (6.5182e+00) Acc@1 1.17 ( 0.93) Acc@5 9.38 ( 3.48) +Epoch: [0][2181/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.9089e+00 (6.5179e+00) Acc@1 0.78 ( 0.93) Acc@5 5.47 ( 3.48) +Epoch: [0][2182/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.8373e+00 (6.5176e+00) Acc@1 3.12 ( 0.93) Acc@5 8.98 ( 3.48) +Epoch: [0][2183/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.8971e+00 (6.5173e+00) Acc@1 2.34 ( 0.93) Acc@5 9.77 ( 3.49) +Epoch: [0][2184/5004] Time 0.240 ( 0.243) Data 0.021 ( 0.027) Loss 5.8542e+00 (6.5170e+00) Acc@1 1.56 ( 0.93) Acc@5 10.16 ( 3.49) +Epoch: [0][2185/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.8316e+00 (6.5167e+00) Acc@1 3.12 ( 0.93) Acc@5 10.55 ( 3.49) +Epoch: [0][2186/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.8221e+00 (6.5164e+00) Acc@1 1.17 ( 0.93) Acc@5 8.20 ( 3.50) +Epoch: [0][2187/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.8195e+00 (6.5161e+00) Acc@1 1.56 ( 0.93) Acc@5 10.16 ( 3.50) +Epoch: [0][2188/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 6.0695e+00 (6.5159e+00) Acc@1 3.91 ( 0.93) Acc@5 8.98 ( 3.50) +Epoch: [0][2189/5004] Time 0.241 ( 0.243) Data 0.022 ( 0.027) Loss 5.9728e+00 (6.5156e+00) Acc@1 1.95 ( 0.93) Acc@5 7.42 ( 3.50) +Epoch: [0][2190/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.027) Loss 5.8639e+00 (6.5153e+00) Acc@1 3.52 ( 0.93) Acc@5 8.59 ( 3.51) +Epoch: [0][2191/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.8431e+00 (6.5150e+00) Acc@1 3.52 ( 0.93) Acc@5 10.55 ( 3.51) +Epoch: [0][2192/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.9416e+00 (6.5148e+00) Acc@1 0.39 ( 0.93) Acc@5 6.25 ( 3.51) +Epoch: [0][2193/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.027) Loss 5.8024e+00 (6.5144e+00) Acc@1 3.91 ( 0.93) Acc@5 9.77 ( 3.51) +Epoch: [0][2194/5004] Time 0.246 ( 0.243) Data 0.023 ( 0.027) Loss 5.8913e+00 (6.5142e+00) Acc@1 2.73 ( 0.93) Acc@5 10.16 ( 3.52) +Epoch: [0][2195/5004] Time 0.252 ( 0.243) Data 0.022 ( 0.027) Loss 5.8488e+00 (6.5139e+00) Acc@1 2.73 ( 0.94) Acc@5 9.77 ( 3.52) +Epoch: [0][2196/5004] Time 0.247 ( 0.243) Data 0.016 ( 0.027) Loss 5.9110e+00 (6.5136e+00) Acc@1 3.12 ( 0.94) Acc@5 8.98 ( 3.52) +Epoch: [0][2197/5004] Time 0.242 ( 0.243) Data 0.014 ( 0.027) Loss 5.8074e+00 (6.5133e+00) Acc@1 2.34 ( 0.94) Acc@5 7.42 ( 3.52) +Epoch: [0][2198/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 5.7967e+00 (6.5129e+00) Acc@1 1.95 ( 0.94) Acc@5 8.59 ( 3.53) +Epoch: [0][2199/5004] Time 0.245 ( 0.243) Data 0.021 ( 0.027) Loss 5.6602e+00 (6.5125e+00) Acc@1 2.34 ( 0.94) Acc@5 11.72 ( 3.53) +Epoch: [0][2200/5004] Time 0.245 ( 0.243) Data 0.021 ( 0.027) Loss 5.8477e+00 (6.5122e+00) Acc@1 3.12 ( 0.94) Acc@5 11.72 ( 3.53) +Epoch: [0][2201/5004] Time 0.246 ( 0.243) Data 0.020 ( 0.027) Loss 5.8152e+00 (6.5119e+00) Acc@1 4.30 ( 0.94) Acc@5 9.38 ( 3.54) +Epoch: [0][2202/5004] Time 0.247 ( 0.243) Data 0.020 ( 0.027) Loss 5.8749e+00 (6.5116e+00) Acc@1 2.34 ( 0.94) Acc@5 8.98 ( 3.54) +Epoch: [0][2203/5004] Time 0.250 ( 0.243) Data 0.021 ( 0.027) Loss 5.8151e+00 (6.5113e+00) Acc@1 3.12 ( 0.94) Acc@5 12.11 ( 3.54) +Epoch: [0][2204/5004] Time 0.248 ( 0.243) Data 0.018 ( 0.027) Loss 5.8646e+00 (6.5110e+00) Acc@1 3.12 ( 0.94) Acc@5 8.59 ( 3.54) +Epoch: [0][2205/5004] Time 0.244 ( 0.243) Data 0.018 ( 0.027) Loss 5.8609e+00 (6.5107e+00) Acc@1 5.08 ( 0.95) Acc@5 11.72 ( 3.55) +Epoch: [0][2206/5004] Time 0.250 ( 0.243) Data 0.021 ( 0.027) Loss 5.8023e+00 (6.5104e+00) Acc@1 4.69 ( 0.95) Acc@5 9.77 ( 3.55) +Epoch: [0][2207/5004] Time 0.243 ( 0.243) Data 0.019 ( 0.027) Loss 5.7522e+00 (6.5101e+00) Acc@1 2.73 ( 0.95) Acc@5 10.55 ( 3.55) +Epoch: [0][2208/5004] Time 0.245 ( 0.243) Data 0.020 ( 0.027) Loss 5.6834e+00 (6.5097e+00) Acc@1 5.08 ( 0.95) Acc@5 13.67 ( 3.56) +Epoch: [0][2209/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.8786e+00 (6.5094e+00) Acc@1 2.34 ( 0.95) Acc@5 8.59 ( 3.56) +Epoch: [0][2210/5004] Time 0.250 ( 0.243) Data 0.025 ( 0.027) Loss 5.7914e+00 (6.5091e+00) Acc@1 3.52 ( 0.95) Acc@5 12.50 ( 3.56) +Epoch: [0][2211/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.9762e+00 (6.5088e+00) Acc@1 0.39 ( 0.95) Acc@5 8.20 ( 3.57) +Epoch: [0][2212/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.8877e+00 (6.5086e+00) Acc@1 1.56 ( 0.95) Acc@5 8.59 ( 3.57) +Epoch: [0][2213/5004] Time 0.248 ( 0.243) Data 0.021 ( 0.027) Loss 5.9374e+00 (6.5083e+00) Acc@1 3.12 ( 0.95) Acc@5 8.59 ( 3.57) +Epoch: [0][2214/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.8876e+00 (6.5080e+00) Acc@1 1.95 ( 0.95) Acc@5 8.59 ( 3.57) +Epoch: [0][2215/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.8752e+00 (6.5077e+00) Acc@1 2.34 ( 0.95) Acc@5 8.59 ( 3.58) +Epoch: [0][2216/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.9519e+00 (6.5075e+00) Acc@1 3.91 ( 0.95) Acc@5 9.38 ( 3.58) +Epoch: [0][2217/5004] Time 0.242 ( 0.243) Data 0.021 ( 0.027) Loss 5.9109e+00 (6.5072e+00) Acc@1 2.34 ( 0.96) Acc@5 7.42 ( 3.58) +Epoch: [0][2218/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.9505e+00 (6.5070e+00) Acc@1 2.73 ( 0.96) Acc@5 8.98 ( 3.58) +Epoch: [0][2219/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8879e+00 (6.5067e+00) Acc@1 3.52 ( 0.96) Acc@5 7.42 ( 3.58) +Epoch: [0][2220/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 5.8594e+00 (6.5064e+00) Acc@1 2.73 ( 0.96) Acc@5 10.94 ( 3.59) +Epoch: [0][2221/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.8694e+00 (6.5061e+00) Acc@1 3.52 ( 0.96) Acc@5 10.94 ( 3.59) +Epoch: [0][2222/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.8475e+00 (6.5058e+00) Acc@1 3.12 ( 0.96) Acc@5 10.55 ( 3.59) +Epoch: [0][2223/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7873e+00 (6.5055e+00) Acc@1 3.52 ( 0.96) Acc@5 12.89 ( 3.60) +Epoch: [0][2224/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7836e+00 (6.5052e+00) Acc@1 2.73 ( 0.96) Acc@5 10.55 ( 3.60) +Epoch: [0][2225/5004] Time 0.245 ( 0.243) Data 0.026 ( 0.027) Loss 5.7481e+00 (6.5048e+00) Acc@1 1.17 ( 0.96) Acc@5 7.42 ( 3.60) +Epoch: [0][2226/5004] Time 0.248 ( 0.243) Data 0.025 ( 0.027) Loss 5.6289e+00 (6.5044e+00) Acc@1 2.73 ( 0.96) Acc@5 13.67 ( 3.61) +Epoch: [0][2227/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.8971e+00 (6.5042e+00) Acc@1 3.12 ( 0.96) Acc@5 7.42 ( 3.61) +Epoch: [0][2228/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.7366e+00 (6.5038e+00) Acc@1 3.12 ( 0.97) Acc@5 12.11 ( 3.61) +Epoch: [0][2229/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7377e+00 (6.5035e+00) Acc@1 3.91 ( 0.97) Acc@5 10.16 ( 3.62) +Epoch: [0][2230/5004] Time 0.255 ( 0.243) Data 0.024 ( 0.027) Loss 5.5516e+00 (6.5030e+00) Acc@1 3.12 ( 0.97) Acc@5 13.28 ( 3.62) +Epoch: [0][2231/5004] Time 0.250 ( 0.243) Data 0.022 ( 0.027) Loss 5.8798e+00 (6.5028e+00) Acc@1 2.73 ( 0.97) Acc@5 10.55 ( 3.62) +Epoch: [0][2232/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.8011e+00 (6.5025e+00) Acc@1 2.73 ( 0.97) Acc@5 8.59 ( 3.63) +Epoch: [0][2233/5004] Time 0.247 ( 0.243) Data 0.024 ( 0.027) Loss 5.9569e+00 (6.5022e+00) Acc@1 2.73 ( 0.97) Acc@5 10.55 ( 3.63) +Epoch: [0][2234/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7557e+00 (6.5019e+00) Acc@1 4.30 ( 0.97) Acc@5 12.89 ( 3.63) +Epoch: [0][2235/5004] Time 0.247 ( 0.243) Data 0.024 ( 0.027) Loss 5.8123e+00 (6.5016e+00) Acc@1 5.08 ( 0.97) Acc@5 12.89 ( 3.64) +Epoch: [0][2236/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.7836e+00 (6.5012e+00) Acc@1 1.56 ( 0.97) Acc@5 11.33 ( 3.64) +Epoch: [0][2237/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.9352e+00 (6.5010e+00) Acc@1 2.34 ( 0.97) Acc@5 9.38 ( 3.64) +Epoch: [0][2238/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7749e+00 (6.5007e+00) Acc@1 4.69 ( 0.98) Acc@5 9.77 ( 3.65) +Epoch: [0][2239/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8955e+00 (6.5004e+00) Acc@1 1.95 ( 0.98) Acc@5 10.16 ( 3.65) +Epoch: [0][2240/5004] Time 0.251 ( 0.243) Data 0.023 ( 0.027) Loss 5.8109e+00 (6.5001e+00) Acc@1 2.34 ( 0.98) Acc@5 10.16 ( 3.65) +Epoch: [0][2241/5004] Time 0.246 ( 0.243) Data 0.020 ( 0.027) Loss 5.7214e+00 (6.4997e+00) Acc@1 6.64 ( 0.98) Acc@5 16.80 ( 3.66) +Epoch: [0][2242/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7767e+00 (6.4994e+00) Acc@1 1.95 ( 0.98) Acc@5 8.59 ( 3.66) +Epoch: [0][2243/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.8281e+00 (6.4991e+00) Acc@1 1.95 ( 0.98) Acc@5 6.25 ( 3.66) +Epoch: [0][2244/5004] Time 0.248 ( 0.243) Data 0.025 ( 0.027) Loss 5.7322e+00 (6.4988e+00) Acc@1 2.34 ( 0.98) Acc@5 12.50 ( 3.67) +Epoch: [0][2245/5004] Time 0.248 ( 0.243) Data 0.027 ( 0.027) Loss 5.9186e+00 (6.4985e+00) Acc@1 2.73 ( 0.98) Acc@5 7.03 ( 3.67) +Epoch: [0][2246/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8811e+00 (6.4982e+00) Acc@1 2.73 ( 0.98) Acc@5 10.55 ( 3.67) +Epoch: [0][2247/5004] Time 0.247 ( 0.243) Data 0.024 ( 0.027) Loss 5.7061e+00 (6.4979e+00) Acc@1 3.12 ( 0.98) Acc@5 10.55 ( 3.67) +Epoch: [0][2248/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.8876e+00 (6.4976e+00) Acc@1 3.12 ( 0.98) Acc@5 7.42 ( 3.67) +Epoch: [0][2249/5004] Time 0.250 ( 0.243) Data 0.023 ( 0.027) Loss 5.7820e+00 (6.4973e+00) Acc@1 3.91 ( 0.99) Acc@5 10.55 ( 3.68) +Epoch: [0][2250/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.8479e+00 (6.4970e+00) Acc@1 2.34 ( 0.99) Acc@5 11.33 ( 3.68) +Epoch: [0][2251/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8339e+00 (6.4967e+00) Acc@1 4.30 ( 0.99) Acc@5 10.16 ( 3.68) +Epoch: [0][2252/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.8795e+00 (6.4964e+00) Acc@1 4.69 ( 0.99) Acc@5 10.55 ( 3.69) +Epoch: [0][2253/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7583e+00 (6.4961e+00) Acc@1 2.34 ( 0.99) Acc@5 12.11 ( 3.69) +Epoch: [0][2254/5004] Time 0.247 ( 0.243) Data 0.025 ( 0.027) Loss 5.8102e+00 (6.4958e+00) Acc@1 4.30 ( 0.99) Acc@5 10.94 ( 3.69) +Epoch: [0][2255/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7982e+00 (6.4955e+00) Acc@1 1.56 ( 0.99) Acc@5 8.59 ( 3.70) +Epoch: [0][2256/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.7103e+00 (6.4952e+00) Acc@1 2.34 ( 0.99) Acc@5 7.81 ( 3.70) +Epoch: [0][2257/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.7080e+00 (6.4948e+00) Acc@1 2.73 ( 0.99) Acc@5 10.55 ( 3.70) +Epoch: [0][2258/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 5.9405e+00 (6.4946e+00) Acc@1 3.52 ( 0.99) Acc@5 10.55 ( 3.70) +Epoch: [0][2259/5004] Time 0.248 ( 0.243) Data 0.024 ( 0.027) Loss 5.7672e+00 (6.4942e+00) Acc@1 5.86 ( 1.00) Acc@5 11.72 ( 3.71) +Epoch: [0][2260/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.7154e+00 (6.4939e+00) Acc@1 2.73 ( 1.00) Acc@5 7.81 ( 3.71) +Epoch: [0][2261/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.7353e+00 (6.4936e+00) Acc@1 2.73 ( 1.00) Acc@5 12.50 ( 3.71) +Epoch: [0][2262/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.9803e+00 (6.4933e+00) Acc@1 3.91 ( 1.00) Acc@5 8.59 ( 3.72) +Epoch: [0][2263/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7328e+00 (6.4930e+00) Acc@1 3.52 ( 1.00) Acc@5 10.16 ( 3.72) +Epoch: [0][2264/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.9542e+00 (6.4928e+00) Acc@1 2.34 ( 1.00) Acc@5 6.64 ( 3.72) +Epoch: [0][2265/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7586e+00 (6.4924e+00) Acc@1 1.95 ( 1.00) Acc@5 10.16 ( 3.72) +Epoch: [0][2266/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.8726e+00 (6.4922e+00) Acc@1 3.91 ( 1.00) Acc@5 10.94 ( 3.73) +Epoch: [0][2267/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8167e+00 (6.4919e+00) Acc@1 1.95 ( 1.00) Acc@5 10.94 ( 3.73) +Epoch: [0][2268/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.8700e+00 (6.4916e+00) Acc@1 1.95 ( 1.00) Acc@5 10.94 ( 3.73) +Epoch: [0][2269/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7448e+00 (6.4913e+00) Acc@1 3.91 ( 1.00) Acc@5 12.89 ( 3.74) +Epoch: [0][2270/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8537e+00 (6.4910e+00) Acc@1 2.73 ( 1.01) Acc@5 7.81 ( 3.74) +Epoch: [0][2271/5004] Time 0.258 ( 0.243) Data 0.024 ( 0.027) Loss 5.8186e+00 (6.4907e+00) Acc@1 2.73 ( 1.01) Acc@5 11.33 ( 3.74) +Epoch: [0][2272/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 5.7740e+00 (6.4904e+00) Acc@1 1.95 ( 1.01) Acc@5 9.38 ( 3.74) +Epoch: [0][2273/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.6877e+00 (6.4900e+00) Acc@1 4.69 ( 1.01) Acc@5 13.67 ( 3.75) +Epoch: [0][2274/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.8320e+00 (6.4897e+00) Acc@1 2.73 ( 1.01) Acc@5 11.33 ( 3.75) +Epoch: [0][2275/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.9345e+00 (6.4895e+00) Acc@1 3.12 ( 1.01) Acc@5 11.72 ( 3.75) +Epoch: [0][2276/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.7928e+00 (6.4892e+00) Acc@1 2.34 ( 1.01) Acc@5 9.38 ( 3.76) +Epoch: [0][2277/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8356e+00 (6.4889e+00) Acc@1 1.56 ( 1.01) Acc@5 7.42 ( 3.76) +Epoch: [0][2278/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.7444e+00 (6.4886e+00) Acc@1 3.91 ( 1.01) Acc@5 11.33 ( 3.76) +Epoch: [0][2279/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8790e+00 (6.4883e+00) Acc@1 2.73 ( 1.01) Acc@5 10.16 ( 3.76) +Epoch: [0][2280/5004] Time 0.251 ( 0.243) Data 0.024 ( 0.027) Loss 5.9467e+00 (6.4881e+00) Acc@1 2.73 ( 1.01) Acc@5 11.72 ( 3.77) +Epoch: [0][2281/5004] Time 0.247 ( 0.243) Data 0.022 ( 0.027) Loss 5.8602e+00 (6.4878e+00) Acc@1 3.52 ( 1.01) Acc@5 10.55 ( 3.77) +Epoch: [0][2282/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.6681e+00 (6.4874e+00) Acc@1 3.91 ( 1.02) Acc@5 12.11 ( 3.77) +Epoch: [0][2283/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.6842e+00 (6.4871e+00) Acc@1 3.12 ( 1.02) Acc@5 11.72 ( 3.78) +Epoch: [0][2284/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.6730e+00 (6.4867e+00) Acc@1 3.12 ( 1.02) Acc@5 12.11 ( 3.78) +Epoch: [0][2285/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.8115e+00 (6.4864e+00) Acc@1 3.91 ( 1.02) Acc@5 10.16 ( 3.78) +Epoch: [0][2286/5004] Time 0.248 ( 0.243) Data 0.024 ( 0.027) Loss 5.6809e+00 (6.4861e+00) Acc@1 5.47 ( 1.02) Acc@5 15.62 ( 3.79) +Epoch: [0][2287/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.8397e+00 (6.4858e+00) Acc@1 1.95 ( 1.02) Acc@5 10.94 ( 3.79) +Epoch: [0][2288/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 5.7063e+00 (6.4854e+00) Acc@1 4.30 ( 1.02) Acc@5 11.33 ( 3.80) +Epoch: [0][2289/5004] Time 0.236 ( 0.243) Data 0.020 ( 0.027) Loss 5.7830e+00 (6.4851e+00) Acc@1 3.12 ( 1.02) Acc@5 12.89 ( 3.80) +Epoch: [0][2290/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.8422e+00 (6.4849e+00) Acc@1 4.30 ( 1.02) Acc@5 12.11 ( 3.80) +Epoch: [0][2291/5004] Time 0.249 ( 0.243) Data 0.029 ( 0.027) Loss 5.6356e+00 (6.4845e+00) Acc@1 5.08 ( 1.03) Acc@5 13.28 ( 3.81) +Epoch: [0][2292/5004] Time 0.239 ( 0.243) Data 0.024 ( 0.027) Loss 5.7182e+00 (6.4842e+00) Acc@1 6.64 ( 1.03) Acc@5 14.84 ( 3.81) +Epoch: [0][2293/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 5.7925e+00 (6.4839e+00) Acc@1 3.12 ( 1.03) Acc@5 12.50 ( 3.82) +Epoch: [0][2294/5004] Time 0.250 ( 0.243) Data 0.030 ( 0.027) Loss 5.7765e+00 (6.4835e+00) Acc@1 3.91 ( 1.03) Acc@5 10.55 ( 3.82) +Epoch: [0][2295/5004] Time 0.248 ( 0.243) Data 0.027 ( 0.027) Loss 5.8168e+00 (6.4833e+00) Acc@1 2.73 ( 1.03) Acc@5 10.55 ( 3.82) +Epoch: [0][2296/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.8697e+00 (6.4830e+00) Acc@1 1.95 ( 1.03) Acc@5 9.77 ( 3.83) +Epoch: [0][2297/5004] Time 0.247 ( 0.243) Data 0.029 ( 0.027) Loss 5.7969e+00 (6.4827e+00) Acc@1 2.34 ( 1.03) Acc@5 8.20 ( 3.83) +Epoch: [0][2298/5004] Time 0.249 ( 0.243) Data 0.028 ( 0.027) Loss 5.7744e+00 (6.4824e+00) Acc@1 3.12 ( 1.03) Acc@5 12.11 ( 3.83) +Epoch: [0][2299/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.7220e+00 (6.4821e+00) Acc@1 3.12 ( 1.03) Acc@5 14.06 ( 3.84) +Epoch: [0][2300/5004] Time 0.250 ( 0.243) Data 0.028 ( 0.027) Loss 5.8251e+00 (6.4818e+00) Acc@1 3.52 ( 1.04) Acc@5 13.28 ( 3.84) +Epoch: [0][2301/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.7214e+00 (6.4814e+00) Acc@1 3.91 ( 1.04) Acc@5 10.55 ( 3.84) +Epoch: [0][2302/5004] Time 0.244 ( 0.243) Data 0.027 ( 0.027) Loss 5.7628e+00 (6.4811e+00) Acc@1 4.69 ( 1.04) Acc@5 14.06 ( 3.85) +Epoch: [0][2303/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.6990e+00 (6.4808e+00) Acc@1 4.69 ( 1.04) Acc@5 12.50 ( 3.85) +Epoch: [0][2304/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.9394e+00 (6.4805e+00) Acc@1 3.52 ( 1.04) Acc@5 8.59 ( 3.85) +Epoch: [0][2305/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.7466e+00 (6.4802e+00) Acc@1 4.69 ( 1.04) Acc@5 13.28 ( 3.86) +Epoch: [0][2306/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.8545e+00 (6.4800e+00) Acc@1 1.95 ( 1.04) Acc@5 9.77 ( 3.86) +Epoch: [0][2307/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.7716e+00 (6.4797e+00) Acc@1 3.12 ( 1.04) Acc@5 10.94 ( 3.86) +Epoch: [0][2308/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.9270e+00 (6.4794e+00) Acc@1 3.12 ( 1.05) Acc@5 9.38 ( 3.86) +Epoch: [0][2309/5004] Time 0.253 ( 0.243) Data 0.028 ( 0.027) Loss 5.8033e+00 (6.4791e+00) Acc@1 5.08 ( 1.05) Acc@5 14.06 ( 3.87) +Epoch: [0][2310/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 5.7611e+00 (6.4788e+00) Acc@1 2.34 ( 1.05) Acc@5 10.94 ( 3.87) +Epoch: [0][2311/5004] Time 0.249 ( 0.243) Data 0.021 ( 0.027) Loss 5.8547e+00 (6.4785e+00) Acc@1 3.12 ( 1.05) Acc@5 10.94 ( 3.87) +Epoch: [0][2312/5004] Time 0.248 ( 0.243) Data 0.020 ( 0.027) Loss 5.8473e+00 (6.4783e+00) Acc@1 3.52 ( 1.05) Acc@5 9.77 ( 3.88) +Epoch: [0][2313/5004] Time 0.246 ( 0.243) Data 0.020 ( 0.027) Loss 5.8194e+00 (6.4780e+00) Acc@1 3.52 ( 1.05) Acc@5 12.50 ( 3.88) +Epoch: [0][2314/5004] Time 0.244 ( 0.243) Data 0.020 ( 0.027) Loss 5.8866e+00 (6.4777e+00) Acc@1 3.12 ( 1.05) Acc@5 11.33 ( 3.88) +Epoch: [0][2315/5004] Time 0.245 ( 0.243) Data 0.021 ( 0.027) Loss 5.7877e+00 (6.4774e+00) Acc@1 3.91 ( 1.05) Acc@5 12.50 ( 3.89) +Epoch: [0][2316/5004] Time 0.247 ( 0.243) Data 0.021 ( 0.027) Loss 5.8022e+00 (6.4771e+00) Acc@1 3.12 ( 1.05) Acc@5 10.55 ( 3.89) +Epoch: [0][2317/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.8525e+00 (6.4769e+00) Acc@1 3.12 ( 1.05) Acc@5 10.94 ( 3.89) +Epoch: [0][2318/5004] Time 0.244 ( 0.243) Data 0.020 ( 0.027) Loss 5.9062e+00 (6.4766e+00) Acc@1 2.73 ( 1.06) Acc@5 7.81 ( 3.90) +Epoch: [0][2319/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.8226e+00 (6.4763e+00) Acc@1 2.34 ( 1.06) Acc@5 9.77 ( 3.90) +Epoch: [0][2320/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.7480e+00 (6.4760e+00) Acc@1 4.69 ( 1.06) Acc@5 12.89 ( 3.90) +Epoch: [0][2321/5004] Time 0.250 ( 0.243) Data 0.021 ( 0.027) Loss 5.7339e+00 (6.4757e+00) Acc@1 3.91 ( 1.06) Acc@5 10.55 ( 3.91) +Epoch: [0][2322/5004] Time 0.248 ( 0.243) Data 0.020 ( 0.027) Loss 5.7679e+00 (6.4754e+00) Acc@1 3.52 ( 1.06) Acc@5 10.94 ( 3.91) +Epoch: [0][2323/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.7813e+00 (6.4751e+00) Acc@1 4.30 ( 1.06) Acc@5 12.89 ( 3.91) +Epoch: [0][2324/5004] Time 0.245 ( 0.243) Data 0.021 ( 0.027) Loss 5.6454e+00 (6.4747e+00) Acc@1 4.69 ( 1.06) Acc@5 10.94 ( 3.91) +Epoch: [0][2325/5004] Time 0.245 ( 0.243) Data 0.021 ( 0.027) Loss 5.9081e+00 (6.4745e+00) Acc@1 3.12 ( 1.06) Acc@5 7.42 ( 3.92) +Epoch: [0][2326/5004] Time 0.245 ( 0.243) Data 0.020 ( 0.027) Loss 5.8419e+00 (6.4742e+00) Acc@1 3.12 ( 1.06) Acc@5 10.55 ( 3.92) +Epoch: [0][2327/5004] Time 0.248 ( 0.243) Data 0.020 ( 0.027) Loss 5.8306e+00 (6.4740e+00) Acc@1 3.52 ( 1.07) Acc@5 11.33 ( 3.92) +Epoch: [0][2328/5004] Time 0.244 ( 0.243) Data 0.019 ( 0.027) Loss 5.6953e+00 (6.4736e+00) Acc@1 3.12 ( 1.07) Acc@5 10.16 ( 3.93) +Epoch: [0][2329/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 5.8237e+00 (6.4733e+00) Acc@1 3.12 ( 1.07) Acc@5 11.33 ( 3.93) +Epoch: [0][2330/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 5.7322e+00 (6.4730e+00) Acc@1 3.12 ( 1.07) Acc@5 9.77 ( 3.93) +Epoch: [0][2331/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8549e+00 (6.4728e+00) Acc@1 3.12 ( 1.07) Acc@5 10.94 ( 3.93) +Epoch: [0][2332/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.8175e+00 (6.4725e+00) Acc@1 3.12 ( 1.07) Acc@5 11.72 ( 3.94) +Epoch: [0][2333/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.7747e+00 (6.4722e+00) Acc@1 3.12 ( 1.07) Acc@5 10.16 ( 3.94) +Epoch: [0][2334/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.7112e+00 (6.4719e+00) Acc@1 4.69 ( 1.07) Acc@5 12.50 ( 3.94) +Epoch: [0][2335/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.6554e+00 (6.4715e+00) Acc@1 3.52 ( 1.07) Acc@5 11.72 ( 3.95) +Epoch: [0][2336/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7736e+00 (6.4712e+00) Acc@1 5.08 ( 1.07) Acc@5 10.94 ( 3.95) +Epoch: [0][2337/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.9161e+00 (6.4710e+00) Acc@1 1.56 ( 1.08) Acc@5 8.20 ( 3.95) +Epoch: [0][2338/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7442e+00 (6.4707e+00) Acc@1 1.95 ( 1.08) Acc@5 12.11 ( 3.96) +Epoch: [0][2339/5004] Time 0.247 ( 0.243) Data 0.024 ( 0.027) Loss 5.8682e+00 (6.4704e+00) Acc@1 2.73 ( 1.08) Acc@5 9.38 ( 3.96) +Epoch: [0][2340/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.6368e+00 (6.4700e+00) Acc@1 3.91 ( 1.08) Acc@5 11.33 ( 3.96) +Epoch: [0][2341/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.6190e+00 (6.4697e+00) Acc@1 7.03 ( 1.08) Acc@5 15.23 ( 3.97) +Epoch: [0][2342/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.8432e+00 (6.4694e+00) Acc@1 3.91 ( 1.08) Acc@5 8.20 ( 3.97) +Epoch: [0][2343/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.6145e+00 (6.4690e+00) Acc@1 2.34 ( 1.08) Acc@5 12.89 ( 3.97) +Epoch: [0][2344/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.6722e+00 (6.4687e+00) Acc@1 3.12 ( 1.08) Acc@5 10.55 ( 3.97) +Epoch: [0][2345/5004] Time 0.250 ( 0.243) Data 0.026 ( 0.027) Loss 5.8362e+00 (6.4684e+00) Acc@1 1.17 ( 1.08) Acc@5 8.59 ( 3.98) +Epoch: [0][2346/5004] Time 0.247 ( 0.243) Data 0.025 ( 0.027) Loss 5.6734e+00 (6.4681e+00) Acc@1 3.52 ( 1.08) Acc@5 14.45 ( 3.98) +Epoch: [0][2347/5004] Time 0.242 ( 0.243) Data 0.022 ( 0.027) Loss 5.7668e+00 (6.4678e+00) Acc@1 4.69 ( 1.09) Acc@5 13.28 ( 3.98) +Epoch: [0][2348/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.7404e+00 (6.4675e+00) Acc@1 3.12 ( 1.09) Acc@5 13.67 ( 3.99) +Epoch: [0][2349/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.8578e+00 (6.4672e+00) Acc@1 2.73 ( 1.09) Acc@5 11.72 ( 3.99) +Epoch: [0][2350/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 5.8260e+00 (6.4670e+00) Acc@1 3.12 ( 1.09) Acc@5 10.55 ( 3.99) +Epoch: [0][2351/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.7593e+00 (6.4667e+00) Acc@1 3.52 ( 1.09) Acc@5 11.72 ( 4.00) +Epoch: [0][2352/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.6559e+00 (6.4663e+00) Acc@1 3.52 ( 1.09) Acc@5 10.16 ( 4.00) +Epoch: [0][2353/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 5.6654e+00 (6.4660e+00) Acc@1 1.56 ( 1.09) Acc@5 9.38 ( 4.00) +Epoch: [0][2354/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.7191e+00 (6.4657e+00) Acc@1 5.47 ( 1.09) Acc@5 13.67 ( 4.01) +Epoch: [0][2355/5004] Time 0.240 ( 0.243) Data 0.020 ( 0.027) Loss 5.5765e+00 (6.4653e+00) Acc@1 3.91 ( 1.09) Acc@5 12.89 ( 4.01) +Epoch: [0][2356/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.8470e+00 (6.4650e+00) Acc@1 1.95 ( 1.09) Acc@5 8.20 ( 4.01) +Epoch: [0][2357/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.6849e+00 (6.4647e+00) Acc@1 3.12 ( 1.09) Acc@5 12.89 ( 4.02) +Epoch: [0][2358/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.7346e+00 (6.4644e+00) Acc@1 3.12 ( 1.10) Acc@5 11.33 ( 4.02) +Epoch: [0][2359/5004] Time 0.248 ( 0.243) Data 0.024 ( 0.027) Loss 5.6279e+00 (6.4640e+00) Acc@1 4.30 ( 1.10) Acc@5 10.94 ( 4.02) +Epoch: [0][2360/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.7687e+00 (6.4637e+00) Acc@1 4.30 ( 1.10) Acc@5 12.50 ( 4.03) +Epoch: [0][2361/5004] Time 0.250 ( 0.243) Data 0.023 ( 0.027) Loss 5.8686e+00 (6.4635e+00) Acc@1 4.69 ( 1.10) Acc@5 11.33 ( 4.03) +Epoch: [0][2362/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.6768e+00 (6.4631e+00) Acc@1 3.91 ( 1.10) Acc@5 10.55 ( 4.03) +Epoch: [0][2363/5004] Time 0.252 ( 0.243) Data 0.024 ( 0.027) Loss 5.8109e+00 (6.4629e+00) Acc@1 1.56 ( 1.10) Acc@5 8.59 ( 4.03) +Epoch: [0][2364/5004] Time 0.248 ( 0.243) Data 0.023 ( 0.027) Loss 5.7149e+00 (6.4625e+00) Acc@1 3.91 ( 1.10) Acc@5 8.59 ( 4.04) +Epoch: [0][2365/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.6717e+00 (6.4622e+00) Acc@1 3.52 ( 1.10) Acc@5 8.59 ( 4.04) +Epoch: [0][2366/5004] Time 0.242 ( 0.243) Data 0.023 ( 0.027) Loss 5.8093e+00 (6.4619e+00) Acc@1 3.52 ( 1.10) Acc@5 12.11 ( 4.04) +Epoch: [0][2367/5004] Time 0.252 ( 0.243) Data 0.025 ( 0.027) Loss 5.7417e+00 (6.4616e+00) Acc@1 5.47 ( 1.11) Acc@5 12.50 ( 4.04) +Epoch: [0][2368/5004] Time 0.244 ( 0.243) Data 0.018 ( 0.027) Loss 5.9887e+00 (6.4614e+00) Acc@1 2.73 ( 1.11) Acc@5 8.98 ( 4.05) +Epoch: [0][2369/5004] Time 0.252 ( 0.243) Data 0.023 ( 0.027) Loss 5.7669e+00 (6.4611e+00) Acc@1 3.12 ( 1.11) Acc@5 14.06 ( 4.05) +Epoch: [0][2370/5004] Time 0.243 ( 0.243) Data 0.018 ( 0.027) Loss 5.7300e+00 (6.4608e+00) Acc@1 3.91 ( 1.11) Acc@5 14.06 ( 4.05) +Epoch: [0][2371/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.8640e+00 (6.4606e+00) Acc@1 3.52 ( 1.11) Acc@5 10.94 ( 4.06) +Epoch: [0][2372/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.7658e+00 (6.4603e+00) Acc@1 3.12 ( 1.11) Acc@5 10.94 ( 4.06) +Epoch: [0][2373/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.9303e+00 (6.4601e+00) Acc@1 1.56 ( 1.11) Acc@5 7.81 ( 4.06) +Epoch: [0][2374/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.9165e+00 (6.4598e+00) Acc@1 4.30 ( 1.11) Acc@5 12.50 ( 4.07) +Epoch: [0][2375/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7229e+00 (6.4595e+00) Acc@1 2.34 ( 1.11) Acc@5 12.11 ( 4.07) +Epoch: [0][2376/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.5696e+00 (6.4592e+00) Acc@1 5.86 ( 1.11) Acc@5 16.80 ( 4.07) +Epoch: [0][2377/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.7818e+00 (6.4589e+00) Acc@1 2.73 ( 1.12) Acc@5 8.59 ( 4.08) +Epoch: [0][2378/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.5873e+00 (6.4585e+00) Acc@1 3.91 ( 1.12) Acc@5 14.06 ( 4.08) +Epoch: [0][2379/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.7112e+00 (6.4582e+00) Acc@1 3.12 ( 1.12) Acc@5 10.55 ( 4.08) +Epoch: [0][2380/5004] Time 0.247 ( 0.243) Data 0.025 ( 0.027) Loss 5.6107e+00 (6.4578e+00) Acc@1 1.95 ( 1.12) Acc@5 10.94 ( 4.09) +Epoch: [0][2381/5004] Time 0.238 ( 0.243) Data 0.020 ( 0.027) Loss 5.9027e+00 (6.4576e+00) Acc@1 3.52 ( 1.12) Acc@5 8.98 ( 4.09) +Epoch: [0][2382/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7982e+00 (6.4573e+00) Acc@1 4.30 ( 1.12) Acc@5 11.72 ( 4.09) +Epoch: [0][2383/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.8966e+00 (6.4571e+00) Acc@1 2.34 ( 1.12) Acc@5 7.42 ( 4.09) +Epoch: [0][2384/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.8789e+00 (6.4568e+00) Acc@1 3.52 ( 1.12) Acc@5 12.11 ( 4.10) +Epoch: [0][2385/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.6537e+00 (6.4565e+00) Acc@1 5.08 ( 1.12) Acc@5 12.50 ( 4.10) +Epoch: [0][2386/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.7866e+00 (6.4562e+00) Acc@1 3.12 ( 1.12) Acc@5 9.77 ( 4.10) +Epoch: [0][2387/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.7875e+00 (6.4559e+00) Acc@1 2.73 ( 1.12) Acc@5 10.94 ( 4.10) +Epoch: [0][2388/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.7833e+00 (6.4557e+00) Acc@1 3.91 ( 1.13) Acc@5 11.33 ( 4.11) +Epoch: [0][2389/5004] Time 0.243 ( 0.243) Data 0.024 ( 0.027) Loss 5.7224e+00 (6.4554e+00) Acc@1 3.52 ( 1.13) Acc@5 12.11 ( 4.11) +Epoch: [0][2390/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.7960e+00 (6.4551e+00) Acc@1 2.73 ( 1.13) Acc@5 10.94 ( 4.11) +Epoch: [0][2391/5004] Time 0.240 ( 0.243) Data 0.022 ( 0.027) Loss 5.6809e+00 (6.4548e+00) Acc@1 4.69 ( 1.13) Acc@5 15.62 ( 4.12) +Epoch: [0][2392/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 5.6610e+00 (6.4544e+00) Acc@1 4.30 ( 1.13) Acc@5 13.28 ( 4.12) +Epoch: [0][2393/5004] Time 0.242 ( 0.243) Data 0.019 ( 0.027) Loss 5.6848e+00 (6.4541e+00) Acc@1 2.34 ( 1.13) Acc@5 12.11 ( 4.13) +Epoch: [0][2394/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.4916e+00 (6.4537e+00) Acc@1 7.81 ( 1.13) Acc@5 15.23 ( 4.13) +Epoch: [0][2395/5004] Time 0.238 ( 0.243) Data 0.020 ( 0.027) Loss 5.8598e+00 (6.4535e+00) Acc@1 0.39 ( 1.13) Acc@5 10.55 ( 4.13) +Epoch: [0][2396/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.6660e+00 (6.4531e+00) Acc@1 2.34 ( 1.13) Acc@5 15.23 ( 4.14) +Epoch: [0][2397/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.6889e+00 (6.4528e+00) Acc@1 2.73 ( 1.13) Acc@5 10.16 ( 4.14) +Epoch: [0][2398/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.7352e+00 (6.4525e+00) Acc@1 3.91 ( 1.14) Acc@5 10.16 ( 4.14) +Epoch: [0][2399/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.6614e+00 (6.4522e+00) Acc@1 2.73 ( 1.14) Acc@5 11.33 ( 4.15) +Epoch: [0][2400/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.7704e+00 (6.4519e+00) Acc@1 5.08 ( 1.14) Acc@5 10.94 ( 4.15) +Epoch: [0][2401/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.8702e+00 (6.4517e+00) Acc@1 5.08 ( 1.14) Acc@5 13.28 ( 4.15) +Epoch: [0][2402/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7488e+00 (6.4514e+00) Acc@1 1.95 ( 1.14) Acc@5 11.72 ( 4.16) +Epoch: [0][2403/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8080e+00 (6.4511e+00) Acc@1 3.12 ( 1.14) Acc@5 9.77 ( 4.16) +Epoch: [0][2404/5004] Time 0.238 ( 0.243) Data 0.021 ( 0.027) Loss 5.7534e+00 (6.4508e+00) Acc@1 3.52 ( 1.14) Acc@5 10.55 ( 4.16) +Epoch: [0][2405/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.6712e+00 (6.4505e+00) Acc@1 3.12 ( 1.14) Acc@5 12.89 ( 4.16) +Epoch: [0][2406/5004] Time 0.238 ( 0.243) Data 0.022 ( 0.027) Loss 5.6623e+00 (6.4502e+00) Acc@1 4.30 ( 1.14) Acc@5 11.72 ( 4.17) +Epoch: [0][2407/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.6661e+00 (6.4498e+00) Acc@1 3.12 ( 1.14) Acc@5 9.77 ( 4.17) +Epoch: [0][2408/5004] Time 0.240 ( 0.243) Data 0.023 ( 0.027) Loss 5.7583e+00 (6.4495e+00) Acc@1 3.52 ( 1.15) Acc@5 12.11 ( 4.17) +Epoch: [0][2409/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.6571e+00 (6.4492e+00) Acc@1 3.12 ( 1.15) Acc@5 11.33 ( 4.18) +Epoch: [0][2410/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.5408e+00 (6.4488e+00) Acc@1 4.30 ( 1.15) Acc@5 13.67 ( 4.18) +Epoch: [0][2411/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.7324e+00 (6.4485e+00) Acc@1 2.73 ( 1.15) Acc@5 12.89 ( 4.18) +Epoch: [0][2412/5004] Time 0.240 ( 0.243) Data 0.023 ( 0.027) Loss 5.8428e+00 (6.4483e+00) Acc@1 3.12 ( 1.15) Acc@5 11.33 ( 4.19) +Epoch: [0][2413/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.7963e+00 (6.4480e+00) Acc@1 3.12 ( 1.15) Acc@5 11.72 ( 4.19) +Epoch: [0][2414/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.7108e+00 (6.4477e+00) Acc@1 2.73 ( 1.15) Acc@5 13.28 ( 4.19) +Epoch: [0][2415/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.8415e+00 (6.4475e+00) Acc@1 2.34 ( 1.15) Acc@5 8.98 ( 4.20) +Epoch: [0][2416/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.8575e+00 (6.4472e+00) Acc@1 4.69 ( 1.15) Acc@5 9.77 ( 4.20) +Epoch: [0][2417/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7555e+00 (6.4469e+00) Acc@1 3.52 ( 1.15) Acc@5 12.89 ( 4.20) +Epoch: [0][2418/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.8408e+00 (6.4467e+00) Acc@1 3.52 ( 1.15) Acc@5 11.72 ( 4.20) +Epoch: [0][2419/5004] Time 0.244 ( 0.243) Data 0.023 ( 0.027) Loss 5.7737e+00 (6.4464e+00) Acc@1 2.34 ( 1.15) Acc@5 10.16 ( 4.21) +Epoch: [0][2420/5004] Time 0.250 ( 0.243) Data 0.023 ( 0.027) Loss 5.7271e+00 (6.4461e+00) Acc@1 1.95 ( 1.16) Acc@5 12.89 ( 4.21) +Epoch: [0][2421/5004] Time 0.239 ( 0.243) Data 0.019 ( 0.027) Loss 5.7704e+00 (6.4458e+00) Acc@1 3.12 ( 1.16) Acc@5 10.16 ( 4.21) +Epoch: [0][2422/5004] Time 0.239 ( 0.243) Data 0.024 ( 0.027) Loss 5.7522e+00 (6.4455e+00) Acc@1 2.73 ( 1.16) Acc@5 8.20 ( 4.21) +Epoch: [0][2423/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.7147e+00 (6.4452e+00) Acc@1 3.12 ( 1.16) Acc@5 12.89 ( 4.22) +Epoch: [0][2424/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.7009e+00 (6.4449e+00) Acc@1 2.73 ( 1.16) Acc@5 13.28 ( 4.22) +Epoch: [0][2425/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.8046e+00 (6.4447e+00) Acc@1 3.91 ( 1.16) Acc@5 12.11 ( 4.23) +Epoch: [0][2426/5004] Time 0.235 ( 0.243) Data 0.024 ( 0.027) Loss 5.6721e+00 (6.4443e+00) Acc@1 2.73 ( 1.16) Acc@5 10.94 ( 4.23) +Epoch: [0][2427/5004] Time 0.240 ( 0.243) Data 0.027 ( 0.027) Loss 5.7000e+00 (6.4440e+00) Acc@1 3.52 ( 1.16) Acc@5 13.67 ( 4.23) +Epoch: [0][2428/5004] Time 0.237 ( 0.243) Data 0.025 ( 0.027) Loss 5.7326e+00 (6.4437e+00) Acc@1 2.34 ( 1.16) Acc@5 11.72 ( 4.24) +Epoch: [0][2429/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.6179e+00 (6.4434e+00) Acc@1 2.73 ( 1.16) Acc@5 8.20 ( 4.24) +Epoch: [0][2430/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.7015e+00 (6.4431e+00) Acc@1 3.12 ( 1.16) Acc@5 13.28 ( 4.24) +Epoch: [0][2431/5004] Time 0.236 ( 0.243) Data 0.027 ( 0.027) Loss 5.6379e+00 (6.4428e+00) Acc@1 4.30 ( 1.16) Acc@5 13.67 ( 4.24) +Epoch: [0][2432/5004] Time 0.240 ( 0.243) Data 0.030 ( 0.027) Loss 5.7351e+00 (6.4425e+00) Acc@1 2.73 ( 1.16) Acc@5 12.89 ( 4.25) +Epoch: [0][2433/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 5.6324e+00 (6.4421e+00) Acc@1 2.34 ( 1.17) Acc@5 13.28 ( 4.25) +Epoch: [0][2434/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.6208e+00 (6.4418e+00) Acc@1 3.91 ( 1.17) Acc@5 13.28 ( 4.26) +Epoch: [0][2435/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.6391e+00 (6.4415e+00) Acc@1 3.12 ( 1.17) Acc@5 10.55 ( 4.26) +Epoch: [0][2436/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.6547e+00 (6.4412e+00) Acc@1 5.47 ( 1.17) Acc@5 15.62 ( 4.26) +Epoch: [0][2437/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.7248e+00 (6.4409e+00) Acc@1 2.34 ( 1.17) Acc@5 13.67 ( 4.27) +Epoch: [0][2438/5004] Time 0.243 ( 0.243) Data 0.027 ( 0.027) Loss 5.6013e+00 (6.4405e+00) Acc@1 3.12 ( 1.17) Acc@5 11.72 ( 4.27) +Epoch: [0][2439/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.8119e+00 (6.4403e+00) Acc@1 2.73 ( 1.17) Acc@5 9.38 ( 4.27) +Epoch: [0][2440/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.7953e+00 (6.4400e+00) Acc@1 4.30 ( 1.17) Acc@5 9.38 ( 4.27) +Epoch: [0][2441/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.7688e+00 (6.4397e+00) Acc@1 5.86 ( 1.17) Acc@5 13.67 ( 4.28) +Epoch: [0][2442/5004] Time 0.243 ( 0.243) Data 0.026 ( 0.027) Loss 5.7161e+00 (6.4394e+00) Acc@1 4.69 ( 1.18) Acc@5 12.50 ( 4.28) +Epoch: [0][2443/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.6105e+00 (6.4391e+00) Acc@1 5.08 ( 1.18) Acc@5 14.45 ( 4.29) +Epoch: [0][2444/5004] Time 0.246 ( 0.243) Data 0.025 ( 0.027) Loss 5.7362e+00 (6.4388e+00) Acc@1 3.12 ( 1.18) Acc@5 13.28 ( 4.29) +Epoch: [0][2445/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7480e+00 (6.4385e+00) Acc@1 5.08 ( 1.18) Acc@5 12.50 ( 4.29) +Epoch: [0][2446/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.027) Loss 5.6802e+00 (6.4382e+00) Acc@1 4.69 ( 1.18) Acc@5 12.50 ( 4.30) +Epoch: [0][2447/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.6911e+00 (6.4379e+00) Acc@1 4.69 ( 1.18) Acc@5 13.28 ( 4.30) +Epoch: [0][2448/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.6380e+00 (6.4376e+00) Acc@1 3.52 ( 1.18) Acc@5 16.02 ( 4.30) +Epoch: [0][2449/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.5802e+00 (6.4372e+00) Acc@1 5.08 ( 1.18) Acc@5 17.19 ( 4.31) +Epoch: [0][2450/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.7112e+00 (6.4369e+00) Acc@1 2.73 ( 1.19) Acc@5 10.16 ( 4.31) +Epoch: [0][2451/5004] Time 0.245 ( 0.243) Data 0.027 ( 0.027) Loss 5.5101e+00 (6.4366e+00) Acc@1 3.91 ( 1.19) Acc@5 13.67 ( 4.32) +Epoch: [0][2452/5004] Time 0.248 ( 0.243) Data 0.024 ( 0.027) Loss 5.6625e+00 (6.4362e+00) Acc@1 3.12 ( 1.19) Acc@5 10.55 ( 4.32) +Epoch: [0][2453/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.4723e+00 (6.4358e+00) Acc@1 5.86 ( 1.19) Acc@5 14.84 ( 4.32) +Epoch: [0][2454/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.7478e+00 (6.4356e+00) Acc@1 2.73 ( 1.19) Acc@5 10.55 ( 4.32) +Epoch: [0][2455/5004] Time 0.240 ( 0.243) Data 0.023 ( 0.027) Loss 5.8014e+00 (6.4353e+00) Acc@1 2.34 ( 1.19) Acc@5 9.38 ( 4.33) +Epoch: [0][2456/5004] Time 0.244 ( 0.243) Data 0.024 ( 0.027) Loss 5.8564e+00 (6.4351e+00) Acc@1 1.95 ( 1.19) Acc@5 8.59 ( 4.33) +Epoch: [0][2457/5004] Time 0.238 ( 0.243) Data 0.021 ( 0.027) Loss 5.7715e+00 (6.4348e+00) Acc@1 4.30 ( 1.19) Acc@5 11.72 ( 4.33) +Epoch: [0][2458/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7377e+00 (6.4345e+00) Acc@1 3.91 ( 1.19) Acc@5 13.67 ( 4.34) +Epoch: [0][2459/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.8873e+00 (6.4343e+00) Acc@1 3.12 ( 1.19) Acc@5 9.77 ( 4.34) +Epoch: [0][2460/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.7294e+00 (6.4340e+00) Acc@1 3.12 ( 1.19) Acc@5 12.50 ( 4.34) +Epoch: [0][2461/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.7086e+00 (6.4337e+00) Acc@1 3.12 ( 1.20) Acc@5 10.55 ( 4.34) +Epoch: [0][2462/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.5912e+00 (6.4334e+00) Acc@1 5.86 ( 1.20) Acc@5 14.45 ( 4.35) +Epoch: [0][2463/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5802e+00 (6.4330e+00) Acc@1 5.47 ( 1.20) Acc@5 14.45 ( 4.35) +Epoch: [0][2464/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.6710e+00 (6.4327e+00) Acc@1 2.73 ( 1.20) Acc@5 15.23 ( 4.36) +Epoch: [0][2465/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7036e+00 (6.4324e+00) Acc@1 2.73 ( 1.20) Acc@5 10.55 ( 4.36) +Epoch: [0][2466/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.5364e+00 (6.4321e+00) Acc@1 6.25 ( 1.20) Acc@5 16.41 ( 4.36) +Epoch: [0][2467/5004] Time 0.245 ( 0.243) Data 0.023 ( 0.027) Loss 5.7077e+00 (6.4318e+00) Acc@1 5.08 ( 1.20) Acc@5 14.45 ( 4.37) +Epoch: [0][2468/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.7537e+00 (6.4315e+00) Acc@1 3.52 ( 1.20) Acc@5 10.94 ( 4.37) +Epoch: [0][2469/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.6396e+00 (6.4312e+00) Acc@1 3.52 ( 1.21) Acc@5 12.50 ( 4.37) +Epoch: [0][2470/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.7370e+00 (6.4309e+00) Acc@1 3.91 ( 1.21) Acc@5 12.89 ( 4.38) +Epoch: [0][2471/5004] Time 0.247 ( 0.243) Data 0.026 ( 0.027) Loss 5.6188e+00 (6.4306e+00) Acc@1 3.91 ( 1.21) Acc@5 14.45 ( 4.38) +Epoch: [0][2472/5004] Time 0.235 ( 0.243) Data 0.019 ( 0.027) Loss 5.7263e+00 (6.4303e+00) Acc@1 3.52 ( 1.21) Acc@5 12.50 ( 4.38) +Epoch: [0][2473/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.6227e+00 (6.4299e+00) Acc@1 3.12 ( 1.21) Acc@5 13.28 ( 4.39) +Epoch: [0][2474/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.5957e+00 (6.4296e+00) Acc@1 3.52 ( 1.21) Acc@5 11.33 ( 4.39) +Epoch: [0][2475/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.6438e+00 (6.4293e+00) Acc@1 2.34 ( 1.21) Acc@5 10.94 ( 4.39) +Epoch: [0][2476/5004] Time 0.244 ( 0.243) Data 0.021 ( 0.027) Loss 5.5680e+00 (6.4289e+00) Acc@1 3.91 ( 1.21) Acc@5 14.84 ( 4.40) +Epoch: [0][2477/5004] Time 0.241 ( 0.243) Data 0.018 ( 0.027) Loss 5.7263e+00 (6.4287e+00) Acc@1 4.30 ( 1.21) Acc@5 12.89 ( 4.40) +Epoch: [0][2478/5004] Time 0.246 ( 0.243) Data 0.024 ( 0.027) Loss 5.7532e+00 (6.4284e+00) Acc@1 2.73 ( 1.21) Acc@5 10.94 ( 4.40) +Epoch: [0][2479/5004] Time 0.244 ( 0.243) Data 0.020 ( 0.027) Loss 5.5513e+00 (6.4280e+00) Acc@1 7.81 ( 1.22) Acc@5 16.02 ( 4.41) +Epoch: [0][2480/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.7482e+00 (6.4278e+00) Acc@1 1.95 ( 1.22) Acc@5 10.94 ( 4.41) +Epoch: [0][2481/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7415e+00 (6.4275e+00) Acc@1 2.73 ( 1.22) Acc@5 8.98 ( 4.41) +Epoch: [0][2482/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.5947e+00 (6.4271e+00) Acc@1 5.08 ( 1.22) Acc@5 17.19 ( 4.42) +Epoch: [0][2483/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7218e+00 (6.4269e+00) Acc@1 1.95 ( 1.22) Acc@5 12.89 ( 4.42) +Epoch: [0][2484/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.7164e+00 (6.4266e+00) Acc@1 3.12 ( 1.22) Acc@5 13.28 ( 4.42) +Epoch: [0][2485/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5793e+00 (6.4262e+00) Acc@1 3.91 ( 1.22) Acc@5 15.23 ( 4.43) +Epoch: [0][2486/5004] Time 0.246 ( 0.243) Data 0.026 ( 0.027) Loss 5.6363e+00 (6.4259e+00) Acc@1 2.73 ( 1.22) Acc@5 12.89 ( 4.43) +Epoch: [0][2487/5004] Time 0.241 ( 0.243) Data 0.022 ( 0.027) Loss 5.7699e+00 (6.4257e+00) Acc@1 2.73 ( 1.22) Acc@5 9.77 ( 4.43) +Epoch: [0][2488/5004] Time 0.238 ( 0.243) Data 0.023 ( 0.027) Loss 5.7461e+00 (6.4254e+00) Acc@1 3.12 ( 1.22) Acc@5 12.89 ( 4.44) +Epoch: [0][2489/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.8458e+00 (6.4252e+00) Acc@1 6.25 ( 1.23) Acc@5 14.06 ( 4.44) +Epoch: [0][2490/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.6628e+00 (6.4248e+00) Acc@1 4.30 ( 1.23) Acc@5 13.67 ( 4.45) +Epoch: [0][2491/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.4944e+00 (6.4245e+00) Acc@1 5.86 ( 1.23) Acc@5 15.23 ( 4.45) +Epoch: [0][2492/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.6208e+00 (6.4242e+00) Acc@1 5.47 ( 1.23) Acc@5 10.16 ( 4.45) +Epoch: [0][2493/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.7045e+00 (6.4239e+00) Acc@1 3.91 ( 1.23) Acc@5 9.77 ( 4.45) +Epoch: [0][2494/5004] Time 0.239 ( 0.243) Data 0.022 ( 0.027) Loss 5.7516e+00 (6.4236e+00) Acc@1 3.52 ( 1.23) Acc@5 11.72 ( 4.46) +Epoch: [0][2495/5004] Time 0.243 ( 0.243) Data 0.025 ( 0.027) Loss 5.5241e+00 (6.4232e+00) Acc@1 3.91 ( 1.23) Acc@5 15.23 ( 4.46) +Epoch: [0][2496/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.7907e+00 (6.4230e+00) Acc@1 5.08 ( 1.23) Acc@5 11.33 ( 4.46) +Epoch: [0][2497/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.6990e+00 (6.4227e+00) Acc@1 4.69 ( 1.24) Acc@5 13.28 ( 4.47) +Epoch: [0][2498/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.4271e+00 (6.4223e+00) Acc@1 4.69 ( 1.24) Acc@5 14.45 ( 4.47) +Epoch: [0][2499/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.6516e+00 (6.4220e+00) Acc@1 2.73 ( 1.24) Acc@5 12.89 ( 4.48) +Epoch: [0][2500/5004] Time 0.239 ( 0.243) Data 0.022 ( 0.027) Loss 5.5812e+00 (6.4216e+00) Acc@1 4.30 ( 1.24) Acc@5 9.77 ( 4.48) +Epoch: [0][2501/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.6165e+00 (6.4213e+00) Acc@1 5.86 ( 1.24) Acc@5 11.72 ( 4.48) +Epoch: [0][2502/5004] Time 0.242 ( 0.243) Data 0.024 ( 0.027) Loss 5.8023e+00 (6.4211e+00) Acc@1 3.91 ( 1.24) Acc@5 11.72 ( 4.48) +Epoch: [0][2503/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.6450e+00 (6.4208e+00) Acc@1 3.91 ( 1.24) Acc@5 13.28 ( 4.49) +Epoch: [0][2504/5004] Time 0.239 ( 0.243) Data 0.024 ( 0.027) Loss 5.5793e+00 (6.4204e+00) Acc@1 5.08 ( 1.24) Acc@5 11.33 ( 4.49) +Epoch: [0][2505/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5731e+00 (6.4201e+00) Acc@1 2.73 ( 1.25) Acc@5 11.33 ( 4.49) +Epoch: [0][2506/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.6767e+00 (6.4198e+00) Acc@1 4.30 ( 1.25) Acc@5 15.23 ( 4.50) +Epoch: [0][2507/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.6407e+00 (6.4195e+00) Acc@1 3.52 ( 1.25) Acc@5 12.50 ( 4.50) +Epoch: [0][2508/5004] Time 0.240 ( 0.243) Data 0.024 ( 0.027) Loss 5.5821e+00 (6.4192e+00) Acc@1 3.12 ( 1.25) Acc@5 11.33 ( 4.50) +Epoch: [0][2509/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.9506e+00 (6.4190e+00) Acc@1 1.56 ( 1.25) Acc@5 8.59 ( 4.50) +Epoch: [0][2510/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.5767e+00 (6.4186e+00) Acc@1 2.73 ( 1.25) Acc@5 12.50 ( 4.51) +Epoch: [0][2511/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.4659e+00 (6.4183e+00) Acc@1 1.95 ( 1.25) Acc@5 12.89 ( 4.51) +Epoch: [0][2512/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.6190e+00 (6.4179e+00) Acc@1 5.08 ( 1.25) Acc@5 14.84 ( 4.51) +Epoch: [0][2513/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.6685e+00 (6.4176e+00) Acc@1 6.64 ( 1.25) Acc@5 13.67 ( 4.52) +Epoch: [0][2514/5004] Time 0.249 ( 0.243) Data 0.025 ( 0.027) Loss 5.6642e+00 (6.4173e+00) Acc@1 5.08 ( 1.25) Acc@5 14.84 ( 4.52) +Epoch: [0][2515/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.6944e+00 (6.4170e+00) Acc@1 4.69 ( 1.26) Acc@5 12.11 ( 4.53) +Epoch: [0][2516/5004] Time 0.245 ( 0.243) Data 0.020 ( 0.027) Loss 5.5965e+00 (6.4167e+00) Acc@1 4.30 ( 1.26) Acc@5 14.06 ( 4.53) +Epoch: [0][2517/5004] Time 0.253 ( 0.243) Data 0.022 ( 0.027) Loss 5.6002e+00 (6.4164e+00) Acc@1 3.91 ( 1.26) Acc@5 13.28 ( 4.53) +Epoch: [0][2518/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.6646e+00 (6.4161e+00) Acc@1 5.08 ( 1.26) Acc@5 14.06 ( 4.54) +Epoch: [0][2519/5004] Time 0.252 ( 0.243) Data 0.022 ( 0.027) Loss 5.7039e+00 (6.4158e+00) Acc@1 4.69 ( 1.26) Acc@5 12.11 ( 4.54) +Epoch: [0][2520/5004] Time 0.258 ( 0.243) Data 0.020 ( 0.027) Loss 5.7781e+00 (6.4156e+00) Acc@1 3.12 ( 1.26) Acc@5 11.72 ( 4.54) +Epoch: [0][2521/5004] Time 0.252 ( 0.243) Data 0.019 ( 0.027) Loss 5.5814e+00 (6.4152e+00) Acc@1 2.73 ( 1.26) Acc@5 14.84 ( 4.55) +Epoch: [0][2522/5004] Time 0.246 ( 0.243) Data 0.019 ( 0.027) Loss 5.6087e+00 (6.4149e+00) Acc@1 4.69 ( 1.26) Acc@5 14.45 ( 4.55) +Epoch: [0][2523/5004] Time 0.242 ( 0.243) Data 0.022 ( 0.027) Loss 5.6295e+00 (6.4146e+00) Acc@1 3.12 ( 1.26) Acc@5 10.55 ( 4.55) +Epoch: [0][2524/5004] Time 0.255 ( 0.243) Data 0.024 ( 0.027) Loss 5.7009e+00 (6.4143e+00) Acc@1 4.69 ( 1.27) Acc@5 11.33 ( 4.56) +Epoch: [0][2525/5004] Time 0.231 ( 0.243) Data 0.018 ( 0.027) Loss 5.6387e+00 (6.4140e+00) Acc@1 3.52 ( 1.27) Acc@5 14.45 ( 4.56) +Epoch: [0][2526/5004] Time 0.253 ( 0.243) Data 0.030 ( 0.027) Loss 5.4810e+00 (6.4136e+00) Acc@1 2.73 ( 1.27) Acc@5 17.97 ( 4.56) +Epoch: [0][2527/5004] Time 0.239 ( 0.243) Data 0.026 ( 0.027) Loss 5.5667e+00 (6.4133e+00) Acc@1 4.69 ( 1.27) Acc@5 12.11 ( 4.57) +Epoch: [0][2528/5004] Time 0.249 ( 0.243) Data 0.030 ( 0.027) Loss 5.5793e+00 (6.4130e+00) Acc@1 5.08 ( 1.27) Acc@5 14.84 ( 4.57) +Epoch: [0][2529/5004] Time 0.237 ( 0.243) Data 0.024 ( 0.027) Loss 5.6519e+00 (6.4127e+00) Acc@1 3.91 ( 1.27) Acc@5 13.67 ( 4.58) +Epoch: [0][2530/5004] Time 0.245 ( 0.243) Data 0.030 ( 0.027) Loss 5.6839e+00 (6.4124e+00) Acc@1 3.91 ( 1.27) Acc@5 10.16 ( 4.58) +Epoch: [0][2531/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.5718e+00 (6.4121e+00) Acc@1 5.86 ( 1.27) Acc@5 12.11 ( 4.58) +Epoch: [0][2532/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.5450e+00 (6.4117e+00) Acc@1 4.69 ( 1.28) Acc@5 16.02 ( 4.58) +Epoch: [0][2533/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.5872e+00 (6.4114e+00) Acc@1 3.12 ( 1.28) Acc@5 14.06 ( 4.59) +Epoch: [0][2534/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.6402e+00 (6.4111e+00) Acc@1 6.25 ( 1.28) Acc@5 14.06 ( 4.59) +Epoch: [0][2535/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.5815e+00 (6.4108e+00) Acc@1 3.12 ( 1.28) Acc@5 10.94 ( 4.59) +Epoch: [0][2536/5004] Time 0.247 ( 0.243) Data 0.029 ( 0.027) Loss 5.4138e+00 (6.4104e+00) Acc@1 5.47 ( 1.28) Acc@5 17.97 ( 4.60) +Epoch: [0][2537/5004] Time 0.240 ( 0.243) Data 0.027 ( 0.027) Loss 5.5982e+00 (6.4100e+00) Acc@1 3.12 ( 1.28) Acc@5 13.67 ( 4.60) +Epoch: [0][2538/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.6555e+00 (6.4097e+00) Acc@1 3.91 ( 1.28) Acc@5 14.45 ( 4.61) +Epoch: [0][2539/5004] Time 0.245 ( 0.243) Data 0.029 ( 0.027) Loss 5.4861e+00 (6.4094e+00) Acc@1 5.47 ( 1.28) Acc@5 16.02 ( 4.61) +Epoch: [0][2540/5004] Time 0.244 ( 0.243) Data 0.028 ( 0.027) Loss 5.6619e+00 (6.4091e+00) Acc@1 5.08 ( 1.29) Acc@5 13.67 ( 4.62) +Epoch: [0][2541/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 5.6179e+00 (6.4088e+00) Acc@1 5.47 ( 1.29) Acc@5 14.45 ( 4.62) +Epoch: [0][2542/5004] Time 0.251 ( 0.243) Data 0.029 ( 0.027) Loss 5.4754e+00 (6.4084e+00) Acc@1 4.30 ( 1.29) Acc@5 14.45 ( 4.62) +Epoch: [0][2543/5004] Time 0.244 ( 0.243) Data 0.027 ( 0.027) Loss 5.6467e+00 (6.4081e+00) Acc@1 4.30 ( 1.29) Acc@5 12.11 ( 4.63) +Epoch: [0][2544/5004] Time 0.248 ( 0.243) Data 0.029 ( 0.027) Loss 5.7469e+00 (6.4079e+00) Acc@1 5.86 ( 1.29) Acc@5 12.89 ( 4.63) +Epoch: [0][2545/5004] Time 0.248 ( 0.243) Data 0.028 ( 0.027) Loss 5.6236e+00 (6.4075e+00) Acc@1 5.08 ( 1.29) Acc@5 14.06 ( 4.63) +Epoch: [0][2546/5004] Time 0.248 ( 0.243) Data 0.029 ( 0.027) Loss 5.6221e+00 (6.4072e+00) Acc@1 4.69 ( 1.29) Acc@5 15.23 ( 4.64) +Epoch: [0][2547/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 5.4767e+00 (6.4069e+00) Acc@1 4.30 ( 1.30) Acc@5 14.06 ( 4.64) +Epoch: [0][2548/5004] Time 0.247 ( 0.243) Data 0.029 ( 0.027) Loss 5.4763e+00 (6.4065e+00) Acc@1 7.42 ( 1.30) Acc@5 17.58 ( 4.65) +Epoch: [0][2549/5004] Time 0.247 ( 0.243) Data 0.028 ( 0.027) Loss 5.5149e+00 (6.4062e+00) Acc@1 3.12 ( 1.30) Acc@5 11.72 ( 4.65) +Epoch: [0][2550/5004] Time 0.250 ( 0.243) Data 0.031 ( 0.027) Loss 5.6314e+00 (6.4059e+00) Acc@1 5.47 ( 1.30) Acc@5 13.67 ( 4.65) +Epoch: [0][2551/5004] Time 0.244 ( 0.243) Data 0.028 ( 0.027) Loss 5.6109e+00 (6.4055e+00) Acc@1 4.30 ( 1.30) Acc@5 12.11 ( 4.66) +Epoch: [0][2552/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.7464e+00 (6.4053e+00) Acc@1 3.52 ( 1.30) Acc@5 11.33 ( 4.66) +Epoch: [0][2553/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.5769e+00 (6.4050e+00) Acc@1 4.30 ( 1.30) Acc@5 15.23 ( 4.66) +Epoch: [0][2554/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.6348e+00 (6.4047e+00) Acc@1 3.91 ( 1.30) Acc@5 13.67 ( 4.67) +Epoch: [0][2555/5004] Time 0.243 ( 0.243) Data 0.030 ( 0.027) Loss 5.6738e+00 (6.4044e+00) Acc@1 1.56 ( 1.30) Acc@5 12.11 ( 4.67) +Epoch: [0][2556/5004] Time 0.245 ( 0.243) Data 0.030 ( 0.027) Loss 5.6209e+00 (6.4041e+00) Acc@1 5.08 ( 1.31) Acc@5 14.84 ( 4.67) +Epoch: [0][2557/5004] Time 0.243 ( 0.243) Data 0.030 ( 0.027) Loss 5.6809e+00 (6.4038e+00) Acc@1 2.73 ( 1.31) Acc@5 13.67 ( 4.68) +Epoch: [0][2558/5004] Time 0.247 ( 0.243) Data 0.032 ( 0.027) Loss 5.5252e+00 (6.4034e+00) Acc@1 4.30 ( 1.31) Acc@5 14.84 ( 4.68) +Epoch: [0][2559/5004] Time 0.247 ( 0.243) Data 0.030 ( 0.027) Loss 5.7629e+00 (6.4032e+00) Acc@1 5.08 ( 1.31) Acc@5 12.11 ( 4.68) +Epoch: [0][2560/5004] Time 0.251 ( 0.243) Data 0.029 ( 0.027) Loss 5.6656e+00 (6.4029e+00) Acc@1 5.86 ( 1.31) Acc@5 12.89 ( 4.69) +Epoch: [0][2561/5004] Time 0.250 ( 0.243) Data 0.027 ( 0.027) Loss 5.6626e+00 (6.4026e+00) Acc@1 3.52 ( 1.31) Acc@5 13.28 ( 4.69) +Epoch: [0][2562/5004] Time 0.246 ( 0.243) Data 0.027 ( 0.027) Loss 5.6098e+00 (6.4023e+00) Acc@1 6.25 ( 1.31) Acc@5 14.06 ( 4.69) +Epoch: [0][2563/5004] Time 0.244 ( 0.243) Data 0.028 ( 0.027) Loss 5.6514e+00 (6.4020e+00) Acc@1 4.30 ( 1.31) Acc@5 12.50 ( 4.70) +Epoch: [0][2564/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.6496e+00 (6.4017e+00) Acc@1 4.30 ( 1.32) Acc@5 12.11 ( 4.70) +Epoch: [0][2565/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.5320e+00 (6.4014e+00) Acc@1 3.52 ( 1.32) Acc@5 14.06 ( 4.70) +Epoch: [0][2566/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.7541e+00 (6.4011e+00) Acc@1 4.69 ( 1.32) Acc@5 13.28 ( 4.71) +Epoch: [0][2567/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.6402e+00 (6.4008e+00) Acc@1 3.12 ( 1.32) Acc@5 10.94 ( 4.71) +Epoch: [0][2568/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 5.4814e+00 (6.4005e+00) Acc@1 3.12 ( 1.32) Acc@5 13.67 ( 4.71) +Epoch: [0][2569/5004] Time 0.246 ( 0.243) Data 0.030 ( 0.027) Loss 5.5759e+00 (6.4001e+00) Acc@1 4.30 ( 1.32) Acc@5 14.45 ( 4.72) +Epoch: [0][2570/5004] Time 0.247 ( 0.243) Data 0.027 ( 0.027) Loss 5.5292e+00 (6.3998e+00) Acc@1 3.12 ( 1.32) Acc@5 10.55 ( 4.72) +Epoch: [0][2571/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.7214e+00 (6.3995e+00) Acc@1 3.91 ( 1.32) Acc@5 9.77 ( 4.72) +Epoch: [0][2572/5004] Time 0.242 ( 0.243) Data 0.029 ( 0.027) Loss 5.6209e+00 (6.3992e+00) Acc@1 3.91 ( 1.32) Acc@5 13.28 ( 4.72) +Epoch: [0][2573/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.6770e+00 (6.3990e+00) Acc@1 4.69 ( 1.32) Acc@5 13.67 ( 4.73) +Epoch: [0][2574/5004] Time 0.245 ( 0.243) Data 0.029 ( 0.027) Loss 5.8087e+00 (6.3987e+00) Acc@1 3.12 ( 1.33) Acc@5 11.72 ( 4.73) +Epoch: [0][2575/5004] Time 0.243 ( 0.243) Data 0.030 ( 0.027) Loss 5.7043e+00 (6.3985e+00) Acc@1 5.47 ( 1.33) Acc@5 13.67 ( 4.73) +Epoch: [0][2576/5004] Time 0.243 ( 0.243) Data 0.030 ( 0.027) Loss 5.6896e+00 (6.3982e+00) Acc@1 1.95 ( 1.33) Acc@5 10.16 ( 4.74) +Epoch: [0][2577/5004] Time 0.249 ( 0.243) Data 0.030 ( 0.027) Loss 5.8109e+00 (6.3980e+00) Acc@1 3.52 ( 1.33) Acc@5 9.77 ( 4.74) +Epoch: [0][2578/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.7212e+00 (6.3977e+00) Acc@1 3.52 ( 1.33) Acc@5 13.28 ( 4.74) +Epoch: [0][2579/5004] Time 0.246 ( 0.243) Data 0.030 ( 0.027) Loss 5.5977e+00 (6.3974e+00) Acc@1 3.12 ( 1.33) Acc@5 14.84 ( 4.74) +Epoch: [0][2580/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.5067e+00 (6.3970e+00) Acc@1 4.30 ( 1.33) Acc@5 13.67 ( 4.75) +Epoch: [0][2581/5004] Time 0.247 ( 0.243) Data 0.028 ( 0.027) Loss 5.5789e+00 (6.3967e+00) Acc@1 3.91 ( 1.33) Acc@5 12.11 ( 4.75) +Epoch: [0][2582/5004] Time 0.243 ( 0.243) Data 0.027 ( 0.027) Loss 5.4021e+00 (6.3963e+00) Acc@1 5.08 ( 1.33) Acc@5 15.23 ( 4.75) +Epoch: [0][2583/5004] Time 0.241 ( 0.243) Data 0.028 ( 0.027) Loss 5.4917e+00 (6.3960e+00) Acc@1 4.30 ( 1.33) Acc@5 16.02 ( 4.76) +Epoch: [0][2584/5004] Time 0.251 ( 0.243) Data 0.030 ( 0.027) Loss 5.5326e+00 (6.3957e+00) Acc@1 5.08 ( 1.34) Acc@5 16.02 ( 4.76) +Epoch: [0][2585/5004] Time 0.249 ( 0.243) Data 0.027 ( 0.027) Loss 5.6026e+00 (6.3954e+00) Acc@1 3.12 ( 1.34) Acc@5 12.89 ( 4.77) +Epoch: [0][2586/5004] Time 0.246 ( 0.243) Data 0.028 ( 0.027) Loss 5.5076e+00 (6.3950e+00) Acc@1 5.08 ( 1.34) Acc@5 12.11 ( 4.77) +Epoch: [0][2587/5004] Time 0.244 ( 0.243) Data 0.027 ( 0.027) Loss 5.3627e+00 (6.3946e+00) Acc@1 3.12 ( 1.34) Acc@5 16.02 ( 4.77) +Epoch: [0][2588/5004] Time 0.250 ( 0.243) Data 0.029 ( 0.027) Loss 5.4157e+00 (6.3942e+00) Acc@1 7.03 ( 1.34) Acc@5 17.58 ( 4.78) +Epoch: [0][2589/5004] Time 0.245 ( 0.243) Data 0.027 ( 0.027) Loss 5.5322e+00 (6.3939e+00) Acc@1 3.91 ( 1.34) Acc@5 16.41 ( 4.78) +Epoch: [0][2590/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.4933e+00 (6.3936e+00) Acc@1 3.52 ( 1.34) Acc@5 16.02 ( 4.79) +Epoch: [0][2591/5004] Time 0.244 ( 0.243) Data 0.030 ( 0.027) Loss 5.7870e+00 (6.3933e+00) Acc@1 3.12 ( 1.34) Acc@5 9.38 ( 4.79) +Epoch: [0][2592/5004] Time 0.245 ( 0.243) Data 0.030 ( 0.027) Loss 5.5421e+00 (6.3930e+00) Acc@1 3.52 ( 1.34) Acc@5 11.33 ( 4.79) +Epoch: [0][2593/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.5379e+00 (6.3927e+00) Acc@1 3.91 ( 1.35) Acc@5 16.02 ( 4.80) +Epoch: [0][2594/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.4681e+00 (6.3923e+00) Acc@1 2.73 ( 1.35) Acc@5 11.33 ( 4.80) +Epoch: [0][2595/5004] Time 0.241 ( 0.243) Data 0.027 ( 0.027) Loss 5.6624e+00 (6.3920e+00) Acc@1 3.12 ( 1.35) Acc@5 12.50 ( 4.80) +Epoch: [0][2596/5004] Time 0.242 ( 0.243) Data 0.029 ( 0.027) Loss 5.5409e+00 (6.3917e+00) Acc@1 3.91 ( 1.35) Acc@5 14.84 ( 4.81) +Epoch: [0][2597/5004] Time 0.243 ( 0.243) Data 0.030 ( 0.027) Loss 5.6333e+00 (6.3914e+00) Acc@1 5.86 ( 1.35) Acc@5 14.84 ( 4.81) +Epoch: [0][2598/5004] Time 0.247 ( 0.243) Data 0.029 ( 0.027) Loss 5.5780e+00 (6.3911e+00) Acc@1 3.52 ( 1.35) Acc@5 12.89 ( 4.81) +Epoch: [0][2599/5004] Time 0.247 ( 0.243) Data 0.031 ( 0.027) Loss 5.4301e+00 (6.3907e+00) Acc@1 4.30 ( 1.35) Acc@5 13.28 ( 4.82) +Epoch: [0][2600/5004] Time 0.245 ( 0.243) Data 0.029 ( 0.027) Loss 5.6246e+00 (6.3904e+00) Acc@1 5.47 ( 1.35) Acc@5 13.28 ( 4.82) +Epoch: [0][2601/5004] Time 0.241 ( 0.243) Data 0.027 ( 0.027) Loss 5.7060e+00 (6.3902e+00) Acc@1 3.52 ( 1.35) Acc@5 8.20 ( 4.82) +Epoch: [0][2602/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.6888e+00 (6.3899e+00) Acc@1 3.52 ( 1.35) Acc@5 12.11 ( 4.82) +Epoch: [0][2603/5004] Time 0.233 ( 0.243) Data 0.028 ( 0.027) Loss 5.6844e+00 (6.3896e+00) Acc@1 2.73 ( 1.35) Acc@5 9.38 ( 4.82) +Epoch: [0][2604/5004] Time 0.239 ( 0.243) Data 0.032 ( 0.027) Loss 5.7482e+00 (6.3894e+00) Acc@1 1.56 ( 1.35) Acc@5 8.59 ( 4.83) +Epoch: [0][2605/5004] Time 0.247 ( 0.243) Data 0.031 ( 0.027) Loss 5.7045e+00 (6.3891e+00) Acc@1 3.91 ( 1.36) Acc@5 13.28 ( 4.83) +Epoch: [0][2606/5004] Time 0.240 ( 0.243) Data 0.031 ( 0.027) Loss 5.5713e+00 (6.3888e+00) Acc@1 4.69 ( 1.36) Acc@5 12.11 ( 4.83) +Epoch: [0][2607/5004] Time 0.236 ( 0.243) Data 0.031 ( 0.027) Loss 5.5047e+00 (6.3885e+00) Acc@1 5.08 ( 1.36) Acc@5 19.92 ( 4.84) +Epoch: [0][2608/5004] Time 0.244 ( 0.243) Data 0.033 ( 0.027) Loss 5.5366e+00 (6.3881e+00) Acc@1 4.30 ( 1.36) Acc@5 11.72 ( 4.84) +Epoch: [0][2609/5004] Time 0.236 ( 0.243) Data 0.029 ( 0.027) Loss 5.5611e+00 (6.3878e+00) Acc@1 5.47 ( 1.36) Acc@5 12.89 ( 4.84) +Epoch: [0][2610/5004] Time 0.239 ( 0.243) Data 0.030 ( 0.027) Loss 5.5764e+00 (6.3875e+00) Acc@1 2.34 ( 1.36) Acc@5 11.72 ( 4.85) +Epoch: [0][2611/5004] Time 0.237 ( 0.243) Data 0.031 ( 0.027) Loss 5.6121e+00 (6.3872e+00) Acc@1 3.52 ( 1.36) Acc@5 13.67 ( 4.85) +Epoch: [0][2612/5004] Time 0.238 ( 0.243) Data 0.032 ( 0.027) Loss 5.4857e+00 (6.3869e+00) Acc@1 5.86 ( 1.36) Acc@5 17.19 ( 4.85) +Epoch: [0][2613/5004] Time 0.241 ( 0.243) Data 0.032 ( 0.027) Loss 5.3908e+00 (6.3865e+00) Acc@1 5.08 ( 1.37) Acc@5 17.58 ( 4.86) +Epoch: [0][2614/5004] Time 0.238 ( 0.243) Data 0.031 ( 0.027) Loss 5.5464e+00 (6.3862e+00) Acc@1 8.20 ( 1.37) Acc@5 16.02 ( 4.86) +Epoch: [0][2615/5004] Time 0.243 ( 0.243) Data 0.035 ( 0.027) Loss 5.6996e+00 (6.3859e+00) Acc@1 7.42 ( 1.37) Acc@5 14.84 ( 4.87) +Epoch: [0][2616/5004] Time 0.239 ( 0.243) Data 0.032 ( 0.027) Loss 5.5246e+00 (6.3856e+00) Acc@1 5.47 ( 1.37) Acc@5 17.97 ( 4.87) +Epoch: [0][2617/5004] Time 0.236 ( 0.243) Data 0.031 ( 0.027) Loss 5.5423e+00 (6.3852e+00) Acc@1 4.69 ( 1.37) Acc@5 13.28 ( 4.88) +Epoch: [0][2618/5004] Time 0.238 ( 0.243) Data 0.032 ( 0.027) Loss 5.4692e+00 (6.3849e+00) Acc@1 6.25 ( 1.38) Acc@5 19.14 ( 4.88) +Epoch: [0][2619/5004] Time 0.240 ( 0.243) Data 0.032 ( 0.027) Loss 5.5765e+00 (6.3846e+00) Acc@1 3.52 ( 1.38) Acc@5 12.50 ( 4.88) +Epoch: [0][2620/5004] Time 0.242 ( 0.243) Data 0.032 ( 0.027) Loss 5.7091e+00 (6.3843e+00) Acc@1 3.52 ( 1.38) Acc@5 12.50 ( 4.89) +Epoch: [0][2621/5004] Time 0.245 ( 0.243) Data 0.030 ( 0.027) Loss 5.6296e+00 (6.3840e+00) Acc@1 4.69 ( 1.38) Acc@5 10.94 ( 4.89) +Epoch: [0][2622/5004] Time 0.243 ( 0.243) Data 0.029 ( 0.027) Loss 5.5420e+00 (6.3837e+00) Acc@1 3.12 ( 1.38) Acc@5 14.84 ( 4.89) +Epoch: [0][2623/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 5.4733e+00 (6.3834e+00) Acc@1 5.86 ( 1.38) Acc@5 18.36 ( 4.90) +Epoch: [0][2624/5004] Time 0.245 ( 0.243) Data 0.029 ( 0.027) Loss 5.5778e+00 (6.3831e+00) Acc@1 4.69 ( 1.38) Acc@5 12.89 ( 4.90) +Epoch: [0][2625/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.6948e+00 (6.3828e+00) Acc@1 5.86 ( 1.38) Acc@5 16.02 ( 4.91) +Epoch: [0][2626/5004] Time 0.246 ( 0.243) Data 0.030 ( 0.027) Loss 5.4892e+00 (6.3825e+00) Acc@1 4.30 ( 1.38) Acc@5 13.28 ( 4.91) +Epoch: [0][2627/5004] Time 0.246 ( 0.243) Data 0.028 ( 0.027) Loss 5.6200e+00 (6.3822e+00) Acc@1 3.91 ( 1.39) Acc@5 12.11 ( 4.91) +Epoch: [0][2628/5004] Time 0.248 ( 0.243) Data 0.029 ( 0.027) Loss 5.4041e+00 (6.3818e+00) Acc@1 4.69 ( 1.39) Acc@5 16.41 ( 4.92) +Epoch: [0][2629/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.5881e+00 (6.3815e+00) Acc@1 3.52 ( 1.39) Acc@5 16.80 ( 4.92) +Epoch: [0][2630/5004] Time 0.240 ( 0.243) Data 0.030 ( 0.027) Loss 5.4618e+00 (6.3812e+00) Acc@1 5.86 ( 1.39) Acc@5 16.02 ( 4.92) +Epoch: [0][2631/5004] Time 0.238 ( 0.243) Data 0.031 ( 0.027) Loss 5.5187e+00 (6.3808e+00) Acc@1 7.03 ( 1.39) Acc@5 18.36 ( 4.93) +Epoch: [0][2632/5004] Time 0.243 ( 0.243) Data 0.031 ( 0.027) Loss 5.5043e+00 (6.3805e+00) Acc@1 3.91 ( 1.39) Acc@5 14.45 ( 4.93) +Epoch: [0][2633/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.4989e+00 (6.3802e+00) Acc@1 4.69 ( 1.39) Acc@5 14.06 ( 4.94) +Epoch: [0][2634/5004] Time 0.255 ( 0.243) Data 0.030 ( 0.027) Loss 5.4519e+00 (6.3798e+00) Acc@1 7.81 ( 1.40) Acc@5 16.02 ( 4.94) +Epoch: [0][2635/5004] Time 0.244 ( 0.243) Data 0.026 ( 0.027) Loss 5.5346e+00 (6.3795e+00) Acc@1 4.30 ( 1.40) Acc@5 14.84 ( 4.94) +Epoch: [0][2636/5004] Time 0.237 ( 0.243) Data 0.030 ( 0.027) Loss 5.5494e+00 (6.3792e+00) Acc@1 1.95 ( 1.40) Acc@5 11.72 ( 4.95) +Epoch: [0][2637/5004] Time 0.240 ( 0.243) Data 0.031 ( 0.027) Loss 5.3751e+00 (6.3788e+00) Acc@1 5.47 ( 1.40) Acc@5 17.97 ( 4.95) +Epoch: [0][2638/5004] Time 0.243 ( 0.243) Data 0.031 ( 0.027) Loss 5.5735e+00 (6.3785e+00) Acc@1 3.52 ( 1.40) Acc@5 12.50 ( 4.96) +Epoch: [0][2639/5004] Time 0.234 ( 0.243) Data 0.028 ( 0.027) Loss 5.5896e+00 (6.3782e+00) Acc@1 6.64 ( 1.40) Acc@5 14.06 ( 4.96) +Epoch: [0][2640/5004] Time 0.245 ( 0.243) Data 0.032 ( 0.027) Loss 5.6385e+00 (6.3779e+00) Acc@1 3.52 ( 1.40) Acc@5 12.11 ( 4.96) +Epoch: [0][2641/5004] Time 0.235 ( 0.243) Data 0.030 ( 0.027) Loss 5.4820e+00 (6.3776e+00) Acc@1 3.91 ( 1.40) Acc@5 16.41 ( 4.97) +Epoch: [0][2642/5004] Time 0.240 ( 0.243) Data 0.032 ( 0.027) Loss 5.7612e+00 (6.3773e+00) Acc@1 4.30 ( 1.40) Acc@5 12.11 ( 4.97) +Epoch: [0][2643/5004] Time 0.238 ( 0.243) Data 0.032 ( 0.027) Loss 5.4444e+00 (6.3770e+00) Acc@1 6.64 ( 1.41) Acc@5 16.02 ( 4.97) +Epoch: [0][2644/5004] Time 0.241 ( 0.243) Data 0.031 ( 0.027) Loss 5.5449e+00 (6.3767e+00) Acc@1 6.25 ( 1.41) Acc@5 15.23 ( 4.98) +Epoch: [0][2645/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.6478e+00 (6.3764e+00) Acc@1 3.91 ( 1.41) Acc@5 12.50 ( 4.98) +Epoch: [0][2646/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.5188e+00 (6.3761e+00) Acc@1 5.86 ( 1.41) Acc@5 15.62 ( 4.98) +Epoch: [0][2647/5004] Time 0.238 ( 0.243) Data 0.031 ( 0.027) Loss 5.4425e+00 (6.3757e+00) Acc@1 6.25 ( 1.41) Acc@5 16.80 ( 4.99) +Epoch: [0][2648/5004] Time 0.240 ( 0.243) Data 0.031 ( 0.027) Loss 5.7404e+00 (6.3755e+00) Acc@1 3.91 ( 1.41) Acc@5 10.55 ( 4.99) +Epoch: [0][2649/5004] Time 0.236 ( 0.243) Data 0.030 ( 0.027) Loss 5.5389e+00 (6.3752e+00) Acc@1 5.86 ( 1.42) Acc@5 14.45 ( 4.99) +Epoch: [0][2650/5004] Time 0.237 ( 0.243) Data 0.032 ( 0.027) Loss 5.6001e+00 (6.3749e+00) Acc@1 5.08 ( 1.42) Acc@5 14.45 ( 5.00) +Epoch: [0][2651/5004] Time 0.239 ( 0.243) Data 0.032 ( 0.027) Loss 5.6984e+00 (6.3746e+00) Acc@1 1.17 ( 1.42) Acc@5 12.11 ( 5.00) +Epoch: [0][2652/5004] Time 0.240 ( 0.243) Data 0.031 ( 0.027) Loss 5.5366e+00 (6.3743e+00) Acc@1 7.03 ( 1.42) Acc@5 14.45 ( 5.00) +Epoch: [0][2653/5004] Time 0.241 ( 0.243) Data 0.030 ( 0.027) Loss 5.5431e+00 (6.3740e+00) Acc@1 5.86 ( 1.42) Acc@5 15.23 ( 5.01) +Epoch: [0][2654/5004] Time 0.249 ( 0.243) Data 0.032 ( 0.027) Loss 5.4298e+00 (6.3736e+00) Acc@1 3.52 ( 1.42) Acc@5 15.23 ( 5.01) +Epoch: [0][2655/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.5158e+00 (6.3733e+00) Acc@1 4.69 ( 1.42) Acc@5 13.67 ( 5.01) +Epoch: [0][2656/5004] Time 0.240 ( 0.243) Data 0.030 ( 0.027) Loss 5.6845e+00 (6.3730e+00) Acc@1 3.12 ( 1.42) Acc@5 10.94 ( 5.02) +Epoch: [0][2657/5004] Time 0.239 ( 0.243) Data 0.030 ( 0.027) Loss 5.6816e+00 (6.3728e+00) Acc@1 3.52 ( 1.42) Acc@5 10.55 ( 5.02) +Epoch: [0][2658/5004] Time 0.237 ( 0.243) Data 0.031 ( 0.027) Loss 5.6418e+00 (6.3725e+00) Acc@1 3.52 ( 1.42) Acc@5 14.84 ( 5.02) +Epoch: [0][2659/5004] Time 0.238 ( 0.243) Data 0.032 ( 0.027) Loss 5.5253e+00 (6.3722e+00) Acc@1 4.30 ( 1.43) Acc@5 17.19 ( 5.03) +Epoch: [0][2660/5004] Time 0.238 ( 0.243) Data 0.032 ( 0.027) Loss 5.6050e+00 (6.3719e+00) Acc@1 1.95 ( 1.43) Acc@5 13.28 ( 5.03) +Epoch: [0][2661/5004] Time 0.239 ( 0.243) Data 0.033 ( 0.027) Loss 5.5862e+00 (6.3716e+00) Acc@1 4.69 ( 1.43) Acc@5 12.89 ( 5.03) +Epoch: [0][2662/5004] Time 0.244 ( 0.243) Data 0.032 ( 0.027) Loss 5.5705e+00 (6.3713e+00) Acc@1 4.69 ( 1.43) Acc@5 11.72 ( 5.04) +Epoch: [0][2663/5004] Time 0.236 ( 0.243) Data 0.029 ( 0.027) Loss 5.6061e+00 (6.3710e+00) Acc@1 4.30 ( 1.43) Acc@5 11.72 ( 5.04) +Epoch: [0][2664/5004] Time 0.248 ( 0.243) Data 0.031 ( 0.027) Loss 5.5167e+00 (6.3707e+00) Acc@1 5.86 ( 1.43) Acc@5 15.62 ( 5.04) +Epoch: [0][2665/5004] Time 0.236 ( 0.243) Data 0.022 ( 0.027) Loss 5.8128e+00 (6.3705e+00) Acc@1 2.73 ( 1.43) Acc@5 11.33 ( 5.04) +Epoch: [0][2666/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.4409e+00 (6.3701e+00) Acc@1 6.64 ( 1.43) Acc@5 17.58 ( 5.05) +Epoch: [0][2667/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.7127e+00 (6.3699e+00) Acc@1 4.69 ( 1.43) Acc@5 11.33 ( 5.05) +Epoch: [0][2668/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.4060e+00 (6.3695e+00) Acc@1 7.03 ( 1.44) Acc@5 17.19 ( 5.06) +Epoch: [0][2669/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5275e+00 (6.3692e+00) Acc@1 4.69 ( 1.44) Acc@5 11.72 ( 5.06) +Epoch: [0][2670/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.4829e+00 (6.3689e+00) Acc@1 4.69 ( 1.44) Acc@5 11.72 ( 5.06) +Epoch: [0][2671/5004] Time 0.237 ( 0.243) Data 0.024 ( 0.027) Loss 5.4720e+00 (6.3686e+00) Acc@1 5.08 ( 1.44) Acc@5 17.19 ( 5.07) +Epoch: [0][2672/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.6083e+00 (6.3683e+00) Acc@1 3.52 ( 1.44) Acc@5 14.45 ( 5.07) +Epoch: [0][2673/5004] Time 0.243 ( 0.243) Data 0.026 ( 0.027) Loss 5.5894e+00 (6.3680e+00) Acc@1 5.47 ( 1.44) Acc@5 15.23 ( 5.07) +Epoch: [0][2674/5004] Time 0.237 ( 0.243) Data 0.023 ( 0.027) Loss 5.6123e+00 (6.3677e+00) Acc@1 4.69 ( 1.44) Acc@5 13.28 ( 5.08) +Epoch: [0][2675/5004] Time 0.250 ( 0.243) Data 0.025 ( 0.027) Loss 5.6190e+00 (6.3674e+00) Acc@1 2.34 ( 1.44) Acc@5 12.89 ( 5.08) +Epoch: [0][2676/5004] Time 0.238 ( 0.243) Data 0.016 ( 0.027) Loss 5.5182e+00 (6.3671e+00) Acc@1 4.69 ( 1.45) Acc@5 14.06 ( 5.08) +Epoch: [0][2677/5004] Time 0.239 ( 0.243) Data 0.021 ( 0.027) Loss 5.6375e+00 (6.3668e+00) Acc@1 5.86 ( 1.45) Acc@5 13.28 ( 5.08) +Epoch: [0][2678/5004] Time 0.240 ( 0.243) Data 0.022 ( 0.027) Loss 5.8143e+00 (6.3666e+00) Acc@1 4.30 ( 1.45) Acc@5 9.38 ( 5.09) +Epoch: [0][2679/5004] Time 0.236 ( 0.243) Data 0.021 ( 0.027) Loss 5.5764e+00 (6.3663e+00) Acc@1 4.30 ( 1.45) Acc@5 13.67 ( 5.09) +Epoch: [0][2680/5004] Time 0.238 ( 0.243) Data 0.024 ( 0.027) Loss 5.7318e+00 (6.3661e+00) Acc@1 3.91 ( 1.45) Acc@5 13.28 ( 5.09) +Epoch: [0][2681/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5502e+00 (6.3658e+00) Acc@1 5.86 ( 1.45) Acc@5 14.45 ( 5.10) +Epoch: [0][2682/5004] Time 0.238 ( 0.243) Data 0.024 ( 0.027) Loss 5.6694e+00 (6.3655e+00) Acc@1 3.12 ( 1.45) Acc@5 12.89 ( 5.10) +Epoch: [0][2683/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.7690e+00 (6.3653e+00) Acc@1 2.34 ( 1.45) Acc@5 9.77 ( 5.10) +Epoch: [0][2684/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.7304e+00 (6.3651e+00) Acc@1 2.34 ( 1.45) Acc@5 11.33 ( 5.10) +Epoch: [0][2685/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.6667e+00 (6.3648e+00) Acc@1 3.52 ( 1.45) Acc@5 13.28 ( 5.11) +Epoch: [0][2686/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5439e+00 (6.3645e+00) Acc@1 3.91 ( 1.46) Acc@5 15.23 ( 5.11) +Epoch: [0][2687/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.3422e+00 (6.3641e+00) Acc@1 6.64 ( 1.46) Acc@5 17.58 ( 5.11) +Epoch: [0][2688/5004] Time 0.244 ( 0.243) Data 0.026 ( 0.027) Loss 5.5405e+00 (6.3638e+00) Acc@1 4.69 ( 1.46) Acc@5 13.28 ( 5.12) +Epoch: [0][2689/5004] Time 0.248 ( 0.243) Data 0.022 ( 0.027) Loss 5.4955e+00 (6.3635e+00) Acc@1 3.52 ( 1.46) Acc@5 15.23 ( 5.12) +Epoch: [0][2690/5004] Time 0.246 ( 0.243) Data 0.020 ( 0.027) Loss 5.4818e+00 (6.3632e+00) Acc@1 3.52 ( 1.46) Acc@5 13.67 ( 5.12) +Epoch: [0][2691/5004] Time 0.228 ( 0.243) Data 0.014 ( 0.027) Loss 5.5071e+00 (6.3628e+00) Acc@1 5.47 ( 1.46) Acc@5 15.62 ( 5.13) +Epoch: [0][2692/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.6807e+00 (6.3626e+00) Acc@1 4.30 ( 1.46) Acc@5 12.11 ( 5.13) +Epoch: [0][2693/5004] Time 0.236 ( 0.243) Data 0.023 ( 0.027) Loss 5.5701e+00 (6.3623e+00) Acc@1 5.08 ( 1.46) Acc@5 14.06 ( 5.13) +Epoch: [0][2694/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.5699e+00 (6.3620e+00) Acc@1 4.69 ( 1.46) Acc@5 14.06 ( 5.14) +Epoch: [0][2695/5004] Time 0.239 ( 0.243) Data 0.024 ( 0.027) Loss 5.4725e+00 (6.3617e+00) Acc@1 7.03 ( 1.47) Acc@5 16.02 ( 5.14) +Epoch: [0][2696/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.6065e+00 (6.3614e+00) Acc@1 2.73 ( 1.47) Acc@5 12.89 ( 5.14) +Epoch: [0][2697/5004] Time 0.245 ( 0.243) Data 0.025 ( 0.027) Loss 5.6271e+00 (6.3611e+00) Acc@1 5.86 ( 1.47) Acc@5 14.45 ( 5.15) +Epoch: [0][2698/5004] Time 0.235 ( 0.243) Data 0.020 ( 0.027) Loss 5.6482e+00 (6.3609e+00) Acc@1 4.30 ( 1.47) Acc@5 14.45 ( 5.15) +Epoch: [0][2699/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.4829e+00 (6.3605e+00) Acc@1 4.30 ( 1.47) Acc@5 14.06 ( 5.15) +Epoch: [0][2700/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.4110e+00 (6.3602e+00) Acc@1 6.25 ( 1.47) Acc@5 17.58 ( 5.16) +Epoch: [0][2701/5004] Time 0.243 ( 0.243) Data 0.022 ( 0.027) Loss 5.4644e+00 (6.3598e+00) Acc@1 3.91 ( 1.47) Acc@5 17.58 ( 5.16) +Epoch: [0][2702/5004] Time 0.239 ( 0.243) Data 0.021 ( 0.027) Loss 5.5126e+00 (6.3595e+00) Acc@1 3.52 ( 1.47) Acc@5 9.77 ( 5.17) +Epoch: [0][2703/5004] Time 0.245 ( 0.243) Data 0.024 ( 0.027) Loss 5.5120e+00 (6.3592e+00) Acc@1 4.69 ( 1.48) Acc@5 16.41 ( 5.17) +Epoch: [0][2704/5004] Time 0.246 ( 0.243) Data 0.021 ( 0.027) Loss 5.5408e+00 (6.3589e+00) Acc@1 6.64 ( 1.48) Acc@5 15.23 ( 5.17) +Epoch: [0][2705/5004] Time 0.239 ( 0.243) Data 0.017 ( 0.027) Loss 5.7053e+00 (6.3587e+00) Acc@1 3.52 ( 1.48) Acc@5 15.62 ( 5.18) +Epoch: [0][2706/5004] Time 0.239 ( 0.243) Data 0.022 ( 0.027) Loss 5.5243e+00 (6.3584e+00) Acc@1 3.52 ( 1.48) Acc@5 12.89 ( 5.18) +Epoch: [0][2707/5004] Time 0.246 ( 0.243) Data 0.026 ( 0.027) Loss 5.5293e+00 (6.3581e+00) Acc@1 5.08 ( 1.48) Acc@5 15.23 ( 5.18) +Epoch: [0][2708/5004] Time 0.240 ( 0.243) Data 0.022 ( 0.027) Loss 5.6164e+00 (6.3578e+00) Acc@1 5.86 ( 1.48) Acc@5 13.28 ( 5.19) +Epoch: [0][2709/5004] Time 0.246 ( 0.243) Data 0.023 ( 0.027) Loss 5.5472e+00 (6.3575e+00) Acc@1 4.69 ( 1.48) Acc@5 14.45 ( 5.19) +Epoch: [0][2710/5004] Time 0.240 ( 0.243) Data 0.022 ( 0.027) Loss 5.5133e+00 (6.3572e+00) Acc@1 4.69 ( 1.48) Acc@5 16.80 ( 5.19) +Epoch: [0][2711/5004] Time 0.237 ( 0.243) Data 0.022 ( 0.027) Loss 5.5592e+00 (6.3569e+00) Acc@1 4.30 ( 1.49) Acc@5 14.06 ( 5.20) +Epoch: [0][2712/5004] Time 0.248 ( 0.243) Data 0.025 ( 0.027) Loss 5.5166e+00 (6.3566e+00) Acc@1 5.86 ( 1.49) Acc@5 18.75 ( 5.20) +Epoch: [0][2713/5004] Time 0.252 ( 0.243) Data 0.018 ( 0.027) Loss 5.4530e+00 (6.3562e+00) Acc@1 4.30 ( 1.49) Acc@5 14.45 ( 5.21) +Epoch: [0][2714/5004] Time 0.235 ( 0.243) Data 0.019 ( 0.027) Loss 5.4844e+00 (6.3559e+00) Acc@1 5.86 ( 1.49) Acc@5 16.02 ( 5.21) +Epoch: [0][2715/5004] Time 0.236 ( 0.243) Data 0.022 ( 0.027) Loss 5.5095e+00 (6.3556e+00) Acc@1 7.03 ( 1.49) Acc@5 17.97 ( 5.22) +Epoch: [0][2716/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.4880e+00 (6.3553e+00) Acc@1 3.52 ( 1.49) Acc@5 14.84 ( 5.22) +Epoch: [0][2717/5004] Time 0.238 ( 0.243) Data 0.024 ( 0.027) Loss 5.5076e+00 (6.3550e+00) Acc@1 4.69 ( 1.49) Acc@5 14.84 ( 5.22) +Epoch: [0][2718/5004] Time 0.241 ( 0.243) Data 0.025 ( 0.027) Loss 5.5062e+00 (6.3547e+00) Acc@1 5.47 ( 1.50) Acc@5 14.45 ( 5.23) +Epoch: [0][2719/5004] Time 0.239 ( 0.243) Data 0.023 ( 0.027) Loss 5.4397e+00 (6.3543e+00) Acc@1 6.25 ( 1.50) Acc@5 18.36 ( 5.23) +Epoch: [0][2720/5004] Time 0.237 ( 0.243) Data 0.023 ( 0.027) Loss 5.5843e+00 (6.3540e+00) Acc@1 4.69 ( 1.50) Acc@5 14.45 ( 5.23) +Epoch: [0][2721/5004] Time 0.237 ( 0.243) Data 0.024 ( 0.027) Loss 5.5366e+00 (6.3537e+00) Acc@1 2.73 ( 1.50) Acc@5 13.67 ( 5.24) +Epoch: [0][2722/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.4960e+00 (6.3534e+00) Acc@1 3.52 ( 1.50) Acc@5 13.28 ( 5.24) +Epoch: [0][2723/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.5619e+00 (6.3531e+00) Acc@1 5.08 ( 1.50) Acc@5 12.11 ( 5.24) +Epoch: [0][2724/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.5510e+00 (6.3528e+00) Acc@1 5.08 ( 1.50) Acc@5 14.06 ( 5.25) +Epoch: [0][2725/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.2300e+00 (6.3524e+00) Acc@1 9.38 ( 1.50) Acc@5 19.92 ( 5.25) +Epoch: [0][2726/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.4360e+00 (6.3521e+00) Acc@1 5.08 ( 1.51) Acc@5 18.75 ( 5.26) +Epoch: [0][2727/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.4144e+00 (6.3518e+00) Acc@1 6.25 ( 1.51) Acc@5 17.58 ( 5.26) +Epoch: [0][2728/5004] Time 0.233 ( 0.243) Data 0.019 ( 0.027) Loss 5.6379e+00 (6.3515e+00) Acc@1 3.91 ( 1.51) Acc@5 14.84 ( 5.26) +Epoch: [0][2729/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.4937e+00 (6.3512e+00) Acc@1 4.69 ( 1.51) Acc@5 14.45 ( 5.27) +Epoch: [0][2730/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.4999e+00 (6.3509e+00) Acc@1 5.86 ( 1.51) Acc@5 12.50 ( 5.27) +Epoch: [0][2731/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.6881e+00 (6.3506e+00) Acc@1 3.52 ( 1.51) Acc@5 13.67 ( 5.27) +Epoch: [0][2732/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.4238e+00 (6.3503e+00) Acc@1 7.03 ( 1.51) Acc@5 17.97 ( 5.28) +Epoch: [0][2733/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.5799e+00 (6.3500e+00) Acc@1 5.08 ( 1.52) Acc@5 15.23 ( 5.28) +Epoch: [0][2734/5004] Time 0.235 ( 0.243) Data 0.023 ( 0.027) Loss 5.5692e+00 (6.3497e+00) Acc@1 3.91 ( 1.52) Acc@5 13.28 ( 5.28) +Epoch: [0][2735/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.5608e+00 (6.3494e+00) Acc@1 3.91 ( 1.52) Acc@5 13.67 ( 5.29) +Epoch: [0][2736/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 5.4211e+00 (6.3491e+00) Acc@1 4.69 ( 1.52) Acc@5 16.80 ( 5.29) +Epoch: [0][2737/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.6344e+00 (6.3488e+00) Acc@1 5.08 ( 1.52) Acc@5 12.89 ( 5.29) +Epoch: [0][2738/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.6397e+00 (6.3486e+00) Acc@1 3.12 ( 1.52) Acc@5 12.11 ( 5.30) +Epoch: [0][2739/5004] Time 0.241 ( 0.243) Data 0.027 ( 0.027) Loss 5.3938e+00 (6.3482e+00) Acc@1 4.69 ( 1.52) Acc@5 14.45 ( 5.30) +Epoch: [0][2740/5004] Time 0.242 ( 0.243) Data 0.027 ( 0.027) Loss 5.4130e+00 (6.3479e+00) Acc@1 7.03 ( 1.52) Acc@5 17.97 ( 5.30) +Epoch: [0][2741/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.4991e+00 (6.3476e+00) Acc@1 5.08 ( 1.52) Acc@5 16.02 ( 5.31) +Epoch: [0][2742/5004] Time 0.237 ( 0.243) Data 0.025 ( 0.027) Loss 5.5721e+00 (6.3473e+00) Acc@1 7.03 ( 1.53) Acc@5 17.97 ( 5.31) +Epoch: [0][2743/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.5447e+00 (6.3470e+00) Acc@1 3.91 ( 1.53) Acc@5 14.06 ( 5.32) +Epoch: [0][2744/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.4605e+00 (6.3467e+00) Acc@1 5.86 ( 1.53) Acc@5 16.41 ( 5.32) +Epoch: [0][2745/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.6474e+00 (6.3464e+00) Acc@1 4.30 ( 1.53) Acc@5 11.72 ( 5.32) +Epoch: [0][2746/5004] Time 0.236 ( 0.243) Data 0.025 ( 0.027) Loss 5.5223e+00 (6.3461e+00) Acc@1 4.30 ( 1.53) Acc@5 16.80 ( 5.33) +Epoch: [0][2747/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.4501e+00 (6.3458e+00) Acc@1 4.69 ( 1.53) Acc@5 14.06 ( 5.33) +Epoch: [0][2748/5004] Time 0.241 ( 0.243) Data 0.027 ( 0.027) Loss 5.4746e+00 (6.3455e+00) Acc@1 3.91 ( 1.53) Acc@5 18.75 ( 5.34) +Epoch: [0][2749/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.6476e+00 (6.3452e+00) Acc@1 5.47 ( 1.53) Acc@5 15.62 ( 5.34) +Epoch: [0][2750/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.5029e+00 (6.3449e+00) Acc@1 5.86 ( 1.54) Acc@5 17.97 ( 5.34) +Epoch: [0][2751/5004] Time 0.242 ( 0.243) Data 0.027 ( 0.027) Loss 5.5109e+00 (6.3446e+00) Acc@1 5.08 ( 1.54) Acc@5 15.62 ( 5.35) +Epoch: [0][2752/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.5150e+00 (6.3443e+00) Acc@1 4.69 ( 1.54) Acc@5 15.23 ( 5.35) +Epoch: [0][2753/5004] Time 0.235 ( 0.243) Data 0.021 ( 0.027) Loss 5.6181e+00 (6.3440e+00) Acc@1 3.91 ( 1.54) Acc@5 14.84 ( 5.35) +Epoch: [0][2754/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5420e+00 (6.3438e+00) Acc@1 5.47 ( 1.54) Acc@5 15.62 ( 5.36) +Epoch: [0][2755/5004] Time 0.242 ( 0.243) Data 0.024 ( 0.027) Loss 5.4154e+00 (6.3434e+00) Acc@1 4.30 ( 1.54) Acc@5 14.06 ( 5.36) +Epoch: [0][2756/5004] Time 0.247 ( 0.243) Data 0.026 ( 0.027) Loss 5.4307e+00 (6.3431e+00) Acc@1 5.47 ( 1.54) Acc@5 14.84 ( 5.36) +Epoch: [0][2757/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.4150e+00 (6.3427e+00) Acc@1 5.86 ( 1.54) Acc@5 19.14 ( 5.37) +Epoch: [0][2758/5004] Time 0.247 ( 0.243) Data 0.022 ( 0.027) Loss 5.5497e+00 (6.3425e+00) Acc@1 5.08 ( 1.55) Acc@5 14.84 ( 5.37) +Epoch: [0][2759/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 5.4709e+00 (6.3421e+00) Acc@1 5.08 ( 1.55) Acc@5 16.41 ( 5.38) +Epoch: [0][2760/5004] Time 0.244 ( 0.243) Data 0.022 ( 0.027) Loss 5.3756e+00 (6.3418e+00) Acc@1 6.25 ( 1.55) Acc@5 18.75 ( 5.38) +Epoch: [0][2761/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.5434e+00 (6.3415e+00) Acc@1 2.73 ( 1.55) Acc@5 13.67 ( 5.38) +Epoch: [0][2762/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.6508e+00 (6.3413e+00) Acc@1 4.30 ( 1.55) Acc@5 14.06 ( 5.39) +Epoch: [0][2763/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.6226e+00 (6.3410e+00) Acc@1 5.86 ( 1.55) Acc@5 16.80 ( 5.39) +Epoch: [0][2764/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.6177e+00 (6.3407e+00) Acc@1 5.47 ( 1.55) Acc@5 13.28 ( 5.40) +Epoch: [0][2765/5004] Time 0.245 ( 0.243) Data 0.022 ( 0.027) Loss 5.5283e+00 (6.3404e+00) Acc@1 2.73 ( 1.55) Acc@5 8.98 ( 5.40) +Epoch: [0][2766/5004] Time 0.243 ( 0.243) Data 0.021 ( 0.027) Loss 5.5611e+00 (6.3402e+00) Acc@1 3.52 ( 1.55) Acc@5 10.94 ( 5.40) +Epoch: [0][2767/5004] Time 0.246 ( 0.243) Data 0.022 ( 0.027) Loss 5.6421e+00 (6.3399e+00) Acc@1 3.52 ( 1.56) Acc@5 13.28 ( 5.40) +Epoch: [0][2768/5004] Time 0.247 ( 0.243) Data 0.020 ( 0.027) Loss 5.5173e+00 (6.3396e+00) Acc@1 3.91 ( 1.56) Acc@5 14.06 ( 5.40) +Epoch: [0][2769/5004] Time 0.245 ( 0.243) Data 0.020 ( 0.027) Loss 5.5629e+00 (6.3393e+00) Acc@1 5.47 ( 1.56) Acc@5 14.06 ( 5.41) +Epoch: [0][2770/5004] Time 0.243 ( 0.243) Data 0.020 ( 0.027) Loss 5.3512e+00 (6.3390e+00) Acc@1 5.86 ( 1.56) Acc@5 20.70 ( 5.41) +Epoch: [0][2771/5004] Time 0.240 ( 0.243) Data 0.021 ( 0.027) Loss 5.4446e+00 (6.3387e+00) Acc@1 5.47 ( 1.56) Acc@5 14.45 ( 5.42) +Epoch: [0][2772/5004] Time 0.236 ( 0.243) Data 0.022 ( 0.027) Loss 5.6021e+00 (6.3384e+00) Acc@1 3.52 ( 1.56) Acc@5 14.06 ( 5.42) +Epoch: [0][2773/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.5749e+00 (6.3381e+00) Acc@1 4.30 ( 1.56) Acc@5 14.84 ( 5.42) +Epoch: [0][2774/5004] Time 0.236 ( 0.243) Data 0.024 ( 0.027) Loss 5.5260e+00 (6.3378e+00) Acc@1 2.73 ( 1.56) Acc@5 14.84 ( 5.43) +Epoch: [0][2775/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.6156e+00 (6.3376e+00) Acc@1 3.12 ( 1.56) Acc@5 10.94 ( 5.43) +Epoch: [0][2776/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.5842e+00 (6.3373e+00) Acc@1 4.69 ( 1.56) Acc@5 13.28 ( 5.43) +Epoch: [0][2777/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.5411e+00 (6.3370e+00) Acc@1 4.30 ( 1.57) Acc@5 10.94 ( 5.43) +Epoch: [0][2778/5004] Time 0.241 ( 0.243) Data 0.028 ( 0.027) Loss 5.3671e+00 (6.3367e+00) Acc@1 6.64 ( 1.57) Acc@5 19.14 ( 5.44) +Epoch: [0][2779/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.5530e+00 (6.3364e+00) Acc@1 5.08 ( 1.57) Acc@5 14.06 ( 5.44) +Epoch: [0][2780/5004] Time 0.237 ( 0.243) Data 0.028 ( 0.027) Loss 5.4305e+00 (6.3360e+00) Acc@1 4.30 ( 1.57) Acc@5 16.02 ( 5.44) +Epoch: [0][2781/5004] Time 0.244 ( 0.243) Data 0.029 ( 0.027) Loss 5.4829e+00 (6.3357e+00) Acc@1 5.86 ( 1.57) Acc@5 16.80 ( 5.45) +Epoch: [0][2782/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.5394e+00 (6.3355e+00) Acc@1 4.69 ( 1.57) Acc@5 14.45 ( 5.45) +Epoch: [0][2783/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.5694e+00 (6.3352e+00) Acc@1 5.08 ( 1.57) Acc@5 14.84 ( 5.46) +Epoch: [0][2784/5004] Time 0.241 ( 0.243) Data 0.026 ( 0.027) Loss 5.5532e+00 (6.3349e+00) Acc@1 5.47 ( 1.57) Acc@5 17.19 ( 5.46) +Epoch: [0][2785/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.4671e+00 (6.3346e+00) Acc@1 5.47 ( 1.58) Acc@5 13.67 ( 5.46) +Epoch: [0][2786/5004] Time 0.236 ( 0.243) Data 0.026 ( 0.027) Loss 5.7900e+00 (6.3344e+00) Acc@1 2.73 ( 1.58) Acc@5 9.77 ( 5.46) +Epoch: [0][2787/5004] Time 0.241 ( 0.243) Data 0.029 ( 0.027) Loss 5.5179e+00 (6.3341e+00) Acc@1 3.52 ( 1.58) Acc@5 14.06 ( 5.47) +Epoch: [0][2788/5004] Time 0.240 ( 0.243) Data 0.027 ( 0.027) Loss 5.3545e+00 (6.3337e+00) Acc@1 5.86 ( 1.58) Acc@5 16.41 ( 5.47) +Epoch: [0][2789/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.5847e+00 (6.3335e+00) Acc@1 4.30 ( 1.58) Acc@5 14.45 ( 5.47) +Epoch: [0][2790/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.4458e+00 (6.3332e+00) Acc@1 5.47 ( 1.58) Acc@5 18.75 ( 5.48) +Epoch: [0][2791/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.4857e+00 (6.3329e+00) Acc@1 4.69 ( 1.58) Acc@5 16.41 ( 5.48) +Epoch: [0][2792/5004] Time 0.244 ( 0.243) Data 0.028 ( 0.027) Loss 5.5886e+00 (6.3326e+00) Acc@1 4.30 ( 1.58) Acc@5 16.02 ( 5.49) +Epoch: [0][2793/5004] Time 0.238 ( 0.243) Data 0.022 ( 0.027) Loss 5.5443e+00 (6.3323e+00) Acc@1 3.52 ( 1.58) Acc@5 13.67 ( 5.49) +Epoch: [0][2794/5004] Time 0.236 ( 0.243) Data 0.023 ( 0.027) Loss 5.5259e+00 (6.3320e+00) Acc@1 3.91 ( 1.58) Acc@5 18.36 ( 5.49) +Epoch: [0][2795/5004] Time 0.236 ( 0.243) Data 0.026 ( 0.027) Loss 5.3363e+00 (6.3317e+00) Acc@1 6.64 ( 1.59) Acc@5 19.53 ( 5.50) +Epoch: [0][2796/5004] Time 0.241 ( 0.243) Data 0.029 ( 0.027) Loss 5.4068e+00 (6.3313e+00) Acc@1 7.81 ( 1.59) Acc@5 17.97 ( 5.50) +Epoch: [0][2797/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.5196e+00 (6.3310e+00) Acc@1 5.86 ( 1.59) Acc@5 17.97 ( 5.51) +Epoch: [0][2798/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.3645e+00 (6.3307e+00) Acc@1 5.47 ( 1.59) Acc@5 19.53 ( 5.51) +Epoch: [0][2799/5004] Time 0.238 ( 0.243) Data 0.028 ( 0.027) Loss 5.4029e+00 (6.3304e+00) Acc@1 3.91 ( 1.59) Acc@5 17.19 ( 5.52) +Epoch: [0][2800/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.3594e+00 (6.3300e+00) Acc@1 1.95 ( 1.59) Acc@5 14.45 ( 5.52) +Epoch: [0][2801/5004] Time 0.239 ( 0.243) Data 0.026 ( 0.027) Loss 5.5000e+00 (6.3297e+00) Acc@1 5.47 ( 1.59) Acc@5 16.41 ( 5.52) +Epoch: [0][2802/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.4159e+00 (6.3294e+00) Acc@1 5.08 ( 1.60) Acc@5 15.23 ( 5.53) +Epoch: [0][2803/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.3969e+00 (6.3291e+00) Acc@1 7.42 ( 1.60) Acc@5 15.23 ( 5.53) +Epoch: [0][2804/5004] Time 0.238 ( 0.243) Data 0.025 ( 0.027) Loss 5.4478e+00 (6.3287e+00) Acc@1 5.47 ( 1.60) Acc@5 16.80 ( 5.54) +Epoch: [0][2805/5004] Time 0.236 ( 0.243) Data 0.026 ( 0.027) Loss 5.5034e+00 (6.3285e+00) Acc@1 4.69 ( 1.60) Acc@5 18.36 ( 5.54) +Epoch: [0][2806/5004] Time 0.212 ( 0.243) Data 0.029 ( 0.027) Loss 5.4595e+00 (6.3281e+00) Acc@1 5.86 ( 1.60) Acc@5 17.58 ( 5.54) +Epoch: [0][2807/5004] Time 0.238 ( 0.243) Data 0.055 ( 0.027) Loss 5.3213e+00 (6.3278e+00) Acc@1 5.86 ( 1.60) Acc@5 19.92 ( 5.55) +Epoch: [0][2808/5004] Time 0.238 ( 0.243) Data 0.055 ( 0.027) Loss 5.4445e+00 (6.3275e+00) Acc@1 5.08 ( 1.60) Acc@5 16.41 ( 5.55) +Epoch: [0][2809/5004] Time 0.238 ( 0.243) Data 0.055 ( 0.027) Loss 5.5040e+00 (6.3272e+00) Acc@1 4.69 ( 1.61) Acc@5 14.06 ( 5.56) +Epoch: [0][2810/5004] Time 0.236 ( 0.243) Data 0.054 ( 0.027) Loss 5.1955e+00 (6.3268e+00) Acc@1 8.98 ( 1.61) Acc@5 17.97 ( 5.56) +Epoch: [0][2811/5004] Time 0.243 ( 0.243) Data 0.055 ( 0.027) Loss 5.3897e+00 (6.3264e+00) Acc@1 4.69 ( 1.61) Acc@5 15.23 ( 5.56) +Epoch: [0][2812/5004] Time 0.233 ( 0.243) Data 0.052 ( 0.027) Loss 5.6003e+00 (6.3262e+00) Acc@1 5.08 ( 1.61) Acc@5 12.11 ( 5.57) +Epoch: [0][2813/5004] Time 0.242 ( 0.243) Data 0.058 ( 0.027) Loss 5.3884e+00 (6.3259e+00) Acc@1 7.81 ( 1.61) Acc@5 16.80 ( 5.57) +Epoch: [0][2814/5004] Time 0.234 ( 0.243) Data 0.054 ( 0.027) Loss 5.6413e+00 (6.3256e+00) Acc@1 7.42 ( 1.61) Acc@5 13.28 ( 5.57) +Epoch: [0][2815/5004] Time 0.240 ( 0.243) Data 0.057 ( 0.027) Loss 5.5729e+00 (6.3253e+00) Acc@1 1.56 ( 1.61) Acc@5 13.67 ( 5.58) +Epoch: [0][2816/5004] Time 0.237 ( 0.243) Data 0.055 ( 0.027) Loss 5.4203e+00 (6.3250e+00) Acc@1 4.69 ( 1.62) Acc@5 16.02 ( 5.58) +Epoch: [0][2817/5004] Time 0.238 ( 0.243) Data 0.056 ( 0.027) Loss 5.3905e+00 (6.3247e+00) Acc@1 3.91 ( 1.62) Acc@5 17.19 ( 5.58) +Epoch: [0][2818/5004] Time 0.241 ( 0.243) Data 0.056 ( 0.027) Loss 5.5983e+00 (6.3244e+00) Acc@1 5.47 ( 1.62) Acc@5 19.53 ( 5.59) +Epoch: [0][2819/5004] Time 0.235 ( 0.243) Data 0.054 ( 0.027) Loss 5.5902e+00 (6.3242e+00) Acc@1 4.69 ( 1.62) Acc@5 14.45 ( 5.59) +Epoch: [0][2820/5004] Time 0.243 ( 0.243) Data 0.056 ( 0.027) Loss 5.5005e+00 (6.3239e+00) Acc@1 3.91 ( 1.62) Acc@5 17.58 ( 5.60) +Epoch: [0][2821/5004] Time 0.235 ( 0.243) Data 0.055 ( 0.027) Loss 5.5453e+00 (6.3236e+00) Acc@1 3.91 ( 1.62) Acc@5 13.28 ( 5.60) +Epoch: [0][2822/5004] Time 0.242 ( 0.243) Data 0.056 ( 0.027) Loss 5.5852e+00 (6.3233e+00) Acc@1 3.91 ( 1.62) Acc@5 17.19 ( 5.60) +Epoch: [0][2823/5004] Time 0.240 ( 0.243) Data 0.057 ( 0.027) Loss 5.3651e+00 (6.3230e+00) Acc@1 7.42 ( 1.62) Acc@5 19.14 ( 5.61) +Epoch: [0][2824/5004] Time 0.239 ( 0.243) Data 0.056 ( 0.027) Loss 5.2997e+00 (6.3226e+00) Acc@1 5.08 ( 1.62) Acc@5 18.36 ( 5.61) +Epoch: [0][2825/5004] Time 0.233 ( 0.243) Data 0.055 ( 0.027) Loss 5.3870e+00 (6.3223e+00) Acc@1 5.86 ( 1.63) Acc@5 16.41 ( 5.62) +Epoch: [0][2826/5004] Time 0.242 ( 0.243) Data 0.059 ( 0.027) Loss 5.4461e+00 (6.3220e+00) Acc@1 5.08 ( 1.63) Acc@5 16.41 ( 5.62) +Epoch: [0][2827/5004] Time 0.238 ( 0.243) Data 0.056 ( 0.027) Loss 5.3513e+00 (6.3217e+00) Acc@1 4.30 ( 1.63) Acc@5 14.84 ( 5.62) +Epoch: [0][2828/5004] Time 0.237 ( 0.243) Data 0.056 ( 0.027) Loss 5.4330e+00 (6.3213e+00) Acc@1 4.30 ( 1.63) Acc@5 16.80 ( 5.63) +Epoch: [0][2829/5004] Time 0.238 ( 0.243) Data 0.056 ( 0.027) Loss 5.4855e+00 (6.3210e+00) Acc@1 4.69 ( 1.63) Acc@5 12.89 ( 5.63) +Epoch: [0][2830/5004] Time 0.236 ( 0.243) Data 0.055 ( 0.027) Loss 5.5043e+00 (6.3208e+00) Acc@1 3.52 ( 1.63) Acc@5 16.80 ( 5.63) +Epoch: [0][2831/5004] Time 0.236 ( 0.243) Data 0.056 ( 0.027) Loss 5.4354e+00 (6.3204e+00) Acc@1 7.03 ( 1.63) Acc@5 15.62 ( 5.64) +Epoch: [0][2832/5004] Time 0.239 ( 0.243) Data 0.057 ( 0.027) Loss 5.5261e+00 (6.3202e+00) Acc@1 5.86 ( 1.63) Acc@5 12.50 ( 5.64) +Epoch: [0][2833/5004] Time 0.241 ( 0.243) Data 0.055 ( 0.027) Loss 5.6217e+00 (6.3199e+00) Acc@1 3.12 ( 1.63) Acc@5 10.16 ( 5.64) +Epoch: [0][2834/5004] Time 0.239 ( 0.243) Data 0.053 ( 0.027) Loss 5.4648e+00 (6.3196e+00) Acc@1 3.91 ( 1.64) Acc@5 16.80 ( 5.65) +Epoch: [0][2835/5004] Time 0.238 ( 0.243) Data 0.052 ( 0.027) Loss 5.4722e+00 (6.3193e+00) Acc@1 7.42 ( 1.64) Acc@5 13.67 ( 5.65) +Epoch: [0][2836/5004] Time 0.233 ( 0.243) Data 0.052 ( 0.027) Loss 5.5891e+00 (6.3191e+00) Acc@1 3.12 ( 1.64) Acc@5 13.28 ( 5.65) +Epoch: [0][2837/5004] Time 0.237 ( 0.243) Data 0.056 ( 0.027) Loss 5.4522e+00 (6.3188e+00) Acc@1 5.86 ( 1.64) Acc@5 14.06 ( 5.65) +Epoch: [0][2838/5004] Time 0.239 ( 0.243) Data 0.057 ( 0.027) Loss 5.4833e+00 (6.3185e+00) Acc@1 3.91 ( 1.64) Acc@5 14.84 ( 5.66) +Epoch: [0][2839/5004] Time 0.237 ( 0.243) Data 0.056 ( 0.027) Loss 5.5560e+00 (6.3182e+00) Acc@1 3.91 ( 1.64) Acc@5 17.19 ( 5.66) +Epoch: [0][2840/5004] Time 0.237 ( 0.243) Data 0.057 ( 0.027) Loss 5.5456e+00 (6.3179e+00) Acc@1 4.69 ( 1.64) Acc@5 16.80 ( 5.66) +Epoch: [0][2841/5004] Time 0.271 ( 0.243) Data 0.058 ( 0.027) Loss 5.4709e+00 (6.3176e+00) Acc@1 5.08 ( 1.64) Acc@5 14.45 ( 5.67) +Epoch: [0][2842/5004] Time 0.240 ( 0.243) Data 0.026 ( 0.027) Loss 5.4660e+00 (6.3173e+00) Acc@1 5.08 ( 1.64) Acc@5 17.19 ( 5.67) +Epoch: [0][2843/5004] Time 0.236 ( 0.243) Data 0.025 ( 0.027) Loss 5.4564e+00 (6.3170e+00) Acc@1 5.86 ( 1.65) Acc@5 16.02 ( 5.68) +Epoch: [0][2844/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.2912e+00 (6.3167e+00) Acc@1 7.42 ( 1.65) Acc@5 19.92 ( 5.68) +Epoch: [0][2845/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.6210e+00 (6.3164e+00) Acc@1 6.25 ( 1.65) Acc@5 12.11 ( 5.68) +Epoch: [0][2846/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.5201e+00 (6.3161e+00) Acc@1 5.08 ( 1.65) Acc@5 12.50 ( 5.69) +Epoch: [0][2847/5004] Time 0.239 ( 0.243) Data 0.029 ( 0.027) Loss 5.7217e+00 (6.3159e+00) Acc@1 5.08 ( 1.65) Acc@5 12.89 ( 5.69) +Epoch: [0][2848/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.5895e+00 (6.3157e+00) Acc@1 2.34 ( 1.65) Acc@5 15.23 ( 5.69) +Epoch: [0][2849/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.4528e+00 (6.3154e+00) Acc@1 6.64 ( 1.65) Acc@5 18.75 ( 5.70) +Epoch: [0][2850/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.6624e+00 (6.3151e+00) Acc@1 4.69 ( 1.66) Acc@5 10.94 ( 5.70) +Epoch: [0][2851/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.5503e+00 (6.3149e+00) Acc@1 4.30 ( 1.66) Acc@5 16.41 ( 5.70) +Epoch: [0][2852/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.5822e+00 (6.3146e+00) Acc@1 3.91 ( 1.66) Acc@5 15.62 ( 5.70) +Epoch: [0][2853/5004] Time 0.245 ( 0.243) Data 0.027 ( 0.027) Loss 5.3537e+00 (6.3143e+00) Acc@1 7.42 ( 1.66) Acc@5 17.97 ( 5.71) +Epoch: [0][2854/5004] Time 0.234 ( 0.243) Data 0.024 ( 0.027) Loss 5.5319e+00 (6.3140e+00) Acc@1 5.08 ( 1.66) Acc@5 14.84 ( 5.71) +Epoch: [0][2855/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 5.4063e+00 (6.3137e+00) Acc@1 3.52 ( 1.66) Acc@5 17.58 ( 5.72) +Epoch: [0][2856/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.3493e+00 (6.3133e+00) Acc@1 6.64 ( 1.66) Acc@5 17.19 ( 5.72) +Epoch: [0][2857/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.4879e+00 (6.3131e+00) Acc@1 3.12 ( 1.66) Acc@5 17.58 ( 5.72) +Epoch: [0][2858/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.5127e+00 (6.3128e+00) Acc@1 3.52 ( 1.66) Acc@5 13.28 ( 5.73) +Epoch: [0][2859/5004] Time 0.239 ( 0.243) Data 0.029 ( 0.027) Loss 5.3385e+00 (6.3124e+00) Acc@1 5.08 ( 1.67) Acc@5 18.75 ( 5.73) +Epoch: [0][2860/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.4472e+00 (6.3121e+00) Acc@1 6.25 ( 1.67) Acc@5 16.80 ( 5.74) +Epoch: [0][2861/5004] Time 0.240 ( 0.243) Data 0.027 ( 0.027) Loss 5.5861e+00 (6.3119e+00) Acc@1 5.08 ( 1.67) Acc@5 11.33 ( 5.74) +Epoch: [0][2862/5004] Time 0.238 ( 0.243) Data 0.027 ( 0.027) Loss 5.4788e+00 (6.3116e+00) Acc@1 7.81 ( 1.67) Acc@5 17.97 ( 5.74) +Epoch: [0][2863/5004] Time 0.243 ( 0.243) Data 0.027 ( 0.027) Loss 5.4935e+00 (6.3113e+00) Acc@1 5.86 ( 1.67) Acc@5 15.23 ( 5.75) +Epoch: [0][2864/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.5278e+00 (6.3110e+00) Acc@1 3.52 ( 1.67) Acc@5 17.19 ( 5.75) +Epoch: [0][2865/5004] Time 0.236 ( 0.243) Data 0.023 ( 0.027) Loss 5.4913e+00 (6.3107e+00) Acc@1 4.69 ( 1.67) Acc@5 18.36 ( 5.75) +Epoch: [0][2866/5004] Time 0.239 ( 0.243) Data 0.026 ( 0.027) Loss 5.3615e+00 (6.3104e+00) Acc@1 5.47 ( 1.67) Acc@5 22.27 ( 5.76) +Epoch: [0][2867/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.5630e+00 (6.3102e+00) Acc@1 5.47 ( 1.68) Acc@5 14.06 ( 5.76) +Epoch: [0][2868/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.4878e+00 (6.3099e+00) Acc@1 5.47 ( 1.68) Acc@5 19.14 ( 5.77) +Epoch: [0][2869/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.3506e+00 (6.3095e+00) Acc@1 6.25 ( 1.68) Acc@5 17.58 ( 5.77) +Epoch: [0][2870/5004] Time 0.242 ( 0.243) Data 0.026 ( 0.027) Loss 5.3701e+00 (6.3092e+00) Acc@1 5.86 ( 1.68) Acc@5 14.06 ( 5.77) +Epoch: [0][2871/5004] Time 0.233 ( 0.243) Data 0.023 ( 0.027) Loss 5.3887e+00 (6.3089e+00) Acc@1 7.81 ( 1.68) Acc@5 17.58 ( 5.78) +Epoch: [0][2872/5004] Time 0.241 ( 0.243) Data 0.027 ( 0.027) Loss 5.3971e+00 (6.3086e+00) Acc@1 6.64 ( 1.68) Acc@5 18.36 ( 5.78) +Epoch: [0][2873/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.4881e+00 (6.3083e+00) Acc@1 3.91 ( 1.68) Acc@5 14.45 ( 5.79) +Epoch: [0][2874/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.5177e+00 (6.3080e+00) Acc@1 3.52 ( 1.69) Acc@5 13.67 ( 5.79) +Epoch: [0][2875/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.2957e+00 (6.3077e+00) Acc@1 5.47 ( 1.69) Acc@5 17.19 ( 5.79) +Epoch: [0][2876/5004] Time 0.240 ( 0.243) Data 0.027 ( 0.027) Loss 5.4828e+00 (6.3074e+00) Acc@1 6.25 ( 1.69) Acc@5 16.80 ( 5.80) +Epoch: [0][2877/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.4084e+00 (6.3071e+00) Acc@1 7.03 ( 1.69) Acc@5 17.19 ( 5.80) +Epoch: [0][2878/5004] Time 0.238 ( 0.243) Data 0.024 ( 0.027) Loss 5.4352e+00 (6.3068e+00) Acc@1 5.47 ( 1.69) Acc@5 17.19 ( 5.80) +Epoch: [0][2879/5004] Time 0.238 ( 0.243) Data 0.026 ( 0.027) Loss 5.4042e+00 (6.3064e+00) Acc@1 6.64 ( 1.69) Acc@5 19.53 ( 5.81) +Epoch: [0][2880/5004] Time 0.244 ( 0.243) Data 0.027 ( 0.027) Loss 5.3254e+00 (6.3061e+00) Acc@1 8.59 ( 1.70) Acc@5 17.97 ( 5.81) +Epoch: [0][2881/5004] Time 0.235 ( 0.243) Data 0.024 ( 0.027) Loss 5.4713e+00 (6.3058e+00) Acc@1 5.47 ( 1.70) Acc@5 12.50 ( 5.82) +Epoch: [0][2882/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.3663e+00 (6.3055e+00) Acc@1 6.25 ( 1.70) Acc@5 17.19 ( 5.82) +Epoch: [0][2883/5004] Time 0.234 ( 0.243) Data 0.022 ( 0.027) Loss 5.5400e+00 (6.3052e+00) Acc@1 2.73 ( 1.70) Acc@5 14.06 ( 5.82) +Epoch: [0][2884/5004] Time 0.241 ( 0.243) Data 0.028 ( 0.027) Loss 5.3939e+00 (6.3049e+00) Acc@1 6.64 ( 1.70) Acc@5 19.14 ( 5.83) +Epoch: [0][2885/5004] Time 0.236 ( 0.243) Data 0.026 ( 0.027) Loss 5.4908e+00 (6.3046e+00) Acc@1 6.64 ( 1.70) Acc@5 14.84 ( 5.83) +Epoch: [0][2886/5004] Time 0.240 ( 0.243) Data 0.028 ( 0.027) Loss 5.4202e+00 (6.3043e+00) Acc@1 5.86 ( 1.70) Acc@5 17.19 ( 5.83) +Epoch: [0][2887/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.3408e+00 (6.3040e+00) Acc@1 5.47 ( 1.71) Acc@5 17.97 ( 5.84) +Epoch: [0][2888/5004] Time 0.239 ( 0.243) Data 0.029 ( 0.027) Loss 5.3400e+00 (6.3036e+00) Acc@1 5.47 ( 1.71) Acc@5 16.80 ( 5.84) +Epoch: [0][2889/5004] Time 0.238 ( 0.243) Data 0.028 ( 0.027) Loss 5.3907e+00 (6.3033e+00) Acc@1 5.86 ( 1.71) Acc@5 16.41 ( 5.85) +Epoch: [0][2890/5004] Time 0.241 ( 0.243) Data 0.029 ( 0.027) Loss 5.3519e+00 (6.3030e+00) Acc@1 5.47 ( 1.71) Acc@5 20.70 ( 5.85) +Epoch: [0][2891/5004] Time 0.237 ( 0.243) Data 0.027 ( 0.027) Loss 5.3613e+00 (6.3027e+00) Acc@1 3.91 ( 1.71) Acc@5 16.41 ( 5.85) +Epoch: [0][2892/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 5.4650e+00 (6.3024e+00) Acc@1 5.86 ( 1.71) Acc@5 17.19 ( 5.86) +Epoch: [0][2893/5004] Time 0.232 ( 0.243) Data 0.022 ( 0.027) Loss 5.5757e+00 (6.3021e+00) Acc@1 4.30 ( 1.71) Acc@5 13.67 ( 5.86) +Epoch: [0][2894/5004] Time 0.241 ( 0.243) Data 0.028 ( 0.027) Loss 5.3454e+00 (6.3018e+00) Acc@1 6.25 ( 1.71) Acc@5 16.02 ( 5.86) +Epoch: [0][2895/5004] Time 0.239 ( 0.243) Data 0.029 ( 0.027) Loss 5.3719e+00 (6.3015e+00) Acc@1 3.91 ( 1.71) Acc@5 14.84 ( 5.87) +Epoch: [0][2896/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 5.5288e+00 (6.3012e+00) Acc@1 5.86 ( 1.72) Acc@5 14.84 ( 5.87) +Epoch: [0][2897/5004] Time 0.239 ( 0.243) Data 0.025 ( 0.027) Loss 5.5250e+00 (6.3009e+00) Acc@1 3.52 ( 1.72) Acc@5 13.28 ( 5.87) +Epoch: [0][2898/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 5.3922e+00 (6.3006e+00) Acc@1 3.91 ( 1.72) Acc@5 13.67 ( 5.88) +Epoch: [0][2899/5004] Time 0.243 ( 0.243) Data 0.023 ( 0.027) Loss 5.3985e+00 (6.3003e+00) Acc@1 5.86 ( 1.72) Acc@5 17.19 ( 5.88) +Epoch: [0][2900/5004] Time 0.240 ( 0.243) Data 0.025 ( 0.027) Loss 5.7236e+00 (6.3001e+00) Acc@1 5.86 ( 1.72) Acc@5 12.89 ( 5.88) +Epoch: [0][2901/5004] Time 0.242 ( 0.243) Data 0.025 ( 0.027) Loss 5.2940e+00 (6.2998e+00) Acc@1 7.03 ( 1.72) Acc@5 19.92 ( 5.89) +Epoch: [0][2902/5004] Time 0.247 ( 0.243) Data 0.024 ( 0.027) Loss 5.5180e+00 (6.2995e+00) Acc@1 3.12 ( 1.72) Acc@5 11.33 ( 5.89) +Epoch: [0][2903/5004] Time 0.241 ( 0.243) Data 0.021 ( 0.027) Loss 5.4061e+00 (6.2992e+00) Acc@1 6.25 ( 1.72) Acc@5 16.41 ( 5.89) +Epoch: [0][2904/5004] Time 0.235 ( 0.243) Data 0.021 ( 0.027) Loss 5.4278e+00 (6.2989e+00) Acc@1 3.12 ( 1.72) Acc@5 14.45 ( 5.90) +Epoch: [0][2905/5004] Time 0.239 ( 0.243) Data 0.027 ( 0.027) Loss 5.5769e+00 (6.2987e+00) Acc@1 4.30 ( 1.73) Acc@5 17.19 ( 5.90) +Epoch: [0][2906/5004] Time 0.237 ( 0.243) Data 0.026 ( 0.027) Loss 5.4313e+00 (6.2984e+00) Acc@1 5.47 ( 1.73) Acc@5 14.06 ( 5.90) +Epoch: [0][2907/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.3502e+00 (6.2980e+00) Acc@1 6.25 ( 1.73) Acc@5 20.70 ( 5.91) +Epoch: [0][2908/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 5.4663e+00 (6.2977e+00) Acc@1 4.30 ( 1.73) Acc@5 14.45 ( 5.91) +Epoch: [0][2909/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.4264e+00 (6.2974e+00) Acc@1 6.25 ( 1.73) Acc@5 16.80 ( 5.91) +Epoch: [0][2910/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.3804e+00 (6.2971e+00) Acc@1 6.25 ( 1.73) Acc@5 17.97 ( 5.92) +Epoch: [0][2911/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 5.4622e+00 (6.2968e+00) Acc@1 6.64 ( 1.73) Acc@5 14.45 ( 5.92) +Epoch: [0][2912/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 5.2964e+00 (6.2965e+00) Acc@1 5.86 ( 1.74) Acc@5 17.19 ( 5.92) +Epoch: [0][2913/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.3137e+00 (6.2962e+00) Acc@1 4.69 ( 1.74) Acc@5 15.23 ( 5.93) +Epoch: [0][2914/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 5.4008e+00 (6.2959e+00) Acc@1 3.12 ( 1.74) Acc@5 13.67 ( 5.93) +Epoch: [0][2915/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 5.4299e+00 (6.2956e+00) Acc@1 3.12 ( 1.74) Acc@5 14.06 ( 5.93) +Epoch: [0][2916/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 5.3693e+00 (6.2952e+00) Acc@1 5.86 ( 1.74) Acc@5 13.28 ( 5.94) +Epoch: [0][2917/5004] Time 0.236 ( 0.242) Data 0.026 ( 0.027) Loss 5.4160e+00 (6.2949e+00) Acc@1 4.30 ( 1.74) Acc@5 12.89 ( 5.94) +Epoch: [0][2918/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.3446e+00 (6.2946e+00) Acc@1 5.86 ( 1.74) Acc@5 15.23 ( 5.94) +Epoch: [0][2919/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.3282e+00 (6.2943e+00) Acc@1 5.47 ( 1.74) Acc@5 19.53 ( 5.95) +Epoch: [0][2920/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 5.4229e+00 (6.2940e+00) Acc@1 3.91 ( 1.74) Acc@5 16.41 ( 5.95) +Epoch: [0][2921/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.3748e+00 (6.2937e+00) Acc@1 4.30 ( 1.74) Acc@5 19.53 ( 5.95) +Epoch: [0][2922/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.3991e+00 (6.2934e+00) Acc@1 7.42 ( 1.75) Acc@5 19.92 ( 5.96) +Epoch: [0][2923/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.2430e+00 (6.2930e+00) Acc@1 8.20 ( 1.75) Acc@5 20.31 ( 5.96) +Epoch: [0][2924/5004] Time 0.234 ( 0.242) Data 0.021 ( 0.027) Loss 5.2679e+00 (6.2927e+00) Acc@1 6.25 ( 1.75) Acc@5 17.97 ( 5.97) +Epoch: [0][2925/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.4037e+00 (6.2923e+00) Acc@1 7.42 ( 1.75) Acc@5 17.58 ( 5.97) +Epoch: [0][2926/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.5488e+00 (6.2921e+00) Acc@1 3.52 ( 1.75) Acc@5 13.67 ( 5.97) +Epoch: [0][2927/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.4912e+00 (6.2918e+00) Acc@1 4.69 ( 1.75) Acc@5 15.62 ( 5.98) +Epoch: [0][2928/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.2646e+00 (6.2915e+00) Acc@1 7.03 ( 1.75) Acc@5 19.92 ( 5.98) +Epoch: [0][2929/5004] Time 0.234 ( 0.242) Data 0.023 ( 0.027) Loss 5.3080e+00 (6.2911e+00) Acc@1 8.59 ( 1.76) Acc@5 21.88 ( 5.99) +Epoch: [0][2930/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.3856e+00 (6.2908e+00) Acc@1 7.42 ( 1.76) Acc@5 16.02 ( 5.99) +Epoch: [0][2931/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 5.4552e+00 (6.2905e+00) Acc@1 5.47 ( 1.76) Acc@5 15.23 ( 5.99) +Epoch: [0][2932/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.3989e+00 (6.2902e+00) Acc@1 5.86 ( 1.76) Acc@5 16.02 ( 6.00) +Epoch: [0][2933/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.5097e+00 (6.2900e+00) Acc@1 5.47 ( 1.76) Acc@5 17.58 ( 6.00) +Epoch: [0][2934/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.5043e+00 (6.2897e+00) Acc@1 6.25 ( 1.76) Acc@5 16.02 ( 6.01) +Epoch: [0][2935/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.4710e+00 (6.2894e+00) Acc@1 4.69 ( 1.77) Acc@5 14.06 ( 6.01) +Epoch: [0][2936/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.2499e+00 (6.2891e+00) Acc@1 7.03 ( 1.77) Acc@5 19.14 ( 6.01) +Epoch: [0][2937/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.3945e+00 (6.2888e+00) Acc@1 5.86 ( 1.77) Acc@5 16.02 ( 6.02) +Epoch: [0][2938/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 5.4260e+00 (6.2885e+00) Acc@1 5.47 ( 1.77) Acc@5 16.80 ( 6.02) +Epoch: [0][2939/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 5.2636e+00 (6.2881e+00) Acc@1 5.47 ( 1.77) Acc@5 20.70 ( 6.02) +Epoch: [0][2940/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.4050e+00 (6.2878e+00) Acc@1 3.91 ( 1.77) Acc@5 14.06 ( 6.03) +Epoch: [0][2941/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.2780e+00 (6.2875e+00) Acc@1 5.86 ( 1.77) Acc@5 18.75 ( 6.03) +Epoch: [0][2942/5004] Time 0.238 ( 0.242) Data 0.023 ( 0.027) Loss 5.4545e+00 (6.2872e+00) Acc@1 7.03 ( 1.78) Acc@5 14.84 ( 6.03) +Epoch: [0][2943/5004] Time 0.235 ( 0.242) Data 0.025 ( 0.027) Loss 5.2939e+00 (6.2869e+00) Acc@1 7.03 ( 1.78) Acc@5 19.53 ( 6.04) +Epoch: [0][2944/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 5.4338e+00 (6.2866e+00) Acc@1 3.52 ( 1.78) Acc@5 15.62 ( 6.04) +Epoch: [0][2945/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.3662e+00 (6.2863e+00) Acc@1 7.03 ( 1.78) Acc@5 17.97 ( 6.05) +Epoch: [0][2946/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.3914e+00 (6.2860e+00) Acc@1 8.59 ( 1.78) Acc@5 19.92 ( 6.05) +Epoch: [0][2947/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.5127e+00 (6.2857e+00) Acc@1 7.81 ( 1.78) Acc@5 16.41 ( 6.06) +Epoch: [0][2948/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 5.3989e+00 (6.2854e+00) Acc@1 5.47 ( 1.79) Acc@5 14.84 ( 6.06) +Epoch: [0][2949/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.4034e+00 (6.2851e+00) Acc@1 5.47 ( 1.79) Acc@5 18.75 ( 6.06) +Epoch: [0][2950/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.3608e+00 (6.2848e+00) Acc@1 4.69 ( 1.79) Acc@5 16.02 ( 6.07) +Epoch: [0][2951/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 5.4795e+00 (6.2845e+00) Acc@1 5.86 ( 1.79) Acc@5 15.62 ( 6.07) +Epoch: [0][2952/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 5.4331e+00 (6.2842e+00) Acc@1 7.03 ( 1.79) Acc@5 13.67 ( 6.07) +Epoch: [0][2953/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 5.3470e+00 (6.2839e+00) Acc@1 5.86 ( 1.79) Acc@5 17.19 ( 6.08) +Epoch: [0][2954/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.3208e+00 (6.2836e+00) Acc@1 7.42 ( 1.79) Acc@5 19.14 ( 6.08) +Epoch: [0][2955/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 5.4101e+00 (6.2833e+00) Acc@1 5.47 ( 1.79) Acc@5 17.58 ( 6.08) +Epoch: [0][2956/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.4228e+00 (6.2830e+00) Acc@1 5.47 ( 1.80) Acc@5 16.41 ( 6.09) +Epoch: [0][2957/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.5065e+00 (6.2827e+00) Acc@1 4.30 ( 1.80) Acc@5 14.45 ( 6.09) +Epoch: [0][2958/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.4883e+00 (6.2825e+00) Acc@1 6.25 ( 1.80) Acc@5 19.14 ( 6.09) +Epoch: [0][2959/5004] Time 0.237 ( 0.242) Data 0.021 ( 0.027) Loss 5.3340e+00 (6.2821e+00) Acc@1 6.64 ( 1.80) Acc@5 17.97 ( 6.10) +Epoch: [0][2960/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 5.3206e+00 (6.2818e+00) Acc@1 5.47 ( 1.80) Acc@5 16.41 ( 6.10) +Epoch: [0][2961/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.4163e+00 (6.2815e+00) Acc@1 5.86 ( 1.80) Acc@5 12.89 ( 6.10) +Epoch: [0][2962/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 5.4716e+00 (6.2812e+00) Acc@1 4.69 ( 1.80) Acc@5 14.84 ( 6.11) +Epoch: [0][2963/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.6193e+00 (6.2810e+00) Acc@1 6.25 ( 1.81) Acc@5 11.72 ( 6.11) +Epoch: [0][2964/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.2621e+00 (6.2807e+00) Acc@1 6.25 ( 1.81) Acc@5 17.19 ( 6.11) +Epoch: [0][2965/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 5.4024e+00 (6.2804e+00) Acc@1 3.91 ( 1.81) Acc@5 14.84 ( 6.12) +Epoch: [0][2966/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.027) Loss 5.3712e+00 (6.2801e+00) Acc@1 4.30 ( 1.81) Acc@5 16.02 ( 6.12) +Epoch: [0][2967/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.3353e+00 (6.2798e+00) Acc@1 6.64 ( 1.81) Acc@5 16.41 ( 6.12) +Epoch: [0][2968/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 5.5602e+00 (6.2795e+00) Acc@1 5.08 ( 1.81) Acc@5 13.28 ( 6.12) +Epoch: [0][2969/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.4046e+00 (6.2792e+00) Acc@1 4.30 ( 1.81) Acc@5 18.75 ( 6.13) +Epoch: [0][2970/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.4133e+00 (6.2789e+00) Acc@1 5.47 ( 1.81) Acc@5 15.62 ( 6.13) +Epoch: [0][2971/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.4720e+00 (6.2787e+00) Acc@1 5.08 ( 1.81) Acc@5 17.58 ( 6.14) +Epoch: [0][2972/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 5.3278e+00 (6.2783e+00) Acc@1 4.69 ( 1.82) Acc@5 17.19 ( 6.14) +Epoch: [0][2973/5004] Time 0.254 ( 0.242) Data 0.023 ( 0.027) Loss 5.2897e+00 (6.2780e+00) Acc@1 6.64 ( 1.82) Acc@5 14.45 ( 6.14) +Epoch: [0][2974/5004] Time 0.241 ( 0.242) Data 0.017 ( 0.027) Loss 5.4048e+00 (6.2777e+00) Acc@1 5.86 ( 1.82) Acc@5 14.45 ( 6.15) +Epoch: [0][2975/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.4188e+00 (6.2774e+00) Acc@1 3.91 ( 1.82) Acc@5 15.62 ( 6.15) +Epoch: [0][2976/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.6094e+00 (6.2772e+00) Acc@1 3.12 ( 1.82) Acc@5 13.67 ( 6.15) +Epoch: [0][2977/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.2076e+00 (6.2768e+00) Acc@1 7.81 ( 1.82) Acc@5 19.92 ( 6.16) +Epoch: [0][2978/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 5.2628e+00 (6.2765e+00) Acc@1 8.20 ( 1.82) Acc@5 19.92 ( 6.16) +Epoch: [0][2979/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.4837e+00 (6.2762e+00) Acc@1 6.25 ( 1.82) Acc@5 16.80 ( 6.16) +Epoch: [0][2980/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.027) Loss 5.2911e+00 (6.2759e+00) Acc@1 6.25 ( 1.83) Acc@5 16.80 ( 6.17) +Epoch: [0][2981/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 5.3177e+00 (6.2756e+00) Acc@1 7.42 ( 1.83) Acc@5 17.58 ( 6.17) +Epoch: [0][2982/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 5.1802e+00 (6.2752e+00) Acc@1 6.64 ( 1.83) Acc@5 19.53 ( 6.18) +Epoch: [0][2983/5004] Time 0.238 ( 0.242) Data 0.023 ( 0.027) Loss 5.3232e+00 (6.2749e+00) Acc@1 6.64 ( 1.83) Acc@5 17.58 ( 6.18) +Epoch: [0][2984/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.3511e+00 (6.2746e+00) Acc@1 4.69 ( 1.83) Acc@5 18.75 ( 6.18) +Epoch: [0][2985/5004] Time 0.234 ( 0.242) Data 0.022 ( 0.027) Loss 5.2323e+00 (6.2742e+00) Acc@1 5.86 ( 1.83) Acc@5 19.14 ( 6.19) +Epoch: [0][2986/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.3964e+00 (6.2739e+00) Acc@1 7.03 ( 1.84) Acc@5 16.41 ( 6.19) +Epoch: [0][2987/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.3551e+00 (6.2736e+00) Acc@1 6.25 ( 1.84) Acc@5 18.36 ( 6.20) +Epoch: [0][2988/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.4209e+00 (6.2734e+00) Acc@1 4.69 ( 1.84) Acc@5 17.19 ( 6.20) +Epoch: [0][2989/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.4102e+00 (6.2731e+00) Acc@1 3.91 ( 1.84) Acc@5 15.62 ( 6.20) +Epoch: [0][2990/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 5.4260e+00 (6.2728e+00) Acc@1 3.12 ( 1.84) Acc@5 13.67 ( 6.21) +Epoch: [0][2991/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.3026e+00 (6.2725e+00) Acc@1 6.64 ( 1.84) Acc@5 17.58 ( 6.21) +Epoch: [0][2992/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.3540e+00 (6.2721e+00) Acc@1 7.03 ( 1.84) Acc@5 19.92 ( 6.21) +Epoch: [0][2993/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.2809e+00 (6.2718e+00) Acc@1 5.86 ( 1.84) Acc@5 16.41 ( 6.22) +Epoch: [0][2994/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.2714e+00 (6.2715e+00) Acc@1 5.86 ( 1.85) Acc@5 16.02 ( 6.22) +Epoch: [0][2995/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.3237e+00 (6.2712e+00) Acc@1 6.64 ( 1.85) Acc@5 17.19 ( 6.22) +Epoch: [0][2996/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.4204e+00 (6.2709e+00) Acc@1 7.42 ( 1.85) Acc@5 18.36 ( 6.23) +Epoch: [0][2997/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.2262e+00 (6.2705e+00) Acc@1 7.81 ( 1.85) Acc@5 18.75 ( 6.23) +Epoch: [0][2998/5004] Time 0.249 ( 0.242) Data 0.038 ( 0.027) Loss 5.2698e+00 (6.2702e+00) Acc@1 4.69 ( 1.85) Acc@5 17.19 ( 6.24) +Epoch: [0][2999/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.4529e+00 (6.2699e+00) Acc@1 5.86 ( 1.85) Acc@5 12.11 ( 6.24) +Epoch: [0][3000/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.2379e+00 (6.2696e+00) Acc@1 10.94 ( 1.86) Acc@5 20.70 ( 6.24) +Epoch: [0][3001/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.5157e+00 (6.2693e+00) Acc@1 2.73 ( 1.86) Acc@5 14.06 ( 6.25) +Epoch: [0][3002/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.4178e+00 (6.2691e+00) Acc@1 6.64 ( 1.86) Acc@5 17.19 ( 6.25) +Epoch: [0][3003/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.2853e+00 (6.2687e+00) Acc@1 6.64 ( 1.86) Acc@5 19.92 ( 6.25) +Epoch: [0][3004/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.4097e+00 (6.2684e+00) Acc@1 6.25 ( 1.86) Acc@5 15.23 ( 6.26) +Epoch: [0][3005/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 5.3940e+00 (6.2681e+00) Acc@1 5.08 ( 1.86) Acc@5 12.11 ( 6.26) +Epoch: [0][3006/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.3662e+00 (6.2678e+00) Acc@1 4.30 ( 1.86) Acc@5 19.92 ( 6.26) +Epoch: [0][3007/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 5.4162e+00 (6.2676e+00) Acc@1 5.47 ( 1.86) Acc@5 16.41 ( 6.27) +Epoch: [0][3008/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.3764e+00 (6.2673e+00) Acc@1 3.91 ( 1.86) Acc@5 16.41 ( 6.27) +Epoch: [0][3009/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.5505e+00 (6.2670e+00) Acc@1 4.69 ( 1.87) Acc@5 15.62 ( 6.27) +Epoch: [0][3010/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.4857e+00 (6.2668e+00) Acc@1 7.42 ( 1.87) Acc@5 17.19 ( 6.28) +Epoch: [0][3011/5004] Time 0.247 ( 0.242) Data 0.025 ( 0.027) Loss 5.3703e+00 (6.2665e+00) Acc@1 5.08 ( 1.87) Acc@5 16.41 ( 6.28) +Epoch: [0][3012/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 5.2707e+00 (6.2661e+00) Acc@1 6.64 ( 1.87) Acc@5 20.70 ( 6.28) +Epoch: [0][3013/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 5.3883e+00 (6.2658e+00) Acc@1 7.03 ( 1.87) Acc@5 17.19 ( 6.29) +Epoch: [0][3014/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.4378e+00 (6.2656e+00) Acc@1 6.64 ( 1.87) Acc@5 16.80 ( 6.29) +Epoch: [0][3015/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.4900e+00 (6.2653e+00) Acc@1 3.52 ( 1.87) Acc@5 17.58 ( 6.30) +Epoch: [0][3016/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 5.2901e+00 (6.2650e+00) Acc@1 8.59 ( 1.88) Acc@5 21.48 ( 6.30) +Epoch: [0][3017/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.3477e+00 (6.2647e+00) Acc@1 5.47 ( 1.88) Acc@5 18.36 ( 6.30) +Epoch: [0][3018/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.3785e+00 (6.2644e+00) Acc@1 4.30 ( 1.88) Acc@5 20.31 ( 6.31) +Epoch: [0][3019/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.3469e+00 (6.2641e+00) Acc@1 4.69 ( 1.88) Acc@5 17.19 ( 6.31) +Epoch: [0][3020/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 5.5609e+00 (6.2639e+00) Acc@1 2.73 ( 1.88) Acc@5 14.06 ( 6.32) +Epoch: [0][3021/5004] Time 0.248 ( 0.242) Data 0.026 ( 0.027) Loss 5.3755e+00 (6.2636e+00) Acc@1 5.08 ( 1.88) Acc@5 16.80 ( 6.32) +Epoch: [0][3022/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 5.4281e+00 (6.2633e+00) Acc@1 6.25 ( 1.88) Acc@5 16.41 ( 6.32) +Epoch: [0][3023/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.3540e+00 (6.2630e+00) Acc@1 7.42 ( 1.88) Acc@5 16.80 ( 6.33) +Epoch: [0][3024/5004] Time 0.235 ( 0.242) Data 0.022 ( 0.027) Loss 5.4375e+00 (6.2627e+00) Acc@1 5.86 ( 1.88) Acc@5 14.45 ( 6.33) +Epoch: [0][3025/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 5.4063e+00 (6.2624e+00) Acc@1 4.30 ( 1.89) Acc@5 16.80 ( 6.33) +Epoch: [0][3026/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.3263e+00 (6.2621e+00) Acc@1 5.86 ( 1.89) Acc@5 21.88 ( 6.34) +Epoch: [0][3027/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.2232e+00 (6.2618e+00) Acc@1 7.03 ( 1.89) Acc@5 17.97 ( 6.34) +Epoch: [0][3028/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.3213e+00 (6.2615e+00) Acc@1 5.47 ( 1.89) Acc@5 17.97 ( 6.34) +Epoch: [0][3029/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.2392e+00 (6.2611e+00) Acc@1 6.25 ( 1.89) Acc@5 16.02 ( 6.35) +Epoch: [0][3030/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 5.4342e+00 (6.2609e+00) Acc@1 7.42 ( 1.89) Acc@5 19.53 ( 6.35) +Epoch: [0][3031/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.4526e+00 (6.2606e+00) Acc@1 5.47 ( 1.89) Acc@5 13.28 ( 6.35) +Epoch: [0][3032/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 5.3844e+00 (6.2603e+00) Acc@1 9.38 ( 1.90) Acc@5 23.44 ( 6.36) +Epoch: [0][3033/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.2067e+00 (6.2600e+00) Acc@1 5.86 ( 1.90) Acc@5 19.14 ( 6.36) +Epoch: [0][3034/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.3480e+00 (6.2597e+00) Acc@1 4.69 ( 1.90) Acc@5 19.14 ( 6.37) +Epoch: [0][3035/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.2924e+00 (6.2593e+00) Acc@1 6.64 ( 1.90) Acc@5 19.92 ( 6.37) +Epoch: [0][3036/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.2671e+00 (6.2590e+00) Acc@1 7.42 ( 1.90) Acc@5 18.75 ( 6.38) +Epoch: [0][3037/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 5.3618e+00 (6.2587e+00) Acc@1 5.47 ( 1.90) Acc@5 16.41 ( 6.38) +Epoch: [0][3038/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.4111e+00 (6.2584e+00) Acc@1 5.08 ( 1.90) Acc@5 17.19 ( 6.38) +Epoch: [0][3039/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 5.2376e+00 (6.2581e+00) Acc@1 6.64 ( 1.91) Acc@5 21.09 ( 6.39) +Epoch: [0][3040/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 5.2681e+00 (6.2578e+00) Acc@1 6.25 ( 1.91) Acc@5 22.27 ( 6.39) +Epoch: [0][3041/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.4208e+00 (6.2575e+00) Acc@1 5.47 ( 1.91) Acc@5 18.75 ( 6.40) +Epoch: [0][3042/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.3527e+00 (6.2572e+00) Acc@1 7.03 ( 1.91) Acc@5 19.14 ( 6.40) +Epoch: [0][3043/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.4202e+00 (6.2569e+00) Acc@1 3.12 ( 1.91) Acc@5 15.23 ( 6.40) +Epoch: [0][3044/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.2807e+00 (6.2566e+00) Acc@1 8.20 ( 1.91) Acc@5 19.92 ( 6.41) +Epoch: [0][3045/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 5.5875e+00 (6.2564e+00) Acc@1 2.73 ( 1.91) Acc@5 7.81 ( 6.41) +Epoch: [0][3046/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.3934e+00 (6.2561e+00) Acc@1 8.20 ( 1.92) Acc@5 18.36 ( 6.41) +Epoch: [0][3047/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.2516e+00 (6.2558e+00) Acc@1 8.98 ( 1.92) Acc@5 18.75 ( 6.42) +Epoch: [0][3048/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.3143e+00 (6.2555e+00) Acc@1 8.59 ( 1.92) Acc@5 21.48 ( 6.42) +Epoch: [0][3049/5004] Time 0.197 ( 0.242) Data 0.026 ( 0.027) Loss 5.4688e+00 (6.2552e+00) Acc@1 5.47 ( 1.92) Acc@5 17.19 ( 6.43) +Epoch: [0][3050/5004] Time 0.236 ( 0.242) Data 0.066 ( 0.027) Loss 5.4616e+00 (6.2549e+00) Acc@1 4.30 ( 1.92) Acc@5 12.89 ( 6.43) +Epoch: [0][3051/5004] Time 0.239 ( 0.242) Data 0.066 ( 0.027) Loss 5.3243e+00 (6.2546e+00) Acc@1 4.69 ( 1.92) Acc@5 16.02 ( 6.43) +Epoch: [0][3052/5004] Time 0.236 ( 0.242) Data 0.065 ( 0.027) Loss 5.4356e+00 (6.2544e+00) Acc@1 3.52 ( 1.92) Acc@5 15.23 ( 6.43) +Epoch: [0][3053/5004] Time 0.238 ( 0.242) Data 0.065 ( 0.027) Loss 5.3772e+00 (6.2541e+00) Acc@1 7.42 ( 1.92) Acc@5 20.70 ( 6.44) +Epoch: [0][3054/5004] Time 0.239 ( 0.242) Data 0.064 ( 0.027) Loss 5.2772e+00 (6.2538e+00) Acc@1 4.69 ( 1.93) Acc@5 20.70 ( 6.44) +Epoch: [0][3055/5004] Time 0.238 ( 0.242) Data 0.065 ( 0.027) Loss 5.3617e+00 (6.2535e+00) Acc@1 5.08 ( 1.93) Acc@5 16.80 ( 6.45) +Epoch: [0][3056/5004] Time 0.274 ( 0.242) Data 0.064 ( 0.027) Loss 5.3188e+00 (6.2532e+00) Acc@1 5.47 ( 1.93) Acc@5 15.62 ( 6.45) +Epoch: [0][3057/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.2169e+00 (6.2528e+00) Acc@1 5.86 ( 1.93) Acc@5 19.92 ( 6.45) +Epoch: [0][3058/5004] Time 0.238 ( 0.242) Data 0.030 ( 0.027) Loss 5.5780e+00 (6.2526e+00) Acc@1 3.52 ( 1.93) Acc@5 12.50 ( 6.46) +Epoch: [0][3059/5004] Time 0.240 ( 0.242) Data 0.030 ( 0.027) Loss 5.4543e+00 (6.2524e+00) Acc@1 4.69 ( 1.93) Acc@5 14.84 ( 6.46) +Epoch: [0][3060/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 5.2350e+00 (6.2520e+00) Acc@1 6.25 ( 1.93) Acc@5 16.80 ( 6.46) +Epoch: [0][3061/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.4442e+00 (6.2518e+00) Acc@1 7.42 ( 1.93) Acc@5 16.80 ( 6.47) +Epoch: [0][3062/5004] Time 0.242 ( 0.242) Data 0.030 ( 0.027) Loss 5.3877e+00 (6.2515e+00) Acc@1 5.47 ( 1.94) Acc@5 14.45 ( 6.47) +Epoch: [0][3063/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.2340e+00 (6.2511e+00) Acc@1 8.59 ( 1.94) Acc@5 23.44 ( 6.47) +Epoch: [0][3064/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.4465e+00 (6.2509e+00) Acc@1 4.30 ( 1.94) Acc@5 16.02 ( 6.48) +Epoch: [0][3065/5004] Time 0.241 ( 0.242) Data 0.030 ( 0.027) Loss 5.1853e+00 (6.2505e+00) Acc@1 5.47 ( 1.94) Acc@5 21.48 ( 6.48) +Epoch: [0][3066/5004] Time 0.242 ( 0.242) Data 0.030 ( 0.027) Loss 5.4095e+00 (6.2503e+00) Acc@1 5.86 ( 1.94) Acc@5 12.50 ( 6.48) +Epoch: [0][3067/5004] Time 0.234 ( 0.242) Data 0.027 ( 0.027) Loss 5.3860e+00 (6.2500e+00) Acc@1 7.03 ( 1.94) Acc@5 16.02 ( 6.49) +Epoch: [0][3068/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.2640e+00 (6.2497e+00) Acc@1 5.47 ( 1.94) Acc@5 20.31 ( 6.49) +Epoch: [0][3069/5004] Time 0.240 ( 0.242) Data 0.030 ( 0.027) Loss 5.3330e+00 (6.2494e+00) Acc@1 6.64 ( 1.94) Acc@5 16.41 ( 6.49) +Epoch: [0][3070/5004] Time 0.243 ( 0.242) Data 0.032 ( 0.027) Loss 5.3579e+00 (6.2491e+00) Acc@1 6.64 ( 1.95) Acc@5 17.58 ( 6.50) +Epoch: [0][3071/5004] Time 0.235 ( 0.242) Data 0.028 ( 0.027) Loss 5.3815e+00 (6.2488e+00) Acc@1 5.08 ( 1.95) Acc@5 17.19 ( 6.50) +Epoch: [0][3072/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.4502e+00 (6.2485e+00) Acc@1 6.25 ( 1.95) Acc@5 17.19 ( 6.51) +Epoch: [0][3073/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 5.3002e+00 (6.2482e+00) Acc@1 5.47 ( 1.95) Acc@5 15.23 ( 6.51) +Epoch: [0][3074/5004] Time 0.241 ( 0.242) Data 0.032 ( 0.027) Loss 5.4184e+00 (6.2479e+00) Acc@1 4.30 ( 1.95) Acc@5 16.41 ( 6.51) +Epoch: [0][3075/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.3110e+00 (6.2476e+00) Acc@1 4.69 ( 1.95) Acc@5 17.58 ( 6.52) +Epoch: [0][3076/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.3716e+00 (6.2474e+00) Acc@1 5.86 ( 1.95) Acc@5 17.58 ( 6.52) +Epoch: [0][3077/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.4439e+00 (6.2471e+00) Acc@1 8.59 ( 1.96) Acc@5 21.09 ( 6.52) +Epoch: [0][3078/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 5.3353e+00 (6.2468e+00) Acc@1 5.86 ( 1.96) Acc@5 18.75 ( 6.53) +Epoch: [0][3079/5004] Time 0.238 ( 0.242) Data 0.031 ( 0.027) Loss 5.2374e+00 (6.2465e+00) Acc@1 7.81 ( 1.96) Acc@5 21.88 ( 6.53) +Epoch: [0][3080/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 5.3908e+00 (6.2462e+00) Acc@1 5.08 ( 1.96) Acc@5 17.19 ( 6.54) +Epoch: [0][3081/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.3059e+00 (6.2459e+00) Acc@1 4.30 ( 1.96) Acc@5 16.41 ( 6.54) +Epoch: [0][3082/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.2275e+00 (6.2456e+00) Acc@1 3.91 ( 1.96) Acc@5 19.92 ( 6.54) +Epoch: [0][3083/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.027) Loss 5.2064e+00 (6.2452e+00) Acc@1 7.42 ( 1.96) Acc@5 18.75 ( 6.55) +Epoch: [0][3084/5004] Time 0.234 ( 0.242) Data 0.024 ( 0.027) Loss 5.3105e+00 (6.2449e+00) Acc@1 8.20 ( 1.96) Acc@5 20.70 ( 6.55) +Epoch: [0][3085/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.3734e+00 (6.2446e+00) Acc@1 4.69 ( 1.97) Acc@5 14.45 ( 6.55) +Epoch: [0][3086/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.3029e+00 (6.2443e+00) Acc@1 7.81 ( 1.97) Acc@5 18.36 ( 6.56) +Epoch: [0][3087/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.1956e+00 (6.2440e+00) Acc@1 5.86 ( 1.97) Acc@5 17.97 ( 6.56) +Epoch: [0][3088/5004] Time 0.245 ( 0.242) Data 0.030 ( 0.027) Loss 5.4250e+00 (6.2437e+00) Acc@1 3.52 ( 1.97) Acc@5 18.36 ( 6.57) +Epoch: [0][3089/5004] Time 0.236 ( 0.242) Data 0.023 ( 0.027) Loss 5.4084e+00 (6.2435e+00) Acc@1 6.64 ( 1.97) Acc@5 16.80 ( 6.57) +Epoch: [0][3090/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.3162e+00 (6.2432e+00) Acc@1 5.47 ( 1.97) Acc@5 16.41 ( 6.57) +Epoch: [0][3091/5004] Time 0.248 ( 0.242) Data 0.025 ( 0.027) Loss 5.1575e+00 (6.2428e+00) Acc@1 6.25 ( 1.97) Acc@5 19.92 ( 6.58) +Epoch: [0][3092/5004] Time 0.231 ( 0.242) Data 0.018 ( 0.027) Loss 5.4050e+00 (6.2425e+00) Acc@1 7.81 ( 1.97) Acc@5 16.02 ( 6.58) +Epoch: [0][3093/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 5.2803e+00 (6.2422e+00) Acc@1 5.47 ( 1.98) Acc@5 17.97 ( 6.58) +Epoch: [0][3094/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 5.4374e+00 (6.2420e+00) Acc@1 5.08 ( 1.98) Acc@5 15.23 ( 6.59) +Epoch: [0][3095/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 5.3819e+00 (6.2417e+00) Acc@1 5.47 ( 1.98) Acc@5 14.84 ( 6.59) +Epoch: [0][3096/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 5.1674e+00 (6.2413e+00) Acc@1 6.64 ( 1.98) Acc@5 19.53 ( 6.59) +Epoch: [0][3097/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 5.3698e+00 (6.2411e+00) Acc@1 3.12 ( 1.98) Acc@5 10.94 ( 6.59) +Epoch: [0][3098/5004] Time 0.233 ( 0.242) Data 0.020 ( 0.027) Loss 5.3868e+00 (6.2408e+00) Acc@1 4.30 ( 1.98) Acc@5 16.41 ( 6.60) +Epoch: [0][3099/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.2644e+00 (6.2405e+00) Acc@1 5.86 ( 1.98) Acc@5 19.92 ( 6.60) +Epoch: [0][3100/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 5.3592e+00 (6.2402e+00) Acc@1 5.47 ( 1.98) Acc@5 21.09 ( 6.61) +Epoch: [0][3101/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.4195e+00 (6.2399e+00) Acc@1 5.86 ( 1.98) Acc@5 17.19 ( 6.61) +Epoch: [0][3102/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.2441e+00 (6.2396e+00) Acc@1 5.47 ( 1.99) Acc@5 16.41 ( 6.61) +Epoch: [0][3103/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.2496e+00 (6.2393e+00) Acc@1 4.69 ( 1.99) Acc@5 16.02 ( 6.62) +Epoch: [0][3104/5004] Time 0.238 ( 0.242) Data 0.023 ( 0.027) Loss 5.3562e+00 (6.2390e+00) Acc@1 5.86 ( 1.99) Acc@5 18.36 ( 6.62) +Epoch: [0][3105/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.1501e+00 (6.2386e+00) Acc@1 6.25 ( 1.99) Acc@5 21.48 ( 6.62) +Epoch: [0][3106/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.2969e+00 (6.2383e+00) Acc@1 6.25 ( 1.99) Acc@5 16.02 ( 6.63) +Epoch: [0][3107/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.2271e+00 (6.2380e+00) Acc@1 8.98 ( 1.99) Acc@5 21.09 ( 6.63) +Epoch: [0][3108/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.2978e+00 (6.2377e+00) Acc@1 7.81 ( 1.99) Acc@5 19.14 ( 6.64) +Epoch: [0][3109/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.3450e+00 (6.2374e+00) Acc@1 4.30 ( 2.00) Acc@5 17.58 ( 6.64) +Epoch: [0][3110/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 5.7157e+00 (6.2373e+00) Acc@1 3.52 ( 2.00) Acc@5 11.72 ( 6.64) +Epoch: [0][3111/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.2185e+00 (6.2369e+00) Acc@1 7.81 ( 2.00) Acc@5 17.58 ( 6.65) +Epoch: [0][3112/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 5.3085e+00 (6.2366e+00) Acc@1 7.81 ( 2.00) Acc@5 17.97 ( 6.65) +Epoch: [0][3113/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 5.2713e+00 (6.2363e+00) Acc@1 5.08 ( 2.00) Acc@5 16.41 ( 6.65) +Epoch: [0][3114/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.4389e+00 (6.2361e+00) Acc@1 6.64 ( 2.00) Acc@5 17.19 ( 6.66) +Epoch: [0][3115/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.3996e+00 (6.2358e+00) Acc@1 4.69 ( 2.00) Acc@5 14.45 ( 6.66) +Epoch: [0][3116/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 5.3144e+00 (6.2355e+00) Acc@1 6.25 ( 2.00) Acc@5 17.58 ( 6.66) +Epoch: [0][3117/5004] Time 0.255 ( 0.242) Data 0.021 ( 0.027) Loss 5.2632e+00 (6.2352e+00) Acc@1 7.03 ( 2.01) Acc@5 19.53 ( 6.67) +Epoch: [0][3118/5004] Time 0.250 ( 0.242) Data 0.015 ( 0.027) Loss 5.3343e+00 (6.2349e+00) Acc@1 4.69 ( 2.01) Acc@5 16.80 ( 6.67) +Epoch: [0][3119/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 5.3250e+00 (6.2346e+00) Acc@1 5.47 ( 2.01) Acc@5 16.02 ( 6.67) +Epoch: [0][3120/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.3577e+00 (6.2343e+00) Acc@1 7.42 ( 2.01) Acc@5 16.80 ( 6.67) +Epoch: [0][3121/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.3739e+00 (6.2341e+00) Acc@1 6.64 ( 2.01) Acc@5 18.75 ( 6.68) +Epoch: [0][3122/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.2091e+00 (6.2337e+00) Acc@1 6.64 ( 2.01) Acc@5 21.09 ( 6.68) +Epoch: [0][3123/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.2693e+00 (6.2334e+00) Acc@1 3.91 ( 2.01) Acc@5 15.62 ( 6.69) +Epoch: [0][3124/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.3516e+00 (6.2331e+00) Acc@1 5.47 ( 2.01) Acc@5 16.80 ( 6.69) +Epoch: [0][3125/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 5.3207e+00 (6.2328e+00) Acc@1 6.64 ( 2.02) Acc@5 18.75 ( 6.69) +Epoch: [0][3126/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.4037e+00 (6.2326e+00) Acc@1 6.64 ( 2.02) Acc@5 16.41 ( 6.70) +Epoch: [0][3127/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 5.2016e+00 (6.2322e+00) Acc@1 7.81 ( 2.02) Acc@5 22.27 ( 6.70) +Epoch: [0][3128/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.2613e+00 (6.2319e+00) Acc@1 5.47 ( 2.02) Acc@5 19.14 ( 6.71) +Epoch: [0][3129/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.4281e+00 (6.2317e+00) Acc@1 7.03 ( 2.02) Acc@5 19.53 ( 6.71) +Epoch: [0][3130/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.2416e+00 (6.2314e+00) Acc@1 7.81 ( 2.02) Acc@5 19.92 ( 6.71) +Epoch: [0][3131/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.027) Loss 5.2449e+00 (6.2310e+00) Acc@1 9.77 ( 2.03) Acc@5 23.83 ( 6.72) +Epoch: [0][3132/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.2453e+00 (6.2307e+00) Acc@1 6.25 ( 2.03) Acc@5 17.97 ( 6.72) +Epoch: [0][3133/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 5.3289e+00 (6.2304e+00) Acc@1 6.25 ( 2.03) Acc@5 15.62 ( 6.73) +Epoch: [0][3134/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 5.1866e+00 (6.2301e+00) Acc@1 6.25 ( 2.03) Acc@5 20.31 ( 6.73) +Epoch: [0][3135/5004] Time 0.244 ( 0.242) Data 0.019 ( 0.027) Loss 5.2891e+00 (6.2298e+00) Acc@1 5.08 ( 2.03) Acc@5 20.31 ( 6.73) +Epoch: [0][3136/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 5.3540e+00 (6.2295e+00) Acc@1 6.64 ( 2.03) Acc@5 15.62 ( 6.74) +Epoch: [0][3137/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.027) Loss 5.4794e+00 (6.2293e+00) Acc@1 5.47 ( 2.03) Acc@5 16.80 ( 6.74) +Epoch: [0][3138/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 5.1856e+00 (6.2290e+00) Acc@1 8.98 ( 2.04) Acc@5 23.44 ( 6.75) +Epoch: [0][3139/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.3564e+00 (6.2287e+00) Acc@1 6.25 ( 2.04) Acc@5 16.80 ( 6.75) +Epoch: [0][3140/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.5364e+00 (6.2285e+00) Acc@1 4.30 ( 2.04) Acc@5 15.62 ( 6.75) +Epoch: [0][3141/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.027) Loss 5.2314e+00 (6.2281e+00) Acc@1 5.86 ( 2.04) Acc@5 17.19 ( 6.75) +Epoch: [0][3142/5004] Time 0.248 ( 0.242) Data 0.017 ( 0.027) Loss 5.3093e+00 (6.2279e+00) Acc@1 7.42 ( 2.04) Acc@5 17.97 ( 6.76) +Epoch: [0][3143/5004] Time 0.248 ( 0.242) Data 0.016 ( 0.027) Loss 5.2633e+00 (6.2275e+00) Acc@1 5.86 ( 2.04) Acc@5 17.19 ( 6.76) +Epoch: [0][3144/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 5.2325e+00 (6.2272e+00) Acc@1 11.33 ( 2.04) Acc@5 21.88 ( 6.77) +Epoch: [0][3145/5004] Time 0.242 ( 0.242) Data 0.018 ( 0.027) Loss 5.1324e+00 (6.2269e+00) Acc@1 7.03 ( 2.05) Acc@5 20.70 ( 6.77) +Epoch: [0][3146/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 5.1913e+00 (6.2266e+00) Acc@1 6.25 ( 2.05) Acc@5 19.14 ( 6.77) +Epoch: [0][3147/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 5.4492e+00 (6.2263e+00) Acc@1 4.30 ( 2.05) Acc@5 12.50 ( 6.78) +Epoch: [0][3148/5004] Time 0.240 ( 0.242) Data 0.019 ( 0.027) Loss 5.3431e+00 (6.2260e+00) Acc@1 8.20 ( 2.05) Acc@5 19.53 ( 6.78) +Epoch: [0][3149/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 5.3389e+00 (6.2257e+00) Acc@1 8.20 ( 2.05) Acc@5 17.58 ( 6.78) +Epoch: [0][3150/5004] Time 0.255 ( 0.242) Data 0.021 ( 0.027) Loss 5.4463e+00 (6.2255e+00) Acc@1 2.73 ( 2.05) Acc@5 14.84 ( 6.79) +Epoch: [0][3151/5004] Time 0.247 ( 0.242) Data 0.012 ( 0.027) Loss 5.4397e+00 (6.2252e+00) Acc@1 6.64 ( 2.05) Acc@5 17.97 ( 6.79) +Epoch: [0][3152/5004] Time 0.251 ( 0.242) Data 0.011 ( 0.027) Loss 5.4118e+00 (6.2250e+00) Acc@1 6.64 ( 2.06) Acc@5 17.58 ( 6.79) +Epoch: [0][3153/5004] Time 0.247 ( 0.242) Data 0.018 ( 0.027) Loss 5.3233e+00 (6.2247e+00) Acc@1 7.81 ( 2.06) Acc@5 17.58 ( 6.80) +Epoch: [0][3154/5004] Time 0.245 ( 0.242) Data 0.017 ( 0.027) Loss 5.2830e+00 (6.2244e+00) Acc@1 6.64 ( 2.06) Acc@5 18.75 ( 6.80) +Epoch: [0][3155/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.2119e+00 (6.2241e+00) Acc@1 8.59 ( 2.06) Acc@5 19.92 ( 6.81) +Epoch: [0][3156/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 5.2833e+00 (6.2238e+00) Acc@1 6.25 ( 2.06) Acc@5 20.70 ( 6.81) +Epoch: [0][3157/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 5.1654e+00 (6.2235e+00) Acc@1 5.08 ( 2.06) Acc@5 18.75 ( 6.81) +Epoch: [0][3158/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 5.1072e+00 (6.2231e+00) Acc@1 6.64 ( 2.06) Acc@5 20.31 ( 6.82) +Epoch: [0][3159/5004] Time 0.246 ( 0.242) Data 0.017 ( 0.027) Loss 5.3968e+00 (6.2228e+00) Acc@1 6.25 ( 2.07) Acc@5 17.58 ( 6.82) +Epoch: [0][3160/5004] Time 0.246 ( 0.242) Data 0.017 ( 0.027) Loss 5.2560e+00 (6.2225e+00) Acc@1 4.30 ( 2.07) Acc@5 18.36 ( 6.82) +Epoch: [0][3161/5004] Time 0.250 ( 0.242) Data 0.016 ( 0.027) Loss 5.1880e+00 (6.2222e+00) Acc@1 5.47 ( 2.07) Acc@5 20.31 ( 6.83) +Epoch: [0][3162/5004] Time 0.246 ( 0.242) Data 0.018 ( 0.027) Loss 5.2710e+00 (6.2219e+00) Acc@1 6.25 ( 2.07) Acc@5 19.92 ( 6.83) +Epoch: [0][3163/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 5.2774e+00 (6.2216e+00) Acc@1 6.64 ( 2.07) Acc@5 16.41 ( 6.84) +Epoch: [0][3164/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.027) Loss 5.1745e+00 (6.2213e+00) Acc@1 6.64 ( 2.07) Acc@5 18.75 ( 6.84) +Epoch: [0][3165/5004] Time 0.241 ( 0.242) Data 0.014 ( 0.027) Loss 5.4196e+00 (6.2210e+00) Acc@1 3.91 ( 2.07) Acc@5 16.80 ( 6.84) +Epoch: [0][3166/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 5.1803e+00 (6.2207e+00) Acc@1 8.98 ( 2.07) Acc@5 19.53 ( 6.85) +Epoch: [0][3167/5004] Time 0.201 ( 0.242) Data 0.020 ( 0.027) Loss 5.4254e+00 (6.2204e+00) Acc@1 3.91 ( 2.08) Acc@5 17.97 ( 6.85) +Epoch: [0][3168/5004] Time 0.236 ( 0.242) Data 0.058 ( 0.027) Loss 5.2471e+00 (6.2201e+00) Acc@1 7.81 ( 2.08) Acc@5 18.75 ( 6.85) +Epoch: [0][3169/5004] Time 0.236 ( 0.242) Data 0.059 ( 0.027) Loss 5.2218e+00 (6.2198e+00) Acc@1 8.59 ( 2.08) Acc@5 17.97 ( 6.86) +Epoch: [0][3170/5004] Time 0.237 ( 0.242) Data 0.059 ( 0.027) Loss 5.1938e+00 (6.2195e+00) Acc@1 5.08 ( 2.08) Acc@5 18.75 ( 6.86) +Epoch: [0][3171/5004] Time 0.236 ( 0.242) Data 0.059 ( 0.027) Loss 5.2783e+00 (6.2192e+00) Acc@1 7.42 ( 2.08) Acc@5 17.97 ( 6.87) +Epoch: [0][3172/5004] Time 0.241 ( 0.242) Data 0.059 ( 0.027) Loss 5.2202e+00 (6.2189e+00) Acc@1 7.03 ( 2.08) Acc@5 19.53 ( 6.87) +Epoch: [0][3173/5004] Time 0.231 ( 0.242) Data 0.054 ( 0.027) Loss 5.4397e+00 (6.2186e+00) Acc@1 4.69 ( 2.08) Acc@5 14.84 ( 6.87) +Epoch: [0][3174/5004] Time 0.236 ( 0.242) Data 0.059 ( 0.027) Loss 5.3047e+00 (6.2183e+00) Acc@1 5.86 ( 2.09) Acc@5 20.70 ( 6.88) +Epoch: [0][3175/5004] Time 0.239 ( 0.242) Data 0.059 ( 0.027) Loss 5.2389e+00 (6.2180e+00) Acc@1 6.25 ( 2.09) Acc@5 15.62 ( 6.88) +Epoch: [0][3176/5004] Time 0.234 ( 0.242) Data 0.057 ( 0.027) Loss 5.3022e+00 (6.2178e+00) Acc@1 4.30 ( 2.09) Acc@5 16.41 ( 6.88) +Epoch: [0][3177/5004] Time 0.237 ( 0.242) Data 0.059 ( 0.027) Loss 5.4241e+00 (6.2175e+00) Acc@1 6.64 ( 2.09) Acc@5 16.80 ( 6.88) +Epoch: [0][3178/5004] Time 0.237 ( 0.242) Data 0.058 ( 0.027) Loss 5.3449e+00 (6.2172e+00) Acc@1 7.81 ( 2.09) Acc@5 18.36 ( 6.89) +Epoch: [0][3179/5004] Time 0.262 ( 0.242) Data 0.058 ( 0.027) Loss 5.1631e+00 (6.2169e+00) Acc@1 7.42 ( 2.09) Acc@5 21.88 ( 6.89) +Epoch: [0][3180/5004] Time 0.254 ( 0.242) Data 0.033 ( 0.027) Loss 5.1113e+00 (6.2165e+00) Acc@1 6.64 ( 2.09) Acc@5 22.66 ( 6.90) +Epoch: [0][3181/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 5.1579e+00 (6.2162e+00) Acc@1 6.25 ( 2.10) Acc@5 19.14 ( 6.90) +Epoch: [0][3182/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 5.3244e+00 (6.2159e+00) Acc@1 5.08 ( 2.10) Acc@5 19.14 ( 6.91) +Epoch: [0][3183/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.2779e+00 (6.2156e+00) Acc@1 8.20 ( 2.10) Acc@5 19.14 ( 6.91) +Epoch: [0][3184/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.027) Loss 5.0636e+00 (6.2153e+00) Acc@1 7.03 ( 2.10) Acc@5 20.70 ( 6.91) +Epoch: [0][3185/5004] Time 0.243 ( 0.242) Data 0.016 ( 0.027) Loss 5.1918e+00 (6.2150e+00) Acc@1 5.86 ( 2.10) Acc@5 19.14 ( 6.92) +Epoch: [0][3186/5004] Time 0.235 ( 0.242) Data 0.019 ( 0.027) Loss 5.1429e+00 (6.2146e+00) Acc@1 8.20 ( 2.10) Acc@5 21.48 ( 6.92) +Epoch: [0][3187/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 5.1764e+00 (6.2143e+00) Acc@1 6.64 ( 2.10) Acc@5 21.88 ( 6.93) +Epoch: [0][3188/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.2186e+00 (6.2140e+00) Acc@1 3.52 ( 2.10) Acc@5 20.31 ( 6.93) +Epoch: [0][3189/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.0388e+00 (6.2136e+00) Acc@1 6.25 ( 2.11) Acc@5 20.31 ( 6.94) +Epoch: [0][3190/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 5.3882e+00 (6.2134e+00) Acc@1 4.30 ( 2.11) Acc@5 18.36 ( 6.94) +Epoch: [0][3191/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.3151e+00 (6.2131e+00) Acc@1 6.64 ( 2.11) Acc@5 19.53 ( 6.94) +Epoch: [0][3192/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.3881e+00 (6.2128e+00) Acc@1 6.64 ( 2.11) Acc@5 18.75 ( 6.95) +Epoch: [0][3193/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 5.2746e+00 (6.2125e+00) Acc@1 8.20 ( 2.11) Acc@5 18.75 ( 6.95) +Epoch: [0][3194/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 5.2081e+00 (6.2122e+00) Acc@1 6.25 ( 2.11) Acc@5 14.84 ( 6.95) +Epoch: [0][3195/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.2942e+00 (6.2119e+00) Acc@1 5.47 ( 2.11) Acc@5 17.58 ( 6.96) +Epoch: [0][3196/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.1979e+00 (6.2116e+00) Acc@1 8.20 ( 2.12) Acc@5 19.53 ( 6.96) +Epoch: [0][3197/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 5.2670e+00 (6.2113e+00) Acc@1 5.86 ( 2.12) Acc@5 19.53 ( 6.96) +Epoch: [0][3198/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.3643e+00 (6.2110e+00) Acc@1 4.69 ( 2.12) Acc@5 15.23 ( 6.97) +Epoch: [0][3199/5004] Time 0.235 ( 0.242) Data 0.022 ( 0.027) Loss 5.3583e+00 (6.2108e+00) Acc@1 5.86 ( 2.12) Acc@5 19.14 ( 6.97) +Epoch: [0][3200/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 5.3860e+00 (6.2105e+00) Acc@1 7.42 ( 2.12) Acc@5 18.75 ( 6.97) +Epoch: [0][3201/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 5.1949e+00 (6.2102e+00) Acc@1 8.59 ( 2.12) Acc@5 21.09 ( 6.98) +Epoch: [0][3202/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.3686e+00 (6.2099e+00) Acc@1 3.91 ( 2.12) Acc@5 17.97 ( 6.98) +Epoch: [0][3203/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.4515e+00 (6.2097e+00) Acc@1 6.64 ( 2.12) Acc@5 15.62 ( 6.98) +Epoch: [0][3204/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 5.1244e+00 (6.2094e+00) Acc@1 10.16 ( 2.13) Acc@5 24.61 ( 6.99) +Epoch: [0][3205/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 5.4234e+00 (6.2091e+00) Acc@1 5.86 ( 2.13) Acc@5 16.80 ( 6.99) +Epoch: [0][3206/5004] Time 0.234 ( 0.242) Data 0.023 ( 0.027) Loss 5.2519e+00 (6.2088e+00) Acc@1 6.64 ( 2.13) Acc@5 20.31 ( 7.00) +Epoch: [0][3207/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.2743e+00 (6.2085e+00) Acc@1 5.47 ( 2.13) Acc@5 19.53 ( 7.00) +Epoch: [0][3208/5004] Time 0.232 ( 0.242) Data 0.024 ( 0.027) Loss 5.0673e+00 (6.2082e+00) Acc@1 6.25 ( 2.13) Acc@5 22.66 ( 7.01) +Epoch: [0][3209/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.027) Loss 5.2246e+00 (6.2079e+00) Acc@1 8.20 ( 2.13) Acc@5 21.88 ( 7.01) +Epoch: [0][3210/5004] Time 0.228 ( 0.242) Data 0.021 ( 0.027) Loss 5.2527e+00 (6.2076e+00) Acc@1 6.64 ( 2.13) Acc@5 21.09 ( 7.02) +Epoch: [0][3211/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.3532e+00 (6.2073e+00) Acc@1 7.81 ( 2.14) Acc@5 18.36 ( 7.02) +Epoch: [0][3212/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.2981e+00 (6.2070e+00) Acc@1 4.69 ( 2.14) Acc@5 19.92 ( 7.02) +Epoch: [0][3213/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.3718e+00 (6.2068e+00) Acc@1 6.25 ( 2.14) Acc@5 19.14 ( 7.03) +Epoch: [0][3214/5004] Time 0.232 ( 0.242) Data 0.025 ( 0.027) Loss 5.3687e+00 (6.2065e+00) Acc@1 4.30 ( 2.14) Acc@5 17.19 ( 7.03) +Epoch: [0][3215/5004] Time 0.244 ( 0.242) Data 0.030 ( 0.027) Loss 5.2702e+00 (6.2062e+00) Acc@1 7.81 ( 2.14) Acc@5 17.19 ( 7.03) +Epoch: [0][3216/5004] Time 0.232 ( 0.242) Data 0.024 ( 0.027) Loss 5.3553e+00 (6.2059e+00) Acc@1 4.30 ( 2.14) Acc@5 15.62 ( 7.04) +Epoch: [0][3217/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.4427e+00 (6.2057e+00) Acc@1 6.25 ( 2.14) Acc@5 16.80 ( 7.04) +Epoch: [0][3218/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.1159e+00 (6.2054e+00) Acc@1 9.38 ( 2.15) Acc@5 21.09 ( 7.04) +Epoch: [0][3219/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.4590e+00 (6.2051e+00) Acc@1 5.86 ( 2.15) Acc@5 13.67 ( 7.04) +Epoch: [0][3220/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.2143e+00 (6.2048e+00) Acc@1 8.98 ( 2.15) Acc@5 20.31 ( 7.05) +Epoch: [0][3221/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.027) Loss 5.2417e+00 (6.2045e+00) Acc@1 5.86 ( 2.15) Acc@5 22.66 ( 7.05) +Epoch: [0][3222/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.3780e+00 (6.2043e+00) Acc@1 7.03 ( 2.15) Acc@5 17.97 ( 7.06) +Epoch: [0][3223/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.2368e+00 (6.2040e+00) Acc@1 6.25 ( 2.15) Acc@5 17.97 ( 7.06) +Epoch: [0][3224/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.3280e+00 (6.2037e+00) Acc@1 7.03 ( 2.15) Acc@5 16.41 ( 7.06) +Epoch: [0][3225/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.2181e+00 (6.2034e+00) Acc@1 7.42 ( 2.16) Acc@5 19.92 ( 7.07) +Epoch: [0][3226/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 5.1903e+00 (6.2031e+00) Acc@1 7.42 ( 2.16) Acc@5 17.19 ( 7.07) +Epoch: [0][3227/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.3402e+00 (6.2028e+00) Acc@1 5.47 ( 2.16) Acc@5 17.97 ( 7.07) +Epoch: [0][3228/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.3408e+00 (6.2025e+00) Acc@1 6.64 ( 2.16) Acc@5 15.62 ( 7.08) +Epoch: [0][3229/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.2688e+00 (6.2023e+00) Acc@1 5.86 ( 2.16) Acc@5 17.97 ( 7.08) +Epoch: [0][3230/5004] Time 0.232 ( 0.242) Data 0.023 ( 0.027) Loss 5.5336e+00 (6.2021e+00) Acc@1 6.25 ( 2.16) Acc@5 15.62 ( 7.08) +Epoch: [0][3231/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.3098e+00 (6.2018e+00) Acc@1 5.47 ( 2.16) Acc@5 17.58 ( 7.09) +Epoch: [0][3232/5004] Time 0.238 ( 0.242) Data 0.030 ( 0.027) Loss 5.3599e+00 (6.2015e+00) Acc@1 4.69 ( 2.16) Acc@5 15.62 ( 7.09) +Epoch: [0][3233/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.3050e+00 (6.2012e+00) Acc@1 7.03 ( 2.17) Acc@5 17.58 ( 7.09) +Epoch: [0][3234/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.027) Loss 5.1977e+00 (6.2009e+00) Acc@1 7.03 ( 2.17) Acc@5 21.48 ( 7.10) +Epoch: [0][3235/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.2304e+00 (6.2006e+00) Acc@1 7.03 ( 2.17) Acc@5 17.58 ( 7.10) +Epoch: [0][3236/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.3147e+00 (6.2004e+00) Acc@1 5.47 ( 2.17) Acc@5 16.80 ( 7.10) +Epoch: [0][3237/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.2724e+00 (6.2001e+00) Acc@1 7.03 ( 2.17) Acc@5 20.70 ( 7.11) +Epoch: [0][3238/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 5.1592e+00 (6.1997e+00) Acc@1 6.25 ( 2.17) Acc@5 21.48 ( 7.11) +Epoch: [0][3239/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.2717e+00 (6.1995e+00) Acc@1 6.64 ( 2.17) Acc@5 21.88 ( 7.12) +Epoch: [0][3240/5004] Time 0.232 ( 0.242) Data 0.022 ( 0.027) Loss 5.2973e+00 (6.1992e+00) Acc@1 5.47 ( 2.17) Acc@5 17.97 ( 7.12) +Epoch: [0][3241/5004] Time 0.236 ( 0.242) Data 0.028 ( 0.027) Loss 5.3092e+00 (6.1989e+00) Acc@1 5.47 ( 2.18) Acc@5 21.09 ( 7.12) +Epoch: [0][3242/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 5.1036e+00 (6.1986e+00) Acc@1 9.77 ( 2.18) Acc@5 24.22 ( 7.13) +Epoch: [0][3243/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.1150e+00 (6.1982e+00) Acc@1 9.77 ( 2.18) Acc@5 24.22 ( 7.13) +Epoch: [0][3244/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.1121e+00 (6.1979e+00) Acc@1 8.20 ( 2.18) Acc@5 21.48 ( 7.14) +Epoch: [0][3245/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.3515e+00 (6.1976e+00) Acc@1 7.03 ( 2.18) Acc@5 16.80 ( 7.14) +Epoch: [0][3246/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.1430e+00 (6.1973e+00) Acc@1 8.98 ( 2.19) Acc@5 21.09 ( 7.15) +Epoch: [0][3247/5004] Time 0.235 ( 0.242) Data 0.028 ( 0.027) Loss 5.1968e+00 (6.1970e+00) Acc@1 9.38 ( 2.19) Acc@5 20.70 ( 7.15) +Epoch: [0][3248/5004] Time 0.241 ( 0.242) Data 0.030 ( 0.027) Loss 5.2892e+00 (6.1967e+00) Acc@1 5.47 ( 2.19) Acc@5 17.19 ( 7.15) +Epoch: [0][3249/5004] Time 0.236 ( 0.242) Data 0.026 ( 0.027) Loss 5.1811e+00 (6.1964e+00) Acc@1 7.81 ( 2.19) Acc@5 24.22 ( 7.16) +Epoch: [0][3250/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.2268e+00 (6.1961e+00) Acc@1 9.38 ( 2.19) Acc@5 19.14 ( 7.16) +Epoch: [0][3251/5004] Time 0.236 ( 0.242) Data 0.029 ( 0.027) Loss 5.2563e+00 (6.1958e+00) Acc@1 6.25 ( 2.19) Acc@5 23.44 ( 7.17) +Epoch: [0][3252/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.2647e+00 (6.1955e+00) Acc@1 5.86 ( 2.20) Acc@5 17.97 ( 7.17) +Epoch: [0][3253/5004] Time 0.240 ( 0.242) Data 0.030 ( 0.027) Loss 5.4898e+00 (6.1953e+00) Acc@1 5.86 ( 2.20) Acc@5 17.58 ( 7.17) +Epoch: [0][3254/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.3881e+00 (6.1951e+00) Acc@1 5.08 ( 2.20) Acc@5 14.45 ( 7.18) +Epoch: [0][3255/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.3122e+00 (6.1948e+00) Acc@1 7.81 ( 2.20) Acc@5 17.58 ( 7.18) +Epoch: [0][3256/5004] Time 0.236 ( 0.242) Data 0.029 ( 0.027) Loss 5.2313e+00 (6.1945e+00) Acc@1 7.42 ( 2.20) Acc@5 20.70 ( 7.18) +Epoch: [0][3257/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.027) Loss 5.0335e+00 (6.1942e+00) Acc@1 6.64 ( 2.20) Acc@5 21.88 ( 7.19) +Epoch: [0][3258/5004] Time 0.232 ( 0.242) Data 0.025 ( 0.027) Loss 5.1506e+00 (6.1938e+00) Acc@1 8.59 ( 2.20) Acc@5 19.14 ( 7.19) +Epoch: [0][3259/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 5.2188e+00 (6.1935e+00) Acc@1 7.42 ( 2.21) Acc@5 20.70 ( 7.20) +Epoch: [0][3260/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.2608e+00 (6.1932e+00) Acc@1 5.86 ( 2.21) Acc@5 17.19 ( 7.20) +Epoch: [0][3261/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.2546e+00 (6.1930e+00) Acc@1 7.03 ( 2.21) Acc@5 17.58 ( 7.20) +Epoch: [0][3262/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.2532e+00 (6.1927e+00) Acc@1 3.91 ( 2.21) Acc@5 14.84 ( 7.20) +Epoch: [0][3263/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.3182e+00 (6.1924e+00) Acc@1 8.20 ( 2.21) Acc@5 21.09 ( 7.21) +Epoch: [0][3264/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.3049e+00 (6.1921e+00) Acc@1 5.08 ( 2.21) Acc@5 16.41 ( 7.21) +Epoch: [0][3265/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.2289e+00 (6.1918e+00) Acc@1 8.98 ( 2.21) Acc@5 22.27 ( 7.22) +Epoch: [0][3266/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.1550e+00 (6.1915e+00) Acc@1 5.47 ( 2.21) Acc@5 23.05 ( 7.22) +Epoch: [0][3267/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.2890e+00 (6.1912e+00) Acc@1 7.42 ( 2.22) Acc@5 20.31 ( 7.22) +Epoch: [0][3268/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.027) Loss 5.3095e+00 (6.1910e+00) Acc@1 5.86 ( 2.22) Acc@5 18.75 ( 7.23) +Epoch: [0][3269/5004] Time 0.234 ( 0.242) Data 0.024 ( 0.027) Loss 5.1766e+00 (6.1907e+00) Acc@1 8.98 ( 2.22) Acc@5 21.09 ( 7.23) +Epoch: [0][3270/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.3264e+00 (6.1904e+00) Acc@1 6.25 ( 2.22) Acc@5 19.53 ( 7.24) +Epoch: [0][3271/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 5.1534e+00 (6.1901e+00) Acc@1 8.59 ( 2.22) Acc@5 21.48 ( 7.24) +Epoch: [0][3272/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.2337e+00 (6.1898e+00) Acc@1 6.64 ( 2.22) Acc@5 23.44 ( 7.25) +Epoch: [0][3273/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.2976e+00 (6.1895e+00) Acc@1 8.98 ( 2.23) Acc@5 19.53 ( 7.25) +Epoch: [0][3274/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.1505e+00 (6.1892e+00) Acc@1 7.03 ( 2.23) Acc@5 20.31 ( 7.25) +Epoch: [0][3275/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.2715e+00 (6.1889e+00) Acc@1 3.52 ( 2.23) Acc@5 18.36 ( 7.26) +Epoch: [0][3276/5004] Time 0.235 ( 0.242) Data 0.028 ( 0.027) Loss 5.3642e+00 (6.1887e+00) Acc@1 8.59 ( 2.23) Acc@5 20.70 ( 7.26) +Epoch: [0][3277/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 5.2867e+00 (6.1884e+00) Acc@1 5.86 ( 2.23) Acc@5 18.75 ( 7.26) +Epoch: [0][3278/5004] Time 0.236 ( 0.242) Data 0.029 ( 0.027) Loss 5.2536e+00 (6.1881e+00) Acc@1 8.20 ( 2.23) Acc@5 19.53 ( 7.27) +Epoch: [0][3279/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 5.2498e+00 (6.1878e+00) Acc@1 6.25 ( 2.23) Acc@5 21.09 ( 7.27) +Epoch: [0][3280/5004] Time 0.241 ( 0.242) Data 0.030 ( 0.027) Loss 5.1784e+00 (6.1875e+00) Acc@1 6.64 ( 2.24) Acc@5 22.27 ( 7.28) +Epoch: [0][3281/5004] Time 0.233 ( 0.242) Data 0.027 ( 0.027) Loss 5.2254e+00 (6.1872e+00) Acc@1 7.03 ( 2.24) Acc@5 19.53 ( 7.28) +Epoch: [0][3282/5004] Time 0.237 ( 0.242) Data 0.031 ( 0.027) Loss 5.1879e+00 (6.1869e+00) Acc@1 6.64 ( 2.24) Acc@5 20.31 ( 7.28) +Epoch: [0][3283/5004] Time 0.238 ( 0.242) Data 0.030 ( 0.027) Loss 5.3855e+00 (6.1867e+00) Acc@1 8.20 ( 2.24) Acc@5 18.36 ( 7.29) +Epoch: [0][3284/5004] Time 0.237 ( 0.242) Data 0.029 ( 0.027) Loss 5.2426e+00 (6.1864e+00) Acc@1 4.30 ( 2.24) Acc@5 20.70 ( 7.29) +Epoch: [0][3285/5004] Time 0.239 ( 0.242) Data 0.031 ( 0.027) Loss 5.2017e+00 (6.1861e+00) Acc@1 5.08 ( 2.24) Acc@5 19.53 ( 7.30) +Epoch: [0][3286/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.1316e+00 (6.1858e+00) Acc@1 6.25 ( 2.24) Acc@5 19.53 ( 7.30) +Epoch: [0][3287/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.2794e+00 (6.1855e+00) Acc@1 5.47 ( 2.24) Acc@5 21.09 ( 7.30) +Epoch: [0][3288/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.2517e+00 (6.1852e+00) Acc@1 6.25 ( 2.24) Acc@5 17.19 ( 7.31) +Epoch: [0][3289/5004] Time 0.236 ( 0.242) Data 0.028 ( 0.027) Loss 5.4223e+00 (6.1850e+00) Acc@1 5.86 ( 2.25) Acc@5 17.97 ( 7.31) +Epoch: [0][3290/5004] Time 0.238 ( 0.242) Data 0.030 ( 0.027) Loss 5.2327e+00 (6.1847e+00) Acc@1 5.86 ( 2.25) Acc@5 17.58 ( 7.31) +Epoch: [0][3291/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.4211e+00 (6.1845e+00) Acc@1 6.25 ( 2.25) Acc@5 17.58 ( 7.32) +Epoch: [0][3292/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.1692e+00 (6.1841e+00) Acc@1 6.25 ( 2.25) Acc@5 19.53 ( 7.32) +Epoch: [0][3293/5004] Time 0.239 ( 0.242) Data 0.029 ( 0.027) Loss 5.3621e+00 (6.1839e+00) Acc@1 7.81 ( 2.25) Acc@5 17.58 ( 7.32) +Epoch: [0][3294/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 5.1408e+00 (6.1836e+00) Acc@1 5.86 ( 2.25) Acc@5 23.05 ( 7.33) +Epoch: [0][3295/5004] Time 0.234 ( 0.242) Data 0.025 ( 0.027) Loss 5.3775e+00 (6.1833e+00) Acc@1 5.08 ( 2.25) Acc@5 17.19 ( 7.33) +Epoch: [0][3296/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.3708e+00 (6.1831e+00) Acc@1 6.25 ( 2.25) Acc@5 15.23 ( 7.33) +Epoch: [0][3297/5004] Time 0.236 ( 0.242) Data 0.027 ( 0.027) Loss 5.2152e+00 (6.1828e+00) Acc@1 6.25 ( 2.26) Acc@5 16.41 ( 7.34) +Epoch: [0][3298/5004] Time 0.236 ( 0.242) Data 0.028 ( 0.027) Loss 5.2261e+00 (6.1825e+00) Acc@1 6.64 ( 2.26) Acc@5 19.14 ( 7.34) +Epoch: [0][3299/5004] Time 0.230 ( 0.242) Data 0.030 ( 0.027) Loss 5.1836e+00 (6.1822e+00) Acc@1 5.86 ( 2.26) Acc@5 19.92 ( 7.34) +Epoch: [0][3300/5004] Time 0.236 ( 0.242) Data 0.037 ( 0.027) Loss 5.2684e+00 (6.1819e+00) Acc@1 6.64 ( 2.26) Acc@5 19.14 ( 7.35) +Epoch: [0][3301/5004] Time 0.239 ( 0.242) Data 0.038 ( 0.027) Loss 5.1620e+00 (6.1816e+00) Acc@1 10.55 ( 2.26) Acc@5 24.22 ( 7.35) +Epoch: [0][3302/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.1312e+00 (6.1813e+00) Acc@1 8.59 ( 2.26) Acc@5 24.61 ( 7.36) +Epoch: [0][3303/5004] Time 0.236 ( 0.242) Data 0.034 ( 0.027) Loss 5.1477e+00 (6.1810e+00) Acc@1 7.42 ( 2.27) Acc@5 21.48 ( 7.36) +Epoch: [0][3304/5004] Time 0.238 ( 0.242) Data 0.035 ( 0.027) Loss 5.1893e+00 (6.1807e+00) Acc@1 7.42 ( 2.27) Acc@5 23.44 ( 7.37) +Epoch: [0][3305/5004] Time 0.238 ( 0.242) Data 0.035 ( 0.027) Loss 5.1049e+00 (6.1804e+00) Acc@1 7.03 ( 2.27) Acc@5 22.66 ( 7.37) +Epoch: [0][3306/5004] Time 0.238 ( 0.242) Data 0.034 ( 0.027) Loss 5.1826e+00 (6.1801e+00) Acc@1 7.42 ( 2.27) Acc@5 21.48 ( 7.37) +Epoch: [0][3307/5004] Time 0.237 ( 0.242) Data 0.033 ( 0.027) Loss 5.1057e+00 (6.1797e+00) Acc@1 5.08 ( 2.27) Acc@5 20.70 ( 7.38) +Epoch: [0][3308/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.2461e+00 (6.1795e+00) Acc@1 6.64 ( 2.27) Acc@5 18.75 ( 7.38) +Epoch: [0][3309/5004] Time 0.246 ( 0.242) Data 0.036 ( 0.027) Loss 5.2087e+00 (6.1792e+00) Acc@1 5.47 ( 2.27) Acc@5 20.70 ( 7.39) +Epoch: [0][3310/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.1260e+00 (6.1788e+00) Acc@1 9.38 ( 2.27) Acc@5 19.92 ( 7.39) +Epoch: [0][3311/5004] Time 0.237 ( 0.242) Data 0.036 ( 0.027) Loss 5.1644e+00 (6.1785e+00) Acc@1 7.81 ( 2.28) Acc@5 19.53 ( 7.39) +Epoch: [0][3312/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.2802e+00 (6.1783e+00) Acc@1 8.98 ( 2.28) Acc@5 20.70 ( 7.40) +Epoch: [0][3313/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.1672e+00 (6.1780e+00) Acc@1 7.42 ( 2.28) Acc@5 20.70 ( 7.40) +Epoch: [0][3314/5004] Time 0.235 ( 0.242) Data 0.034 ( 0.027) Loss 5.0806e+00 (6.1776e+00) Acc@1 9.77 ( 2.28) Acc@5 21.88 ( 7.41) +Epoch: [0][3315/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.2014e+00 (6.1773e+00) Acc@1 3.12 ( 2.28) Acc@5 21.88 ( 7.41) +Epoch: [0][3316/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.2962e+00 (6.1771e+00) Acc@1 4.69 ( 2.28) Acc@5 16.41 ( 7.41) +Epoch: [0][3317/5004] Time 0.237 ( 0.242) Data 0.035 ( 0.027) Loss 5.0462e+00 (6.1767e+00) Acc@1 9.77 ( 2.29) Acc@5 24.61 ( 7.42) +Epoch: [0][3318/5004] Time 0.239 ( 0.242) Data 0.035 ( 0.027) Loss 5.0174e+00 (6.1764e+00) Acc@1 7.81 ( 2.29) Acc@5 24.22 ( 7.42) +Epoch: [0][3319/5004] Time 0.238 ( 0.242) Data 0.035 ( 0.027) Loss 5.3311e+00 (6.1761e+00) Acc@1 5.47 ( 2.29) Acc@5 17.58 ( 7.43) +Epoch: [0][3320/5004] Time 0.236 ( 0.242) Data 0.036 ( 0.027) Loss 5.1525e+00 (6.1758e+00) Acc@1 9.77 ( 2.29) Acc@5 24.61 ( 7.43) +Epoch: [0][3321/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.2538e+00 (6.1755e+00) Acc@1 4.30 ( 2.29) Acc@5 23.44 ( 7.44) +Epoch: [0][3322/5004] Time 0.237 ( 0.242) Data 0.035 ( 0.027) Loss 5.3946e+00 (6.1753e+00) Acc@1 6.64 ( 2.29) Acc@5 20.31 ( 7.44) +Epoch: [0][3323/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.1940e+00 (6.1750e+00) Acc@1 5.86 ( 2.29) Acc@5 17.97 ( 7.44) +Epoch: [0][3324/5004] Time 0.240 ( 0.242) Data 0.036 ( 0.027) Loss 5.1160e+00 (6.1747e+00) Acc@1 7.42 ( 2.30) Acc@5 21.88 ( 7.45) +Epoch: [0][3325/5004] Time 0.238 ( 0.242) Data 0.037 ( 0.027) Loss 5.2953e+00 (6.1744e+00) Acc@1 5.08 ( 2.30) Acc@5 19.92 ( 7.45) +Epoch: [0][3326/5004] Time 0.239 ( 0.242) Data 0.035 ( 0.027) Loss 5.3710e+00 (6.1742e+00) Acc@1 6.25 ( 2.30) Acc@5 15.62 ( 7.45) +Epoch: [0][3327/5004] Time 0.241 ( 0.242) Data 0.033 ( 0.027) Loss 5.2212e+00 (6.1739e+00) Acc@1 7.81 ( 2.30) Acc@5 19.92 ( 7.46) +Epoch: [0][3328/5004] Time 0.236 ( 0.242) Data 0.032 ( 0.027) Loss 5.2767e+00 (6.1736e+00) Acc@1 5.86 ( 2.30) Acc@5 14.06 ( 7.46) +Epoch: [0][3329/5004] Time 0.239 ( 0.242) Data 0.034 ( 0.027) Loss 5.2039e+00 (6.1733e+00) Acc@1 7.03 ( 2.30) Acc@5 21.88 ( 7.46) +Epoch: [0][3330/5004] Time 0.235 ( 0.242) Data 0.032 ( 0.027) Loss 5.3114e+00 (6.1731e+00) Acc@1 9.38 ( 2.30) Acc@5 17.97 ( 7.47) +Epoch: [0][3331/5004] Time 0.239 ( 0.242) Data 0.035 ( 0.027) Loss 4.9402e+00 (6.1727e+00) Acc@1 9.38 ( 2.31) Acc@5 23.44 ( 7.47) +Epoch: [0][3332/5004] Time 0.235 ( 0.242) Data 0.034 ( 0.027) Loss 5.0742e+00 (6.1724e+00) Acc@1 9.38 ( 2.31) Acc@5 23.05 ( 7.48) +Epoch: [0][3333/5004] Time 0.241 ( 0.242) Data 0.036 ( 0.027) Loss 5.2774e+00 (6.1721e+00) Acc@1 7.42 ( 2.31) Acc@5 21.48 ( 7.48) +Epoch: [0][3334/5004] Time 0.234 ( 0.242) Data 0.032 ( 0.027) Loss 5.4668e+00 (6.1719e+00) Acc@1 8.59 ( 2.31) Acc@5 17.19 ( 7.48) +Epoch: [0][3335/5004] Time 0.237 ( 0.242) Data 0.036 ( 0.027) Loss 4.9199e+00 (6.1715e+00) Acc@1 8.20 ( 2.31) Acc@5 25.39 ( 7.49) +Epoch: [0][3336/5004] Time 0.246 ( 0.242) Data 0.036 ( 0.027) Loss 5.0854e+00 (6.1712e+00) Acc@1 6.64 ( 2.31) Acc@5 22.27 ( 7.49) +Epoch: [0][3337/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.1059e+00 (6.1709e+00) Acc@1 8.59 ( 2.32) Acc@5 23.05 ( 7.50) +Epoch: [0][3338/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.1247e+00 (6.1706e+00) Acc@1 7.03 ( 2.32) Acc@5 21.88 ( 7.50) +Epoch: [0][3339/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.3543e+00 (6.1703e+00) Acc@1 6.64 ( 2.32) Acc@5 18.36 ( 7.51) +Epoch: [0][3340/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.1731e+00 (6.1700e+00) Acc@1 6.64 ( 2.32) Acc@5 19.53 ( 7.51) +Epoch: [0][3341/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.2543e+00 (6.1697e+00) Acc@1 5.86 ( 2.32) Acc@5 19.92 ( 7.51) +Epoch: [0][3342/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.2259e+00 (6.1695e+00) Acc@1 8.59 ( 2.32) Acc@5 18.75 ( 7.52) +Epoch: [0][3343/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.2601e+00 (6.1692e+00) Acc@1 8.98 ( 2.32) Acc@5 17.19 ( 7.52) +Epoch: [0][3344/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.1054e+00 (6.1689e+00) Acc@1 7.81 ( 2.33) Acc@5 19.92 ( 7.52) +Epoch: [0][3345/5004] Time 0.235 ( 0.242) Data 0.024 ( 0.027) Loss 5.2202e+00 (6.1686e+00) Acc@1 8.20 ( 2.33) Acc@5 19.53 ( 7.53) +Epoch: [0][3346/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.2116e+00 (6.1683e+00) Acc@1 6.64 ( 2.33) Acc@5 20.70 ( 7.53) +Epoch: [0][3347/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 5.3449e+00 (6.1681e+00) Acc@1 8.20 ( 2.33) Acc@5 16.80 ( 7.53) +Epoch: [0][3348/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 5.1109e+00 (6.1677e+00) Acc@1 5.86 ( 2.33) Acc@5 21.48 ( 7.54) +Epoch: [0][3349/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 5.1751e+00 (6.1674e+00) Acc@1 5.86 ( 2.33) Acc@5 20.31 ( 7.54) +Epoch: [0][3350/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 5.2317e+00 (6.1672e+00) Acc@1 7.81 ( 2.34) Acc@5 21.88 ( 7.55) +Epoch: [0][3351/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.2145e+00 (6.1669e+00) Acc@1 7.42 ( 2.34) Acc@5 19.14 ( 7.55) +Epoch: [0][3352/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.1664e+00 (6.1666e+00) Acc@1 6.64 ( 2.34) Acc@5 19.92 ( 7.55) +Epoch: [0][3353/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 5.1751e+00 (6.1663e+00) Acc@1 7.03 ( 2.34) Acc@5 18.36 ( 7.56) +Epoch: [0][3354/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 5.0659e+00 (6.1660e+00) Acc@1 8.98 ( 2.34) Acc@5 23.44 ( 7.56) +Epoch: [0][3355/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.2115e+00 (6.1657e+00) Acc@1 9.38 ( 2.34) Acc@5 17.19 ( 7.56) +Epoch: [0][3356/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.027) Loss 5.1774e+00 (6.1654e+00) Acc@1 6.64 ( 2.34) Acc@5 20.70 ( 7.57) +Epoch: [0][3357/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 5.3628e+00 (6.1651e+00) Acc@1 6.25 ( 2.35) Acc@5 17.97 ( 7.57) +Epoch: [0][3358/5004] Time 0.256 ( 0.242) Data 0.021 ( 0.027) Loss 5.3434e+00 (6.1649e+00) Acc@1 6.64 ( 2.35) Acc@5 16.80 ( 7.57) +Epoch: [0][3359/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.2857e+00 (6.1646e+00) Acc@1 6.25 ( 2.35) Acc@5 19.53 ( 7.58) +Epoch: [0][3360/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 5.1885e+00 (6.1643e+00) Acc@1 11.33 ( 2.35) Acc@5 23.44 ( 7.58) +Epoch: [0][3361/5004] Time 0.255 ( 0.242) Data 0.022 ( 0.027) Loss 5.1027e+00 (6.1640e+00) Acc@1 10.16 ( 2.35) Acc@5 20.31 ( 7.59) +Epoch: [0][3362/5004] Time 0.245 ( 0.242) Data 0.017 ( 0.027) Loss 5.4400e+00 (6.1638e+00) Acc@1 2.73 ( 2.35) Acc@5 16.02 ( 7.59) +Epoch: [0][3363/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 5.2231e+00 (6.1635e+00) Acc@1 8.59 ( 2.36) Acc@5 22.27 ( 7.59) +Epoch: [0][3364/5004] Time 0.247 ( 0.242) Data 0.018 ( 0.027) Loss 5.1827e+00 (6.1632e+00) Acc@1 7.42 ( 2.36) Acc@5 22.27 ( 7.60) +Epoch: [0][3365/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 5.2219e+00 (6.1630e+00) Acc@1 8.59 ( 2.36) Acc@5 19.53 ( 7.60) +Epoch: [0][3366/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.1517e+00 (6.1627e+00) Acc@1 8.98 ( 2.36) Acc@5 22.66 ( 7.60) +Epoch: [0][3367/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 5.0581e+00 (6.1623e+00) Acc@1 8.98 ( 2.36) Acc@5 24.61 ( 7.61) +Epoch: [0][3368/5004] Time 0.257 ( 0.242) Data 0.021 ( 0.027) Loss 5.1117e+00 (6.1620e+00) Acc@1 8.59 ( 2.36) Acc@5 22.27 ( 7.61) +Epoch: [0][3369/5004] Time 0.251 ( 0.242) Data 0.016 ( 0.027) Loss 5.4010e+00 (6.1618e+00) Acc@1 5.08 ( 2.37) Acc@5 15.62 ( 7.62) +Epoch: [0][3370/5004] Time 0.247 ( 0.242) Data 0.016 ( 0.027) Loss 5.1922e+00 (6.1615e+00) Acc@1 8.20 ( 2.37) Acc@5 20.31 ( 7.62) +Epoch: [0][3371/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.3058e+00 (6.1613e+00) Acc@1 7.03 ( 2.37) Acc@5 17.58 ( 7.62) +Epoch: [0][3372/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.2347e+00 (6.1610e+00) Acc@1 4.30 ( 2.37) Acc@5 17.19 ( 7.63) +Epoch: [0][3373/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.2640e+00 (6.1607e+00) Acc@1 6.64 ( 2.37) Acc@5 15.23 ( 7.63) +Epoch: [0][3374/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.2083e+00 (6.1604e+00) Acc@1 7.81 ( 2.37) Acc@5 25.00 ( 7.63) +Epoch: [0][3375/5004] Time 0.238 ( 0.242) Data 0.017 ( 0.027) Loss 5.2605e+00 (6.1602e+00) Acc@1 7.81 ( 2.37) Acc@5 23.05 ( 7.64) +Epoch: [0][3376/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 5.1308e+00 (6.1599e+00) Acc@1 7.03 ( 2.37) Acc@5 24.61 ( 7.64) +Epoch: [0][3377/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 5.1635e+00 (6.1596e+00) Acc@1 7.03 ( 2.38) Acc@5 21.09 ( 7.65) +Epoch: [0][3378/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 5.2303e+00 (6.1593e+00) Acc@1 5.86 ( 2.38) Acc@5 20.70 ( 7.65) +Epoch: [0][3379/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 5.1370e+00 (6.1590e+00) Acc@1 5.86 ( 2.38) Acc@5 22.27 ( 7.66) +Epoch: [0][3380/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.2376e+00 (6.1587e+00) Acc@1 5.86 ( 2.38) Acc@5 14.45 ( 7.66) +Epoch: [0][3381/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.0763e+00 (6.1584e+00) Acc@1 8.20 ( 2.38) Acc@5 23.83 ( 7.66) +Epoch: [0][3382/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.1912e+00 (6.1581e+00) Acc@1 8.20 ( 2.38) Acc@5 23.44 ( 7.67) +Epoch: [0][3383/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 5.0964e+00 (6.1578e+00) Acc@1 8.59 ( 2.38) Acc@5 23.44 ( 7.67) +Epoch: [0][3384/5004] Time 0.253 ( 0.242) Data 0.020 ( 0.027) Loss 5.0866e+00 (6.1575e+00) Acc@1 9.38 ( 2.39) Acc@5 22.27 ( 7.68) +Epoch: [0][3385/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 5.0196e+00 (6.1571e+00) Acc@1 9.77 ( 2.39) Acc@5 21.09 ( 7.68) +Epoch: [0][3386/5004] Time 0.261 ( 0.242) Data 0.020 ( 0.027) Loss 5.2437e+00 (6.1569e+00) Acc@1 7.81 ( 2.39) Acc@5 19.53 ( 7.68) +Epoch: [0][3387/5004] Time 0.264 ( 0.242) Data 0.016 ( 0.027) Loss 5.1181e+00 (6.1566e+00) Acc@1 7.42 ( 2.39) Acc@5 21.48 ( 7.69) +Epoch: [0][3388/5004] Time 0.258 ( 0.242) Data 0.013 ( 0.027) Loss 5.1725e+00 (6.1563e+00) Acc@1 8.20 ( 2.39) Acc@5 22.66 ( 7.69) +Epoch: [0][3389/5004] Time 0.259 ( 0.242) Data 0.014 ( 0.027) Loss 5.1077e+00 (6.1560e+00) Acc@1 9.38 ( 2.40) Acc@5 21.88 ( 7.70) +Epoch: [0][3390/5004] Time 0.254 ( 0.242) Data 0.016 ( 0.027) Loss 5.1901e+00 (6.1557e+00) Acc@1 6.25 ( 2.40) Acc@5 16.41 ( 7.70) +Epoch: [0][3391/5004] Time 0.264 ( 0.242) Data 0.018 ( 0.027) Loss 5.2250e+00 (6.1554e+00) Acc@1 8.59 ( 2.40) Acc@5 19.92 ( 7.70) +Epoch: [0][3392/5004] Time 0.240 ( 0.242) Data 0.015 ( 0.027) Loss 5.1456e+00 (6.1551e+00) Acc@1 5.86 ( 2.40) Acc@5 23.44 ( 7.71) +Epoch: [0][3393/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.0884e+00 (6.1548e+00) Acc@1 7.81 ( 2.40) Acc@5 21.88 ( 7.71) +Epoch: [0][3394/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.0610e+00 (6.1545e+00) Acc@1 12.11 ( 2.40) Acc@5 23.05 ( 7.72) +Epoch: [0][3395/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.1603e+00 (6.1542e+00) Acc@1 7.81 ( 2.41) Acc@5 20.70 ( 7.72) +Epoch: [0][3396/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.1046e+00 (6.1539e+00) Acc@1 5.86 ( 2.41) Acc@5 23.05 ( 7.72) +Epoch: [0][3397/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 5.2850e+00 (6.1536e+00) Acc@1 8.59 ( 2.41) Acc@5 25.39 ( 7.73) +Epoch: [0][3398/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.027) Loss 5.0392e+00 (6.1533e+00) Acc@1 8.98 ( 2.41) Acc@5 25.39 ( 7.73) +Epoch: [0][3399/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 5.2057e+00 (6.1530e+00) Acc@1 7.03 ( 2.41) Acc@5 16.41 ( 7.74) +Epoch: [0][3400/5004] Time 0.255 ( 0.242) Data 0.021 ( 0.027) Loss 5.3909e+00 (6.1528e+00) Acc@1 5.08 ( 2.41) Acc@5 16.80 ( 7.74) +Epoch: [0][3401/5004] Time 0.248 ( 0.242) Data 0.017 ( 0.027) Loss 5.1630e+00 (6.1525e+00) Acc@1 7.03 ( 2.41) Acc@5 17.58 ( 7.74) +Epoch: [0][3402/5004] Time 0.255 ( 0.242) Data 0.020 ( 0.027) Loss 5.3578e+00 (6.1523e+00) Acc@1 8.20 ( 2.42) Acc@5 16.80 ( 7.74) +Epoch: [0][3403/5004] Time 0.257 ( 0.242) Data 0.020 ( 0.027) Loss 5.0994e+00 (6.1520e+00) Acc@1 7.42 ( 2.42) Acc@5 23.05 ( 7.75) +Epoch: [0][3404/5004] Time 0.265 ( 0.242) Data 0.017 ( 0.027) Loss 5.2576e+00 (6.1517e+00) Acc@1 7.81 ( 2.42) Acc@5 21.88 ( 7.75) +Epoch: [0][3405/5004] Time 0.260 ( 0.242) Data 0.016 ( 0.027) Loss 5.1564e+00 (6.1514e+00) Acc@1 5.86 ( 2.42) Acc@5 20.31 ( 7.76) +Epoch: [0][3406/5004] Time 0.259 ( 0.242) Data 0.018 ( 0.027) Loss 5.2837e+00 (6.1511e+00) Acc@1 6.25 ( 2.42) Acc@5 17.97 ( 7.76) +Epoch: [0][3407/5004] Time 0.266 ( 0.242) Data 0.016 ( 0.027) Loss 5.0499e+00 (6.1508e+00) Acc@1 8.20 ( 2.42) Acc@5 19.92 ( 7.76) +Epoch: [0][3408/5004] Time 0.257 ( 0.242) Data 0.016 ( 0.027) Loss 5.1259e+00 (6.1505e+00) Acc@1 8.59 ( 2.42) Acc@5 21.48 ( 7.77) +Epoch: [0][3409/5004] Time 0.261 ( 0.242) Data 0.017 ( 0.027) Loss 5.3186e+00 (6.1503e+00) Acc@1 7.81 ( 2.43) Acc@5 18.75 ( 7.77) +Epoch: [0][3410/5004] Time 0.241 ( 0.242) Data 0.017 ( 0.027) Loss 5.1551e+00 (6.1500e+00) Acc@1 7.81 ( 2.43) Acc@5 18.75 ( 7.77) +Epoch: [0][3411/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.2289e+00 (6.1497e+00) Acc@1 6.64 ( 2.43) Acc@5 19.53 ( 7.78) +Epoch: [0][3412/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.3278e+00 (6.1495e+00) Acc@1 5.08 ( 2.43) Acc@5 16.02 ( 7.78) +Epoch: [0][3413/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 5.1628e+00 (6.1492e+00) Acc@1 6.25 ( 2.43) Acc@5 19.14 ( 7.78) +Epoch: [0][3414/5004] Time 0.248 ( 0.242) Data 0.019 ( 0.027) Loss 5.3254e+00 (6.1489e+00) Acc@1 4.69 ( 2.43) Acc@5 16.02 ( 7.79) +Epoch: [0][3415/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 5.3343e+00 (6.1487e+00) Acc@1 6.25 ( 2.43) Acc@5 14.84 ( 7.79) +Epoch: [0][3416/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.1085e+00 (6.1484e+00) Acc@1 8.98 ( 2.43) Acc@5 26.17 ( 7.79) +Epoch: [0][3417/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.3296e+00 (6.1482e+00) Acc@1 5.47 ( 2.44) Acc@5 12.89 ( 7.79) +Epoch: [0][3418/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.2131e+00 (6.1479e+00) Acc@1 4.69 ( 2.44) Acc@5 19.92 ( 7.80) +Epoch: [0][3419/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.1543e+00 (6.1476e+00) Acc@1 9.38 ( 2.44) Acc@5 20.70 ( 7.80) +Epoch: [0][3420/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.1571e+00 (6.1473e+00) Acc@1 7.81 ( 2.44) Acc@5 21.48 ( 7.81) +Epoch: [0][3421/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.2698e+00 (6.1471e+00) Acc@1 8.59 ( 2.44) Acc@5 20.31 ( 7.81) +Epoch: [0][3422/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.0696e+00 (6.1467e+00) Acc@1 6.64 ( 2.44) Acc@5 19.53 ( 7.81) +Epoch: [0][3423/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.4698e+00 (6.1465e+00) Acc@1 5.08 ( 2.44) Acc@5 16.02 ( 7.82) +Epoch: [0][3424/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.0696e+00 (6.1462e+00) Acc@1 8.20 ( 2.44) Acc@5 25.00 ( 7.82) +Epoch: [0][3425/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 5.2288e+00 (6.1460e+00) Acc@1 8.98 ( 2.45) Acc@5 22.27 ( 7.82) +Epoch: [0][3426/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.3288e+00 (6.1457e+00) Acc@1 7.42 ( 2.45) Acc@5 17.58 ( 7.83) +Epoch: [0][3427/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 5.1847e+00 (6.1454e+00) Acc@1 5.47 ( 2.45) Acc@5 23.83 ( 7.83) +Epoch: [0][3428/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.2376e+00 (6.1452e+00) Acc@1 7.42 ( 2.45) Acc@5 21.48 ( 7.84) +Epoch: [0][3429/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.0674e+00 (6.1449e+00) Acc@1 6.64 ( 2.45) Acc@5 20.31 ( 7.84) +Epoch: [0][3430/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 5.3215e+00 (6.1446e+00) Acc@1 6.64 ( 2.45) Acc@5 18.75 ( 7.84) +Epoch: [0][3431/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 5.1094e+00 (6.1443e+00) Acc@1 6.64 ( 2.45) Acc@5 25.00 ( 7.85) +Epoch: [0][3432/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 5.0744e+00 (6.1440e+00) Acc@1 7.03 ( 2.46) Acc@5 18.75 ( 7.85) +Epoch: [0][3433/5004] Time 0.243 ( 0.242) Data 0.019 ( 0.027) Loss 5.0267e+00 (6.1437e+00) Acc@1 7.81 ( 2.46) Acc@5 24.61 ( 7.86) +Epoch: [0][3434/5004] Time 0.239 ( 0.242) Data 0.017 ( 0.027) Loss 5.1679e+00 (6.1434e+00) Acc@1 5.47 ( 2.46) Acc@5 17.97 ( 7.86) +Epoch: [0][3435/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.0828e+00 (6.1431e+00) Acc@1 7.81 ( 2.46) Acc@5 21.48 ( 7.86) +Epoch: [0][3436/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0764e+00 (6.1428e+00) Acc@1 7.81 ( 2.46) Acc@5 23.05 ( 7.87) +Epoch: [0][3437/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.1355e+00 (6.1425e+00) Acc@1 7.81 ( 2.46) Acc@5 22.66 ( 7.87) +Epoch: [0][3438/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.1431e+00 (6.1422e+00) Acc@1 7.03 ( 2.46) Acc@5 19.92 ( 7.88) +Epoch: [0][3439/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.1497e+00 (6.1419e+00) Acc@1 7.81 ( 2.47) Acc@5 25.39 ( 7.88) +Epoch: [0][3440/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.0386e+00 (6.1416e+00) Acc@1 5.86 ( 2.47) Acc@5 26.17 ( 7.89) +Epoch: [0][3441/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 5.0577e+00 (6.1413e+00) Acc@1 8.98 ( 2.47) Acc@5 22.66 ( 7.89) +Epoch: [0][3442/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.0471e+00 (6.1410e+00) Acc@1 6.64 ( 2.47) Acc@5 19.92 ( 7.89) +Epoch: [0][3443/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.0764e+00 (6.1406e+00) Acc@1 10.16 ( 2.47) Acc@5 21.88 ( 7.90) +Epoch: [0][3444/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 5.0295e+00 (6.1403e+00) Acc@1 9.38 ( 2.47) Acc@5 22.27 ( 7.90) +Epoch: [0][3445/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 5.1989e+00 (6.1400e+00) Acc@1 6.64 ( 2.48) Acc@5 18.36 ( 7.90) +Epoch: [0][3446/5004] Time 0.234 ( 0.242) Data 0.017 ( 0.027) Loss 5.3488e+00 (6.1398e+00) Acc@1 5.47 ( 2.48) Acc@5 16.02 ( 7.91) +Epoch: [0][3447/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.3270e+00 (6.1396e+00) Acc@1 6.64 ( 2.48) Acc@5 19.14 ( 7.91) +Epoch: [0][3448/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 5.1003e+00 (6.1393e+00) Acc@1 9.77 ( 2.48) Acc@5 23.44 ( 7.91) +Epoch: [0][3449/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.0801e+00 (6.1390e+00) Acc@1 6.25 ( 2.48) Acc@5 21.48 ( 7.92) +Epoch: [0][3450/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.0469e+00 (6.1387e+00) Acc@1 7.81 ( 2.48) Acc@5 19.92 ( 7.92) +Epoch: [0][3451/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 5.1190e+00 (6.1384e+00) Acc@1 7.42 ( 2.48) Acc@5 21.09 ( 7.93) +Epoch: [0][3452/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 5.0296e+00 (6.1380e+00) Acc@1 6.64 ( 2.48) Acc@5 19.14 ( 7.93) +Epoch: [0][3453/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 5.1177e+00 (6.1377e+00) Acc@1 6.64 ( 2.49) Acc@5 20.70 ( 7.93) +Epoch: [0][3454/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9235e+00 (6.1374e+00) Acc@1 8.59 ( 2.49) Acc@5 23.83 ( 7.94) +Epoch: [0][3455/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 5.1060e+00 (6.1371e+00) Acc@1 7.81 ( 2.49) Acc@5 20.31 ( 7.94) +Epoch: [0][3456/5004] Time 0.244 ( 0.242) Data 0.019 ( 0.027) Loss 5.0978e+00 (6.1368e+00) Acc@1 8.59 ( 2.49) Acc@5 21.88 ( 7.95) +Epoch: [0][3457/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 5.1309e+00 (6.1365e+00) Acc@1 7.03 ( 2.49) Acc@5 22.27 ( 7.95) +Epoch: [0][3458/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.4068e+00 (6.1363e+00) Acc@1 5.47 ( 2.49) Acc@5 14.84 ( 7.95) +Epoch: [0][3459/5004] Time 0.238 ( 0.242) Data 0.019 ( 0.027) Loss 5.1553e+00 (6.1360e+00) Acc@1 6.64 ( 2.49) Acc@5 21.48 ( 7.96) +Epoch: [0][3460/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.9329e+00 (6.1357e+00) Acc@1 10.16 ( 2.50) Acc@5 22.66 ( 7.96) +Epoch: [0][3461/5004] Time 0.239 ( 0.242) Data 0.019 ( 0.027) Loss 5.1362e+00 (6.1354e+00) Acc@1 8.20 ( 2.50) Acc@5 18.75 ( 7.96) +Epoch: [0][3462/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.1539e+00 (6.1351e+00) Acc@1 6.25 ( 2.50) Acc@5 18.36 ( 7.97) +Epoch: [0][3463/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.1986e+00 (6.1348e+00) Acc@1 5.86 ( 2.50) Acc@5 19.92 ( 7.97) +Epoch: [0][3464/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 5.2630e+00 (6.1346e+00) Acc@1 7.81 ( 2.50) Acc@5 20.31 ( 7.97) +Epoch: [0][3465/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.2755e+00 (6.1343e+00) Acc@1 5.08 ( 2.50) Acc@5 16.41 ( 7.98) +Epoch: [0][3466/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.2487e+00 (6.1341e+00) Acc@1 4.30 ( 2.50) Acc@5 19.14 ( 7.98) +Epoch: [0][3467/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 4.9718e+00 (6.1337e+00) Acc@1 10.94 ( 2.51) Acc@5 23.05 ( 7.98) +Epoch: [0][3468/5004] Time 0.243 ( 0.242) Data 0.016 ( 0.027) Loss 5.0844e+00 (6.1334e+00) Acc@1 8.98 ( 2.51) Acc@5 25.78 ( 7.99) +Epoch: [0][3469/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 5.1962e+00 (6.1332e+00) Acc@1 6.64 ( 2.51) Acc@5 19.92 ( 7.99) +Epoch: [0][3470/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.2524e+00 (6.1329e+00) Acc@1 5.47 ( 2.51) Acc@5 19.53 ( 7.99) +Epoch: [0][3471/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0956e+00 (6.1326e+00) Acc@1 7.03 ( 2.51) Acc@5 19.53 ( 8.00) +Epoch: [0][3472/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0667e+00 (6.1323e+00) Acc@1 9.77 ( 2.51) Acc@5 25.78 ( 8.00) +Epoch: [0][3473/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9123e+00 (6.1319e+00) Acc@1 8.98 ( 2.51) Acc@5 26.17 ( 8.01) +Epoch: [0][3474/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.1216e+00 (6.1317e+00) Acc@1 7.81 ( 2.52) Acc@5 22.66 ( 8.01) +Epoch: [0][3475/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 5.0830e+00 (6.1314e+00) Acc@1 8.98 ( 2.52) Acc@5 23.05 ( 8.02) +Epoch: [0][3476/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 4.9868e+00 (6.1310e+00) Acc@1 10.16 ( 2.52) Acc@5 27.73 ( 8.02) +Epoch: [0][3477/5004] Time 0.239 ( 0.242) Data 0.017 ( 0.027) Loss 4.9403e+00 (6.1307e+00) Acc@1 11.33 ( 2.52) Acc@5 25.78 ( 8.03) +Epoch: [0][3478/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 5.2500e+00 (6.1304e+00) Acc@1 5.47 ( 2.52) Acc@5 20.70 ( 8.03) +Epoch: [0][3479/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.3101e+00 (6.1302e+00) Acc@1 6.25 ( 2.52) Acc@5 17.58 ( 8.03) +Epoch: [0][3480/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 5.2926e+00 (6.1300e+00) Acc@1 5.08 ( 2.53) Acc@5 16.41 ( 8.04) +Epoch: [0][3481/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.0975e+00 (6.1297e+00) Acc@1 8.20 ( 2.53) Acc@5 19.14 ( 8.04) +Epoch: [0][3482/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.9314e+00 (6.1293e+00) Acc@1 9.77 ( 2.53) Acc@5 24.61 ( 8.04) +Epoch: [0][3483/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 5.0674e+00 (6.1290e+00) Acc@1 7.42 ( 2.53) Acc@5 27.34 ( 8.05) +Epoch: [0][3484/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 5.3445e+00 (6.1288e+00) Acc@1 6.64 ( 2.53) Acc@5 18.75 ( 8.05) +Epoch: [0][3485/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 5.2835e+00 (6.1285e+00) Acc@1 6.64 ( 2.53) Acc@5 21.88 ( 8.06) +Epoch: [0][3486/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 5.1838e+00 (6.1283e+00) Acc@1 6.64 ( 2.53) Acc@5 21.48 ( 8.06) +Epoch: [0][3487/5004] Time 0.257 ( 0.242) Data 0.020 ( 0.027) Loss 5.2196e+00 (6.1280e+00) Acc@1 5.08 ( 2.53) Acc@5 20.31 ( 8.06) +Epoch: [0][3488/5004] Time 0.245 ( 0.242) Data 0.016 ( 0.027) Loss 5.0954e+00 (6.1277e+00) Acc@1 6.64 ( 2.54) Acc@5 23.05 ( 8.07) +Epoch: [0][3489/5004] Time 0.246 ( 0.242) Data 0.018 ( 0.027) Loss 5.1376e+00 (6.1274e+00) Acc@1 4.69 ( 2.54) Acc@5 21.09 ( 8.07) +Epoch: [0][3490/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 5.1707e+00 (6.1272e+00) Acc@1 8.20 ( 2.54) Acc@5 19.92 ( 8.08) +Epoch: [0][3491/5004] Time 0.237 ( 0.242) Data 0.018 ( 0.027) Loss 5.0177e+00 (6.1268e+00) Acc@1 11.72 ( 2.54) Acc@5 21.09 ( 8.08) +Epoch: [0][3492/5004] Time 0.238 ( 0.242) Data 0.023 ( 0.027) Loss 5.1527e+00 (6.1266e+00) Acc@1 5.47 ( 2.54) Acc@5 21.09 ( 8.08) +Epoch: [0][3493/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.2179e+00 (6.1263e+00) Acc@1 7.42 ( 2.54) Acc@5 18.36 ( 8.09) +Epoch: [0][3494/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 5.2892e+00 (6.1261e+00) Acc@1 8.59 ( 2.54) Acc@5 19.53 ( 8.09) +Epoch: [0][3495/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 5.1961e+00 (6.1258e+00) Acc@1 7.42 ( 2.55) Acc@5 19.53 ( 8.09) +Epoch: [0][3496/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.1069e+00 (6.1255e+00) Acc@1 8.59 ( 2.55) Acc@5 22.27 ( 8.10) +Epoch: [0][3497/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 5.2900e+00 (6.1253e+00) Acc@1 5.47 ( 2.55) Acc@5 18.75 ( 8.10) +Epoch: [0][3498/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 5.2465e+00 (6.1250e+00) Acc@1 6.64 ( 2.55) Acc@5 20.70 ( 8.10) +Epoch: [0][3499/5004] Time 0.232 ( 0.242) Data 0.018 ( 0.027) Loss 5.1499e+00 (6.1247e+00) Acc@1 8.59 ( 2.55) Acc@5 24.61 ( 8.11) +Epoch: [0][3500/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.0728e+00 (6.1244e+00) Acc@1 9.38 ( 2.55) Acc@5 21.88 ( 8.11) +Epoch: [0][3501/5004] Time 0.253 ( 0.242) Data 0.023 ( 0.027) Loss 5.1198e+00 (6.1241e+00) Acc@1 7.42 ( 2.55) Acc@5 20.31 ( 8.12) +Epoch: [0][3502/5004] Time 0.248 ( 0.242) Data 0.018 ( 0.027) Loss 4.9859e+00 (6.1238e+00) Acc@1 8.98 ( 2.56) Acc@5 27.34 ( 8.12) +Epoch: [0][3503/5004] Time 0.241 ( 0.242) Data 0.015 ( 0.027) Loss 5.0052e+00 (6.1235e+00) Acc@1 10.94 ( 2.56) Acc@5 25.39 ( 8.13) +Epoch: [0][3504/5004] Time 0.239 ( 0.242) Data 0.020 ( 0.027) Loss 5.0911e+00 (6.1232e+00) Acc@1 6.25 ( 2.56) Acc@5 20.31 ( 8.13) +Epoch: [0][3505/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 5.0821e+00 (6.1229e+00) Acc@1 6.64 ( 2.56) Acc@5 21.88 ( 8.13) +Epoch: [0][3506/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.0229e+00 (6.1226e+00) Acc@1 11.72 ( 2.56) Acc@5 26.56 ( 8.14) +Epoch: [0][3507/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.027) Loss 5.1811e+00 (6.1223e+00) Acc@1 7.42 ( 2.57) Acc@5 19.14 ( 8.14) +Epoch: [0][3508/5004] Time 0.242 ( 0.242) Data 0.019 ( 0.027) Loss 5.1126e+00 (6.1220e+00) Acc@1 7.03 ( 2.57) Acc@5 19.92 ( 8.14) +Epoch: [0][3509/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.0753e+00 (6.1217e+00) Acc@1 8.20 ( 2.57) Acc@5 20.70 ( 8.15) +Epoch: [0][3510/5004] Time 0.237 ( 0.242) Data 0.018 ( 0.027) Loss 5.0947e+00 (6.1215e+00) Acc@1 10.94 ( 2.57) Acc@5 25.00 ( 8.15) +Epoch: [0][3511/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 5.3039e+00 (6.1212e+00) Acc@1 8.98 ( 2.57) Acc@5 17.97 ( 8.16) +Epoch: [0][3512/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 5.0886e+00 (6.1209e+00) Acc@1 6.64 ( 2.57) Acc@5 19.14 ( 8.16) +Epoch: [0][3513/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.0403e+00 (6.1206e+00) Acc@1 8.98 ( 2.58) Acc@5 20.31 ( 8.16) +Epoch: [0][3514/5004] Time 0.257 ( 0.242) Data 0.021 ( 0.027) Loss 5.2160e+00 (6.1204e+00) Acc@1 4.69 ( 2.58) Acc@5 18.75 ( 8.17) +Epoch: [0][3515/5004] Time 0.253 ( 0.242) Data 0.019 ( 0.027) Loss 5.3323e+00 (6.1201e+00) Acc@1 7.81 ( 2.58) Acc@5 16.41 ( 8.17) +Epoch: [0][3516/5004] Time 0.256 ( 0.242) Data 0.019 ( 0.027) Loss 5.2256e+00 (6.1199e+00) Acc@1 5.47 ( 2.58) Acc@5 20.31 ( 8.17) +Epoch: [0][3517/5004] Time 0.246 ( 0.242) Data 0.018 ( 0.027) Loss 5.2800e+00 (6.1196e+00) Acc@1 7.81 ( 2.58) Acc@5 21.88 ( 8.18) +Epoch: [0][3518/5004] Time 0.258 ( 0.242) Data 0.020 ( 0.027) Loss 5.1513e+00 (6.1194e+00) Acc@1 5.86 ( 2.58) Acc@5 21.48 ( 8.18) +Epoch: [0][3519/5004] Time 0.258 ( 0.242) Data 0.019 ( 0.027) Loss 5.0390e+00 (6.1191e+00) Acc@1 7.42 ( 2.58) Acc@5 20.70 ( 8.18) +Epoch: [0][3520/5004] Time 0.250 ( 0.242) Data 0.019 ( 0.027) Loss 4.8641e+00 (6.1187e+00) Acc@1 9.77 ( 2.58) Acc@5 22.66 ( 8.19) +Epoch: [0][3521/5004] Time 0.224 ( 0.242) Data 0.019 ( 0.027) Loss 5.3697e+00 (6.1185e+00) Acc@1 4.69 ( 2.58) Acc@5 19.92 ( 8.19) +Epoch: [0][3522/5004] Time 0.239 ( 0.242) Data 0.034 ( 0.027) Loss 5.3946e+00 (6.1183e+00) Acc@1 4.69 ( 2.59) Acc@5 16.80 ( 8.19) +Epoch: [0][3523/5004] Time 0.235 ( 0.242) Data 0.033 ( 0.027) Loss 5.1636e+00 (6.1180e+00) Acc@1 6.64 ( 2.59) Acc@5 22.27 ( 8.20) +Epoch: [0][3524/5004] Time 0.240 ( 0.242) Data 0.036 ( 0.027) Loss 5.2333e+00 (6.1178e+00) Acc@1 8.20 ( 2.59) Acc@5 19.92 ( 8.20) +Epoch: [0][3525/5004] Time 0.236 ( 0.242) Data 0.035 ( 0.027) Loss 5.3166e+00 (6.1175e+00) Acc@1 6.25 ( 2.59) Acc@5 15.23 ( 8.20) +Epoch: [0][3526/5004] Time 0.238 ( 0.242) Data 0.035 ( 0.027) Loss 5.1667e+00 (6.1173e+00) Acc@1 6.64 ( 2.59) Acc@5 19.53 ( 8.21) +Epoch: [0][3527/5004] Time 0.236 ( 0.242) Data 0.035 ( 0.027) Loss 5.1770e+00 (6.1170e+00) Acc@1 7.03 ( 2.59) Acc@5 23.83 ( 8.21) +Epoch: [0][3528/5004] Time 0.237 ( 0.242) Data 0.036 ( 0.027) Loss 5.1636e+00 (6.1167e+00) Acc@1 8.59 ( 2.59) Acc@5 20.70 ( 8.21) +Epoch: [0][3529/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.1613e+00 (6.1165e+00) Acc@1 10.94 ( 2.60) Acc@5 20.31 ( 8.22) +Epoch: [0][3530/5004] Time 0.239 ( 0.242) Data 0.034 ( 0.027) Loss 4.8699e+00 (6.1161e+00) Acc@1 12.11 ( 2.60) Acc@5 25.78 ( 8.22) +Epoch: [0][3531/5004] Time 0.239 ( 0.242) Data 0.032 ( 0.027) Loss 5.2663e+00 (6.1159e+00) Acc@1 6.64 ( 2.60) Acc@5 19.53 ( 8.22) +Epoch: [0][3532/5004] Time 0.233 ( 0.242) Data 0.032 ( 0.027) Loss 5.2415e+00 (6.1156e+00) Acc@1 7.42 ( 2.60) Acc@5 19.53 ( 8.23) +Epoch: [0][3533/5004] Time 0.241 ( 0.242) Data 0.036 ( 0.027) Loss 5.1654e+00 (6.1153e+00) Acc@1 8.20 ( 2.60) Acc@5 18.75 ( 8.23) +Epoch: [0][3534/5004] Time 0.237 ( 0.242) Data 0.032 ( 0.027) Loss 4.9860e+00 (6.1150e+00) Acc@1 9.38 ( 2.60) Acc@5 25.00 ( 8.24) +Epoch: [0][3535/5004] Time 0.234 ( 0.242) Data 0.033 ( 0.027) Loss 5.0866e+00 (6.1147e+00) Acc@1 7.03 ( 2.61) Acc@5 19.53 ( 8.24) +Epoch: [0][3536/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.3185e+00 (6.1145e+00) Acc@1 6.64 ( 2.61) Acc@5 17.97 ( 8.24) +Epoch: [0][3537/5004] Time 0.236 ( 0.242) Data 0.034 ( 0.027) Loss 5.1043e+00 (6.1142e+00) Acc@1 8.59 ( 2.61) Acc@5 21.88 ( 8.25) +Epoch: [0][3538/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.2106e+00 (6.1140e+00) Acc@1 8.20 ( 2.61) Acc@5 18.75 ( 8.25) +Epoch: [0][3539/5004] Time 0.242 ( 0.242) Data 0.035 ( 0.027) Loss 5.3020e+00 (6.1137e+00) Acc@1 7.42 ( 2.61) Acc@5 21.88 ( 8.25) +Epoch: [0][3540/5004] Time 0.240 ( 0.242) Data 0.033 ( 0.027) Loss 5.0520e+00 (6.1134e+00) Acc@1 9.77 ( 2.61) Acc@5 24.61 ( 8.26) +Epoch: [0][3541/5004] Time 0.233 ( 0.242) Data 0.032 ( 0.027) Loss 5.1418e+00 (6.1132e+00) Acc@1 7.42 ( 2.61) Acc@5 19.53 ( 8.26) +Epoch: [0][3542/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.0643e+00 (6.1129e+00) Acc@1 8.20 ( 2.62) Acc@5 19.53 ( 8.26) +Epoch: [0][3543/5004] Time 0.243 ( 0.242) Data 0.035 ( 0.027) Loss 5.0377e+00 (6.1126e+00) Acc@1 7.03 ( 2.62) Acc@5 21.88 ( 8.27) +Epoch: [0][3544/5004] Time 0.239 ( 0.242) Data 0.031 ( 0.027) Loss 5.1685e+00 (6.1123e+00) Acc@1 6.64 ( 2.62) Acc@5 21.88 ( 8.27) +Epoch: [0][3545/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 5.0064e+00 (6.1120e+00) Acc@1 7.42 ( 2.62) Acc@5 22.66 ( 8.27) +Epoch: [0][3546/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 5.2743e+00 (6.1118e+00) Acc@1 8.59 ( 2.62) Acc@5 20.70 ( 8.28) +Epoch: [0][3547/5004] Time 0.234 ( 0.242) Data 0.033 ( 0.027) Loss 5.0362e+00 (6.1115e+00) Acc@1 5.86 ( 2.62) Acc@5 21.88 ( 8.28) +Epoch: [0][3548/5004] Time 0.240 ( 0.242) Data 0.036 ( 0.027) Loss 4.9698e+00 (6.1111e+00) Acc@1 8.20 ( 2.62) Acc@5 27.34 ( 8.29) +Epoch: [0][3549/5004] Time 0.240 ( 0.242) Data 0.035 ( 0.027) Loss 5.0827e+00 (6.1108e+00) Acc@1 5.08 ( 2.62) Acc@5 17.97 ( 8.29) +Epoch: [0][3550/5004] Time 0.236 ( 0.242) Data 0.034 ( 0.027) Loss 5.2030e+00 (6.1106e+00) Acc@1 7.03 ( 2.63) Acc@5 21.88 ( 8.29) +Epoch: [0][3551/5004] Time 0.236 ( 0.242) Data 0.035 ( 0.027) Loss 5.0390e+00 (6.1103e+00) Acc@1 9.38 ( 2.63) Acc@5 21.09 ( 8.30) +Epoch: [0][3552/5004] Time 0.242 ( 0.242) Data 0.036 ( 0.027) Loss 5.2339e+00 (6.1100e+00) Acc@1 7.42 ( 2.63) Acc@5 17.58 ( 8.30) +Epoch: [0][3553/5004] Time 0.237 ( 0.242) Data 0.032 ( 0.027) Loss 5.0626e+00 (6.1097e+00) Acc@1 6.64 ( 2.63) Acc@5 18.75 ( 8.30) +Epoch: [0][3554/5004] Time 0.240 ( 0.242) Data 0.033 ( 0.027) Loss 5.0179e+00 (6.1094e+00) Acc@1 8.20 ( 2.63) Acc@5 18.75 ( 8.31) +Epoch: [0][3555/5004] Time 0.244 ( 0.242) Data 0.031 ( 0.027) Loss 5.2876e+00 (6.1092e+00) Acc@1 7.81 ( 2.63) Acc@5 18.36 ( 8.31) +Epoch: [0][3556/5004] Time 0.235 ( 0.242) Data 0.031 ( 0.027) Loss 4.9086e+00 (6.1089e+00) Acc@1 10.55 ( 2.64) Acc@5 26.56 ( 8.31) +Epoch: [0][3557/5004] Time 0.235 ( 0.242) Data 0.033 ( 0.027) Loss 5.2908e+00 (6.1086e+00) Acc@1 6.64 ( 2.64) Acc@5 19.92 ( 8.32) +Epoch: [0][3558/5004] Time 0.239 ( 0.242) Data 0.037 ( 0.027) Loss 5.0262e+00 (6.1083e+00) Acc@1 7.03 ( 2.64) Acc@5 19.14 ( 8.32) +Epoch: [0][3559/5004] Time 0.238 ( 0.242) Data 0.034 ( 0.027) Loss 5.0951e+00 (6.1080e+00) Acc@1 10.16 ( 2.64) Acc@5 21.88 ( 8.32) +Epoch: [0][3560/5004] Time 0.235 ( 0.242) Data 0.036 ( 0.027) Loss 5.0374e+00 (6.1077e+00) Acc@1 8.59 ( 2.64) Acc@5 22.66 ( 8.33) +Epoch: [0][3561/5004] Time 0.238 ( 0.242) Data 0.037 ( 0.027) Loss 5.0954e+00 (6.1075e+00) Acc@1 6.64 ( 2.64) Acc@5 23.83 ( 8.33) +Epoch: [0][3562/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 4.9922e+00 (6.1071e+00) Acc@1 10.16 ( 2.65) Acc@5 22.27 ( 8.34) +Epoch: [0][3563/5004] Time 0.236 ( 0.242) Data 0.035 ( 0.027) Loss 5.1020e+00 (6.1069e+00) Acc@1 8.59 ( 2.65) Acc@5 23.05 ( 8.34) +Epoch: [0][3564/5004] Time 0.238 ( 0.242) Data 0.037 ( 0.027) Loss 5.1216e+00 (6.1066e+00) Acc@1 8.20 ( 2.65) Acc@5 23.44 ( 8.35) +Epoch: [0][3565/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 5.1243e+00 (6.1063e+00) Acc@1 7.03 ( 2.65) Acc@5 23.83 ( 8.35) +Epoch: [0][3566/5004] Time 0.236 ( 0.242) Data 0.035 ( 0.027) Loss 5.0228e+00 (6.1060e+00) Acc@1 8.98 ( 2.65) Acc@5 23.44 ( 8.35) +Epoch: [0][3567/5004] Time 0.237 ( 0.242) Data 0.036 ( 0.027) Loss 5.0714e+00 (6.1057e+00) Acc@1 7.81 ( 2.65) Acc@5 23.83 ( 8.36) +Epoch: [0][3568/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.1532e+00 (6.1055e+00) Acc@1 7.03 ( 2.65) Acc@5 19.92 ( 8.36) +Epoch: [0][3569/5004] Time 0.240 ( 0.242) Data 0.036 ( 0.027) Loss 5.1527e+00 (6.1052e+00) Acc@1 8.20 ( 2.66) Acc@5 21.09 ( 8.36) +Epoch: [0][3570/5004] Time 0.243 ( 0.242) Data 0.035 ( 0.027) Loss 5.0160e+00 (6.1049e+00) Acc@1 7.81 ( 2.66) Acc@5 22.27 ( 8.37) +Epoch: [0][3571/5004] Time 0.241 ( 0.242) Data 0.034 ( 0.027) Loss 5.0444e+00 (6.1046e+00) Acc@1 8.98 ( 2.66) Acc@5 21.09 ( 8.37) +Epoch: [0][3572/5004] Time 0.240 ( 0.242) Data 0.032 ( 0.027) Loss 5.0810e+00 (6.1043e+00) Acc@1 7.03 ( 2.66) Acc@5 21.88 ( 8.38) +Epoch: [0][3573/5004] Time 0.235 ( 0.242) Data 0.032 ( 0.027) Loss 5.0247e+00 (6.1040e+00) Acc@1 10.55 ( 2.66) Acc@5 24.61 ( 8.38) +Epoch: [0][3574/5004] Time 0.238 ( 0.242) Data 0.034 ( 0.027) Loss 5.0672e+00 (6.1037e+00) Acc@1 7.81 ( 2.66) Acc@5 23.44 ( 8.38) +Epoch: [0][3575/5004] Time 0.234 ( 0.242) Data 0.034 ( 0.027) Loss 5.0462e+00 (6.1034e+00) Acc@1 10.16 ( 2.67) Acc@5 25.00 ( 8.39) +Epoch: [0][3576/5004] Time 0.239 ( 0.242) Data 0.036 ( 0.027) Loss 4.9697e+00 (6.1031e+00) Acc@1 9.77 ( 2.67) Acc@5 24.22 ( 8.39) +Epoch: [0][3577/5004] Time 0.235 ( 0.242) Data 0.035 ( 0.027) Loss 5.1117e+00 (6.1028e+00) Acc@1 8.20 ( 2.67) Acc@5 19.53 ( 8.40) +Epoch: [0][3578/5004] Time 0.246 ( 0.242) Data 0.040 ( 0.027) Loss 5.2727e+00 (6.1026e+00) Acc@1 4.69 ( 2.67) Acc@5 19.14 ( 8.40) +Epoch: [0][3579/5004] Time 0.233 ( 0.242) Data 0.033 ( 0.027) Loss 5.2671e+00 (6.1024e+00) Acc@1 8.98 ( 2.67) Acc@5 22.66 ( 8.40) +Epoch: [0][3580/5004] Time 0.243 ( 0.242) Data 0.038 ( 0.027) Loss 5.2339e+00 (6.1021e+00) Acc@1 7.81 ( 2.67) Acc@5 17.97 ( 8.41) +Epoch: [0][3581/5004] Time 0.230 ( 0.242) Data 0.031 ( 0.027) Loss 5.0357e+00 (6.1018e+00) Acc@1 7.03 ( 2.67) Acc@5 18.75 ( 8.41) +Epoch: [0][3582/5004] Time 0.239 ( 0.242) Data 0.037 ( 0.027) Loss 4.8402e+00 (6.1015e+00) Acc@1 14.84 ( 2.68) Acc@5 30.08 ( 8.42) +Epoch: [0][3583/5004] Time 0.237 ( 0.242) Data 0.038 ( 0.027) Loss 5.1875e+00 (6.1012e+00) Acc@1 8.98 ( 2.68) Acc@5 22.66 ( 8.42) +Epoch: [0][3584/5004] Time 0.237 ( 0.242) Data 0.037 ( 0.027) Loss 4.9931e+00 (6.1009e+00) Acc@1 9.38 ( 2.68) Acc@5 23.44 ( 8.42) +Epoch: [0][3585/5004] Time 0.236 ( 0.242) Data 0.037 ( 0.027) Loss 4.9485e+00 (6.1006e+00) Acc@1 8.59 ( 2.68) Acc@5 24.61 ( 8.43) +Epoch: [0][3586/5004] Time 0.240 ( 0.242) Data 0.037 ( 0.027) Loss 5.0595e+00 (6.1003e+00) Acc@1 9.77 ( 2.68) Acc@5 21.48 ( 8.43) +Epoch: [0][3587/5004] Time 0.236 ( 0.242) Data 0.034 ( 0.027) Loss 5.2473e+00 (6.1000e+00) Acc@1 8.20 ( 2.69) Acc@5 21.48 ( 8.44) +Epoch: [0][3588/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.2083e+00 (6.0998e+00) Acc@1 7.42 ( 2.69) Acc@5 17.58 ( 8.44) +Epoch: [0][3589/5004] Time 0.236 ( 0.242) Data 0.034 ( 0.027) Loss 5.0455e+00 (6.0995e+00) Acc@1 8.98 ( 2.69) Acc@5 22.27 ( 8.44) +Epoch: [0][3590/5004] Time 0.241 ( 0.242) Data 0.035 ( 0.027) Loss 4.9723e+00 (6.0992e+00) Acc@1 8.98 ( 2.69) Acc@5 23.05 ( 8.45) +Epoch: [0][3591/5004] Time 0.233 ( 0.242) Data 0.031 ( 0.027) Loss 5.2088e+00 (6.0989e+00) Acc@1 5.08 ( 2.69) Acc@5 18.75 ( 8.45) +Epoch: [0][3592/5004] Time 0.238 ( 0.242) Data 0.036 ( 0.027) Loss 5.1079e+00 (6.0987e+00) Acc@1 8.59 ( 2.69) Acc@5 22.66 ( 8.45) +Epoch: [0][3593/5004] Time 0.240 ( 0.242) Data 0.035 ( 0.027) Loss 5.0853e+00 (6.0984e+00) Acc@1 8.59 ( 2.70) Acc@5 25.00 ( 8.46) +Epoch: [0][3594/5004] Time 0.259 ( 0.242) Data 0.034 ( 0.027) Loss 5.1091e+00 (6.0981e+00) Acc@1 7.03 ( 2.70) Acc@5 23.44 ( 8.46) +Epoch: [0][3595/5004] Time 0.257 ( 0.242) Data 0.018 ( 0.027) Loss 5.1235e+00 (6.0978e+00) Acc@1 8.98 ( 2.70) Acc@5 22.66 ( 8.47) +Epoch: [0][3596/5004] Time 0.250 ( 0.242) Data 0.016 ( 0.027) Loss 5.0474e+00 (6.0975e+00) Acc@1 8.59 ( 2.70) Acc@5 23.05 ( 8.47) +Epoch: [0][3597/5004] Time 0.248 ( 0.242) Data 0.017 ( 0.027) Loss 4.9216e+00 (6.0972e+00) Acc@1 10.55 ( 2.70) Acc@5 25.00 ( 8.47) +Epoch: [0][3598/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 4.9270e+00 (6.0969e+00) Acc@1 9.77 ( 2.70) Acc@5 25.39 ( 8.48) +Epoch: [0][3599/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 5.0217e+00 (6.0966e+00) Acc@1 6.64 ( 2.71) Acc@5 23.05 ( 8.48) +Epoch: [0][3600/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 5.3215e+00 (6.0964e+00) Acc@1 4.69 ( 2.71) Acc@5 16.80 ( 8.49) +Epoch: [0][3601/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 5.0448e+00 (6.0961e+00) Acc@1 7.03 ( 2.71) Acc@5 21.09 ( 8.49) +Epoch: [0][3602/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 5.1239e+00 (6.0958e+00) Acc@1 6.64 ( 2.71) Acc@5 17.19 ( 8.49) +Epoch: [0][3603/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 5.2086e+00 (6.0956e+00) Acc@1 5.08 ( 2.71) Acc@5 16.41 ( 8.49) +Epoch: [0][3604/5004] Time 0.252 ( 0.242) Data 0.018 ( 0.027) Loss 5.1453e+00 (6.0953e+00) Acc@1 7.03 ( 2.71) Acc@5 19.14 ( 8.50) +Epoch: [0][3605/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 5.0060e+00 (6.0950e+00) Acc@1 8.59 ( 2.71) Acc@5 26.17 ( 8.50) +Epoch: [0][3606/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 5.0729e+00 (6.0947e+00) Acc@1 8.20 ( 2.71) Acc@5 25.00 ( 8.51) +Epoch: [0][3607/5004] Time 0.244 ( 0.242) Data 0.019 ( 0.027) Loss 4.9880e+00 (6.0944e+00) Acc@1 10.16 ( 2.71) Acc@5 26.95 ( 8.51) +Epoch: [0][3608/5004] Time 0.252 ( 0.242) Data 0.021 ( 0.027) Loss 5.1555e+00 (6.0942e+00) Acc@1 7.81 ( 2.72) Acc@5 23.44 ( 8.51) +Epoch: [0][3609/5004] Time 0.246 ( 0.242) Data 0.019 ( 0.027) Loss 4.9685e+00 (6.0938e+00) Acc@1 9.38 ( 2.72) Acc@5 30.47 ( 8.52) +Epoch: [0][3610/5004] Time 0.253 ( 0.242) Data 0.020 ( 0.027) Loss 5.0676e+00 (6.0936e+00) Acc@1 7.42 ( 2.72) Acc@5 19.14 ( 8.52) +Epoch: [0][3611/5004] Time 0.241 ( 0.242) Data 0.015 ( 0.027) Loss 4.9754e+00 (6.0933e+00) Acc@1 10.94 ( 2.72) Acc@5 25.00 ( 8.53) +Epoch: [0][3612/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 5.2235e+00 (6.0930e+00) Acc@1 8.98 ( 2.72) Acc@5 19.92 ( 8.53) +Epoch: [0][3613/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 5.1029e+00 (6.0927e+00) Acc@1 7.81 ( 2.72) Acc@5 23.05 ( 8.54) +Epoch: [0][3614/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 5.1928e+00 (6.0925e+00) Acc@1 6.64 ( 2.73) Acc@5 19.92 ( 8.54) +Epoch: [0][3615/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 5.1366e+00 (6.0922e+00) Acc@1 8.98 ( 2.73) Acc@5 21.88 ( 8.54) +Epoch: [0][3616/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 5.1290e+00 (6.0920e+00) Acc@1 7.03 ( 2.73) Acc@5 19.53 ( 8.55) +Epoch: [0][3617/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.027) Loss 5.1121e+00 (6.0917e+00) Acc@1 8.98 ( 2.73) Acc@5 21.88 ( 8.55) +Epoch: [0][3618/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 5.0526e+00 (6.0914e+00) Acc@1 8.98 ( 2.73) Acc@5 22.66 ( 8.55) +Epoch: [0][3619/5004] Time 0.253 ( 0.242) Data 0.020 ( 0.027) Loss 4.9092e+00 (6.0911e+00) Acc@1 9.77 ( 2.73) Acc@5 25.00 ( 8.56) +Epoch: [0][3620/5004] Time 0.244 ( 0.242) Data 0.018 ( 0.027) Loss 5.2482e+00 (6.0908e+00) Acc@1 6.64 ( 2.74) Acc@5 19.53 ( 8.56) +Epoch: [0][3621/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 4.9227e+00 (6.0905e+00) Acc@1 10.94 ( 2.74) Acc@5 28.52 ( 8.57) +Epoch: [0][3622/5004] Time 0.246 ( 0.242) Data 0.019 ( 0.027) Loss 5.1689e+00 (6.0903e+00) Acc@1 7.42 ( 2.74) Acc@5 21.88 ( 8.57) +Epoch: [0][3623/5004] Time 0.251 ( 0.242) Data 0.020 ( 0.027) Loss 5.1138e+00 (6.0900e+00) Acc@1 8.20 ( 2.74) Acc@5 23.05 ( 8.57) +Epoch: [0][3624/5004] Time 0.244 ( 0.242) Data 0.016 ( 0.027) Loss 5.4111e+00 (6.0898e+00) Acc@1 4.69 ( 2.74) Acc@5 17.58 ( 8.58) +Epoch: [0][3625/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 4.8641e+00 (6.0895e+00) Acc@1 6.64 ( 2.74) Acc@5 24.22 ( 8.58) +Epoch: [0][3626/5004] Time 0.256 ( 0.242) Data 0.020 ( 0.027) Loss 4.8740e+00 (6.0891e+00) Acc@1 9.77 ( 2.74) Acc@5 27.34 ( 8.59) +Epoch: [0][3627/5004] Time 0.242 ( 0.242) Data 0.016 ( 0.027) Loss 4.9615e+00 (6.0888e+00) Acc@1 7.42 ( 2.75) Acc@5 19.92 ( 8.59) +Epoch: [0][3628/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.1069e+00 (6.0886e+00) Acc@1 6.64 ( 2.75) Acc@5 21.09 ( 8.59) +Epoch: [0][3629/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 5.1756e+00 (6.0883e+00) Acc@1 7.03 ( 2.75) Acc@5 19.92 ( 8.60) +Epoch: [0][3630/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.0054e+00 (6.0880e+00) Acc@1 8.20 ( 2.75) Acc@5 21.88 ( 8.60) +Epoch: [0][3631/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 5.1588e+00 (6.0877e+00) Acc@1 6.64 ( 2.75) Acc@5 21.09 ( 8.60) +Epoch: [0][3632/5004] Time 0.251 ( 0.242) Data 0.020 ( 0.027) Loss 5.1266e+00 (6.0875e+00) Acc@1 8.98 ( 2.75) Acc@5 23.44 ( 8.61) +Epoch: [0][3633/5004] Time 0.246 ( 0.242) Data 0.016 ( 0.027) Loss 5.1406e+00 (6.0872e+00) Acc@1 8.20 ( 2.75) Acc@5 18.36 ( 8.61) +Epoch: [0][3634/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 5.0914e+00 (6.0869e+00) Acc@1 8.59 ( 2.76) Acc@5 23.44 ( 8.61) +Epoch: [0][3635/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 5.1125e+00 (6.0867e+00) Acc@1 6.25 ( 2.76) Acc@5 18.36 ( 8.62) +Epoch: [0][3636/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 5.1643e+00 (6.0864e+00) Acc@1 8.20 ( 2.76) Acc@5 22.27 ( 8.62) +Epoch: [0][3637/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.9962e+00 (6.0861e+00) Acc@1 9.77 ( 2.76) Acc@5 26.17 ( 8.62) +Epoch: [0][3638/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.0219e+00 (6.0858e+00) Acc@1 9.38 ( 2.76) Acc@5 24.22 ( 8.63) +Epoch: [0][3639/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 5.2010e+00 (6.0856e+00) Acc@1 6.64 ( 2.76) Acc@5 23.05 ( 8.63) +Epoch: [0][3640/5004] Time 0.237 ( 0.242) Data 0.016 ( 0.027) Loss 4.9035e+00 (6.0853e+00) Acc@1 11.72 ( 2.76) Acc@5 25.78 ( 8.64) +Epoch: [0][3641/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0281e+00 (6.0850e+00) Acc@1 6.64 ( 2.77) Acc@5 23.05 ( 8.64) +Epoch: [0][3642/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.9218e+00 (6.0847e+00) Acc@1 8.20 ( 2.77) Acc@5 27.34 ( 8.65) +Epoch: [0][3643/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.0347e+00 (6.0844e+00) Acc@1 9.77 ( 2.77) Acc@5 23.44 ( 8.65) +Epoch: [0][3644/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.0676e+00 (6.0841e+00) Acc@1 10.16 ( 2.77) Acc@5 25.00 ( 8.66) +Epoch: [0][3645/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.0282e+00 (6.0838e+00) Acc@1 10.16 ( 2.77) Acc@5 22.27 ( 8.66) +Epoch: [0][3646/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.1231e+00 (6.0835e+00) Acc@1 6.64 ( 2.77) Acc@5 19.53 ( 8.66) +Epoch: [0][3647/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.0325e+00 (6.0832e+00) Acc@1 8.59 ( 2.78) Acc@5 25.39 ( 8.67) +Epoch: [0][3648/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 5.0718e+00 (6.0830e+00) Acc@1 7.81 ( 2.78) Acc@5 17.58 ( 8.67) +Epoch: [0][3649/5004] Time 0.252 ( 0.242) Data 0.022 ( 0.027) Loss 5.1992e+00 (6.0827e+00) Acc@1 9.38 ( 2.78) Acc@5 23.05 ( 8.67) +Epoch: [0][3650/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.9860e+00 (6.0824e+00) Acc@1 8.98 ( 2.78) Acc@5 22.66 ( 8.68) +Epoch: [0][3651/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.0584e+00 (6.0821e+00) Acc@1 7.81 ( 2.78) Acc@5 19.92 ( 8.68) +Epoch: [0][3652/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.0970e+00 (6.0819e+00) Acc@1 8.59 ( 2.78) Acc@5 23.83 ( 8.68) +Epoch: [0][3653/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.0528e+00 (6.0816e+00) Acc@1 8.20 ( 2.79) Acc@5 21.88 ( 8.69) +Epoch: [0][3654/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.8951e+00 (6.0813e+00) Acc@1 10.94 ( 2.79) Acc@5 25.78 ( 8.69) +Epoch: [0][3655/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 5.1683e+00 (6.0810e+00) Acc@1 8.98 ( 2.79) Acc@5 23.44 ( 8.70) +Epoch: [0][3656/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.9855e+00 (6.0807e+00) Acc@1 7.42 ( 2.79) Acc@5 24.22 ( 8.70) +Epoch: [0][3657/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.1353e+00 (6.0805e+00) Acc@1 8.20 ( 2.79) Acc@5 20.31 ( 8.70) +Epoch: [0][3658/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.0491e+00 (6.0802e+00) Acc@1 9.38 ( 2.79) Acc@5 22.66 ( 8.71) +Epoch: [0][3659/5004] Time 0.253 ( 0.242) Data 0.026 ( 0.027) Loss 4.9556e+00 (6.0799e+00) Acc@1 9.38 ( 2.80) Acc@5 25.39 ( 8.71) +Epoch: [0][3660/5004] Time 0.234 ( 0.242) Data 0.017 ( 0.027) Loss 5.2134e+00 (6.0796e+00) Acc@1 9.38 ( 2.80) Acc@5 23.05 ( 8.72) +Epoch: [0][3661/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.0379e+00 (6.0794e+00) Acc@1 8.20 ( 2.80) Acc@5 22.66 ( 8.72) +Epoch: [0][3662/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.3351e+00 (6.0792e+00) Acc@1 7.81 ( 2.80) Acc@5 19.92 ( 8.72) +Epoch: [0][3663/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.0832e+00 (6.0789e+00) Acc@1 9.38 ( 2.80) Acc@5 24.61 ( 8.73) +Epoch: [0][3664/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 5.0696e+00 (6.0786e+00) Acc@1 7.81 ( 2.80) Acc@5 22.27 ( 8.73) +Epoch: [0][3665/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.9841e+00 (6.0783e+00) Acc@1 7.81 ( 2.80) Acc@5 23.83 ( 8.74) +Epoch: [0][3666/5004] Time 0.238 ( 0.242) Data 0.022 ( 0.027) Loss 5.0278e+00 (6.0780e+00) Acc@1 9.77 ( 2.81) Acc@5 23.44 ( 8.74) +Epoch: [0][3667/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.0903e+00 (6.0777e+00) Acc@1 8.59 ( 2.81) Acc@5 26.17 ( 8.74) +Epoch: [0][3668/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 5.0986e+00 (6.0775e+00) Acc@1 8.98 ( 2.81) Acc@5 20.31 ( 8.75) +Epoch: [0][3669/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 5.1105e+00 (6.0772e+00) Acc@1 7.03 ( 2.81) Acc@5 19.14 ( 8.75) +Epoch: [0][3670/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.0757e+00 (6.0769e+00) Acc@1 9.77 ( 2.81) Acc@5 23.05 ( 8.75) +Epoch: [0][3671/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.1256e+00 (6.0767e+00) Acc@1 6.64 ( 2.81) Acc@5 17.58 ( 8.76) +Epoch: [0][3672/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.0173e+00 (6.0764e+00) Acc@1 10.55 ( 2.82) Acc@5 24.22 ( 8.76) +Epoch: [0][3673/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.3236e+00 (6.0762e+00) Acc@1 6.64 ( 2.82) Acc@5 16.02 ( 8.76) +Epoch: [0][3674/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 5.1451e+00 (6.0759e+00) Acc@1 6.25 ( 2.82) Acc@5 23.44 ( 8.77) +Epoch: [0][3675/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.9696e+00 (6.0756e+00) Acc@1 7.42 ( 2.82) Acc@5 23.44 ( 8.77) +Epoch: [0][3676/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.027) Loss 5.0073e+00 (6.0753e+00) Acc@1 8.20 ( 2.82) Acc@5 21.48 ( 8.77) +Epoch: [0][3677/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 5.0640e+00 (6.0751e+00) Acc@1 7.03 ( 2.82) Acc@5 19.92 ( 8.78) +Epoch: [0][3678/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9770e+00 (6.0748e+00) Acc@1 7.81 ( 2.82) Acc@5 23.83 ( 8.78) +Epoch: [0][3679/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 5.0972e+00 (6.0745e+00) Acc@1 9.77 ( 2.83) Acc@5 22.66 ( 8.78) +Epoch: [0][3680/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.2043e+00 (6.0743e+00) Acc@1 7.42 ( 2.83) Acc@5 22.66 ( 8.79) +Epoch: [0][3681/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.1736e+00 (6.0740e+00) Acc@1 8.20 ( 2.83) Acc@5 20.70 ( 8.79) +Epoch: [0][3682/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 5.0246e+00 (6.0737e+00) Acc@1 8.59 ( 2.83) Acc@5 23.83 ( 8.80) +Epoch: [0][3683/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0614e+00 (6.0735e+00) Acc@1 12.11 ( 2.83) Acc@5 26.17 ( 8.80) +Epoch: [0][3684/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.9769e+00 (6.0732e+00) Acc@1 11.33 ( 2.83) Acc@5 24.22 ( 8.80) +Epoch: [0][3685/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 5.0576e+00 (6.0729e+00) Acc@1 10.16 ( 2.84) Acc@5 24.61 ( 8.81) +Epoch: [0][3686/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.3935e+00 (6.0727e+00) Acc@1 6.64 ( 2.84) Acc@5 18.75 ( 8.81) +Epoch: [0][3687/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 5.2215e+00 (6.0725e+00) Acc@1 10.94 ( 2.84) Acc@5 23.44 ( 8.82) +Epoch: [0][3688/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.9525e+00 (6.0722e+00) Acc@1 9.77 ( 2.84) Acc@5 23.05 ( 8.82) +Epoch: [0][3689/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 4.9789e+00 (6.0719e+00) Acc@1 9.77 ( 2.84) Acc@5 24.61 ( 8.82) +Epoch: [0][3690/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.7960e+00 (6.0715e+00) Acc@1 11.33 ( 2.85) Acc@5 30.86 ( 8.83) +Epoch: [0][3691/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 5.1294e+00 (6.0713e+00) Acc@1 7.81 ( 2.85) Acc@5 19.92 ( 8.83) +Epoch: [0][3692/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 5.1173e+00 (6.0710e+00) Acc@1 7.03 ( 2.85) Acc@5 21.88 ( 8.84) +Epoch: [0][3693/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 4.8587e+00 (6.0707e+00) Acc@1 10.16 ( 2.85) Acc@5 24.61 ( 8.84) +Epoch: [0][3694/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.1527e+00 (6.0704e+00) Acc@1 7.03 ( 2.85) Acc@5 23.05 ( 8.84) +Epoch: [0][3695/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 4.9703e+00 (6.0701e+00) Acc@1 8.59 ( 2.85) Acc@5 23.05 ( 8.85) +Epoch: [0][3696/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.0961e+00 (6.0699e+00) Acc@1 7.81 ( 2.85) Acc@5 25.39 ( 8.85) +Epoch: [0][3697/5004] Time 0.237 ( 0.242) Data 0.024 ( 0.027) Loss 4.8753e+00 (6.0696e+00) Acc@1 8.20 ( 2.86) Acc@5 26.56 ( 8.86) +Epoch: [0][3698/5004] Time 0.213 ( 0.242) Data 0.025 ( 0.027) Loss 4.8905e+00 (6.0692e+00) Acc@1 9.77 ( 2.86) Acc@5 26.56 ( 8.86) +Epoch: [0][3699/5004] Time 0.235 ( 0.242) Data 0.049 ( 0.027) Loss 4.9082e+00 (6.0689e+00) Acc@1 8.59 ( 2.86) Acc@5 22.27 ( 8.87) +Epoch: [0][3700/5004] Time 0.236 ( 0.242) Data 0.050 ( 0.027) Loss 4.9865e+00 (6.0686e+00) Acc@1 6.25 ( 2.86) Acc@5 23.44 ( 8.87) +Epoch: [0][3701/5004] Time 0.234 ( 0.242) Data 0.051 ( 0.027) Loss 5.0016e+00 (6.0683e+00) Acc@1 10.16 ( 2.86) Acc@5 27.34 ( 8.87) +Epoch: [0][3702/5004] Time 0.242 ( 0.242) Data 0.053 ( 0.027) Loss 5.0448e+00 (6.0681e+00) Acc@1 8.20 ( 2.86) Acc@5 20.70 ( 8.88) +Epoch: [0][3703/5004] Time 0.234 ( 0.242) Data 0.049 ( 0.027) Loss 4.9771e+00 (6.0678e+00) Acc@1 8.20 ( 2.86) Acc@5 23.44 ( 8.88) +Epoch: [0][3704/5004] Time 0.241 ( 0.242) Data 0.052 ( 0.027) Loss 5.1859e+00 (6.0675e+00) Acc@1 8.98 ( 2.87) Acc@5 18.36 ( 8.88) +Epoch: [0][3705/5004] Time 0.235 ( 0.242) Data 0.052 ( 0.027) Loss 5.0199e+00 (6.0673e+00) Acc@1 8.20 ( 2.87) Acc@5 21.48 ( 8.89) +Epoch: [0][3706/5004] Time 0.240 ( 0.242) Data 0.055 ( 0.027) Loss 4.9828e+00 (6.0670e+00) Acc@1 10.55 ( 2.87) Acc@5 25.00 ( 8.89) +Epoch: [0][3707/5004] Time 0.241 ( 0.242) Data 0.052 ( 0.027) Loss 4.9635e+00 (6.0667e+00) Acc@1 6.25 ( 2.87) Acc@5 24.61 ( 8.90) +Epoch: [0][3708/5004] Time 0.237 ( 0.242) Data 0.051 ( 0.027) Loss 5.0403e+00 (6.0664e+00) Acc@1 8.20 ( 2.87) Acc@5 20.70 ( 8.90) +Epoch: [0][3709/5004] Time 0.275 ( 0.242) Data 0.052 ( 0.027) Loss 5.1200e+00 (6.0661e+00) Acc@1 5.86 ( 2.87) Acc@5 20.70 ( 8.90) +Epoch: [0][3710/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.1174e+00 (6.0659e+00) Acc@1 10.16 ( 2.87) Acc@5 21.48 ( 8.91) +Epoch: [0][3711/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.9437e+00 (6.0656e+00) Acc@1 8.98 ( 2.88) Acc@5 24.22 ( 8.91) +Epoch: [0][3712/5004] Time 0.250 ( 0.242) Data 0.024 ( 0.027) Loss 5.1959e+00 (6.0653e+00) Acc@1 5.47 ( 2.88) Acc@5 19.53 ( 8.91) +Epoch: [0][3713/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.9280e+00 (6.0650e+00) Acc@1 9.77 ( 2.88) Acc@5 24.61 ( 8.92) +Epoch: [0][3714/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 4.9351e+00 (6.0647e+00) Acc@1 8.98 ( 2.88) Acc@5 25.78 ( 8.92) +Epoch: [0][3715/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.1239e+00 (6.0645e+00) Acc@1 9.77 ( 2.88) Acc@5 23.44 ( 8.93) +Epoch: [0][3716/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 5.0627e+00 (6.0642e+00) Acc@1 8.20 ( 2.88) Acc@5 23.44 ( 8.93) +Epoch: [0][3717/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.9703e+00 (6.0639e+00) Acc@1 11.72 ( 2.89) Acc@5 26.56 ( 8.93) +Epoch: [0][3718/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.9914e+00 (6.0636e+00) Acc@1 8.20 ( 2.89) Acc@5 21.88 ( 8.94) +Epoch: [0][3719/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.9039e+00 (6.0633e+00) Acc@1 5.47 ( 2.89) Acc@5 23.05 ( 8.94) +Epoch: [0][3720/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0990e+00 (6.0631e+00) Acc@1 7.42 ( 2.89) Acc@5 22.27 ( 8.95) +Epoch: [0][3721/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.9076e+00 (6.0627e+00) Acc@1 10.16 ( 2.89) Acc@5 25.00 ( 8.95) +Epoch: [0][3722/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.0886e+00 (6.0625e+00) Acc@1 8.59 ( 2.89) Acc@5 21.48 ( 8.95) +Epoch: [0][3723/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.0052e+00 (6.0622e+00) Acc@1 9.38 ( 2.89) Acc@5 25.00 ( 8.96) +Epoch: [0][3724/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.8914e+00 (6.0619e+00) Acc@1 9.77 ( 2.90) Acc@5 27.73 ( 8.96) +Epoch: [0][3725/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 5.0158e+00 (6.0616e+00) Acc@1 8.20 ( 2.90) Acc@5 21.88 ( 8.97) +Epoch: [0][3726/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0783e+00 (6.0613e+00) Acc@1 7.42 ( 2.90) Acc@5 25.00 ( 8.97) +Epoch: [0][3727/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 4.9385e+00 (6.0610e+00) Acc@1 8.59 ( 2.90) Acc@5 23.44 ( 8.97) +Epoch: [0][3728/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.9792e+00 (6.0607e+00) Acc@1 7.81 ( 2.90) Acc@5 21.09 ( 8.98) +Epoch: [0][3729/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9526e+00 (6.0605e+00) Acc@1 8.98 ( 2.90) Acc@5 24.61 ( 8.98) +Epoch: [0][3730/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.0118e+00 (6.0602e+00) Acc@1 7.42 ( 2.91) Acc@5 22.27 ( 8.99) +Epoch: [0][3731/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.1045e+00 (6.0599e+00) Acc@1 6.25 ( 2.91) Acc@5 17.97 ( 8.99) +Epoch: [0][3732/5004] Time 0.253 ( 0.242) Data 0.022 ( 0.027) Loss 4.9331e+00 (6.0596e+00) Acc@1 8.98 ( 2.91) Acc@5 23.44 ( 8.99) +Epoch: [0][3733/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 5.0313e+00 (6.0593e+00) Acc@1 5.47 ( 2.91) Acc@5 19.14 ( 8.99) +Epoch: [0][3734/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.0451e+00 (6.0591e+00) Acc@1 7.81 ( 2.91) Acc@5 24.22 ( 9.00) +Epoch: [0][3735/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.9802e+00 (6.0588e+00) Acc@1 10.16 ( 2.91) Acc@5 23.44 ( 9.00) +Epoch: [0][3736/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.1323e+00 (6.0585e+00) Acc@1 8.59 ( 2.91) Acc@5 20.31 ( 9.01) +Epoch: [0][3737/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 5.0868e+00 (6.0583e+00) Acc@1 7.81 ( 2.91) Acc@5 23.44 ( 9.01) +Epoch: [0][3738/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.9454e+00 (6.0580e+00) Acc@1 8.98 ( 2.92) Acc@5 23.05 ( 9.01) +Epoch: [0][3739/5004] Time 0.251 ( 0.242) Data 0.023 ( 0.027) Loss 5.1218e+00 (6.0577e+00) Acc@1 6.64 ( 2.92) Acc@5 23.83 ( 9.02) +Epoch: [0][3740/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 5.0492e+00 (6.0575e+00) Acc@1 9.77 ( 2.92) Acc@5 23.83 ( 9.02) +Epoch: [0][3741/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 5.0166e+00 (6.0572e+00) Acc@1 10.16 ( 2.92) Acc@5 23.83 ( 9.02) +Epoch: [0][3742/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.0145e+00 (6.0569e+00) Acc@1 6.64 ( 2.92) Acc@5 23.05 ( 9.03) +Epoch: [0][3743/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.9607e+00 (6.0566e+00) Acc@1 10.55 ( 2.92) Acc@5 26.95 ( 9.03) +Epoch: [0][3744/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0203e+00 (6.0563e+00) Acc@1 10.55 ( 2.93) Acc@5 21.09 ( 9.04) +Epoch: [0][3745/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.9826e+00 (6.0560e+00) Acc@1 6.64 ( 2.93) Acc@5 22.66 ( 9.04) +Epoch: [0][3746/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.7940e+00 (6.0557e+00) Acc@1 9.38 ( 2.93) Acc@5 27.73 ( 9.04) +Epoch: [0][3747/5004] Time 0.205 ( 0.242) Data 0.023 ( 0.027) Loss 5.1188e+00 (6.0555e+00) Acc@1 10.16 ( 2.93) Acc@5 21.09 ( 9.05) +Epoch: [0][3748/5004] Time 0.241 ( 0.242) Data 0.056 ( 0.027) Loss 5.0137e+00 (6.0552e+00) Acc@1 7.42 ( 2.93) Acc@5 22.66 ( 9.05) +Epoch: [0][3749/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.9134e+00 (6.0549e+00) Acc@1 11.72 ( 2.93) Acc@5 27.34 ( 9.06) +Epoch: [0][3750/5004] Time 0.237 ( 0.242) Data 0.055 ( 0.027) Loss 5.0186e+00 (6.0546e+00) Acc@1 10.16 ( 2.94) Acc@5 24.22 ( 9.06) +Epoch: [0][3751/5004] Time 0.240 ( 0.242) Data 0.055 ( 0.027) Loss 5.0610e+00 (6.0543e+00) Acc@1 9.77 ( 2.94) Acc@5 22.27 ( 9.06) +Epoch: [0][3752/5004] Time 0.239 ( 0.242) Data 0.054 ( 0.027) Loss 4.8437e+00 (6.0540e+00) Acc@1 9.38 ( 2.94) Acc@5 27.34 ( 9.07) +Epoch: [0][3753/5004] Time 0.234 ( 0.242) Data 0.052 ( 0.027) Loss 5.1335e+00 (6.0538e+00) Acc@1 8.98 ( 2.94) Acc@5 24.22 ( 9.07) +Epoch: [0][3754/5004] Time 0.239 ( 0.242) Data 0.055 ( 0.027) Loss 5.0043e+00 (6.0535e+00) Acc@1 10.55 ( 2.94) Acc@5 23.83 ( 9.08) +Epoch: [0][3755/5004] Time 0.239 ( 0.242) Data 0.054 ( 0.027) Loss 4.9765e+00 (6.0532e+00) Acc@1 8.98 ( 2.94) Acc@5 19.14 ( 9.08) +Epoch: [0][3756/5004] Time 0.237 ( 0.242) Data 0.052 ( 0.027) Loss 5.1421e+00 (6.0530e+00) Acc@1 6.64 ( 2.95) Acc@5 19.53 ( 9.08) +Epoch: [0][3757/5004] Time 0.237 ( 0.242) Data 0.053 ( 0.027) Loss 5.0993e+00 (6.0527e+00) Acc@1 7.03 ( 2.95) Acc@5 21.88 ( 9.09) +Epoch: [0][3758/5004] Time 0.239 ( 0.242) Data 0.054 ( 0.027) Loss 4.9201e+00 (6.0524e+00) Acc@1 9.38 ( 2.95) Acc@5 23.83 ( 9.09) +Epoch: [0][3759/5004] Time 0.233 ( 0.242) Data 0.054 ( 0.027) Loss 5.0434e+00 (6.0521e+00) Acc@1 10.16 ( 2.95) Acc@5 22.66 ( 9.09) +Epoch: [0][3760/5004] Time 0.241 ( 0.242) Data 0.058 ( 0.027) Loss 4.9400e+00 (6.0518e+00) Acc@1 11.72 ( 2.95) Acc@5 25.00 ( 9.10) +Epoch: [0][3761/5004] Time 0.239 ( 0.242) Data 0.055 ( 0.027) Loss 5.0331e+00 (6.0516e+00) Acc@1 7.03 ( 2.95) Acc@5 22.27 ( 9.10) +Epoch: [0][3762/5004] Time 0.236 ( 0.242) Data 0.055 ( 0.027) Loss 5.0716e+00 (6.0513e+00) Acc@1 6.25 ( 2.95) Acc@5 25.78 ( 9.11) +Epoch: [0][3763/5004] Time 0.241 ( 0.242) Data 0.056 ( 0.027) Loss 5.1705e+00 (6.0511e+00) Acc@1 7.03 ( 2.96) Acc@5 19.14 ( 9.11) +Epoch: [0][3764/5004] Time 0.232 ( 0.242) Data 0.054 ( 0.027) Loss 5.1045e+00 (6.0508e+00) Acc@1 8.20 ( 2.96) Acc@5 21.88 ( 9.11) +Epoch: [0][3765/5004] Time 0.241 ( 0.242) Data 0.059 ( 0.027) Loss 5.0285e+00 (6.0505e+00) Acc@1 8.20 ( 2.96) Acc@5 21.88 ( 9.12) +Epoch: [0][3766/5004] Time 0.238 ( 0.242) Data 0.054 ( 0.027) Loss 5.1317e+00 (6.0503e+00) Acc@1 7.81 ( 2.96) Acc@5 21.09 ( 9.12) +Epoch: [0][3767/5004] Time 0.268 ( 0.242) Data 0.055 ( 0.027) Loss 4.9906e+00 (6.0500e+00) Acc@1 9.77 ( 2.96) Acc@5 23.83 ( 9.12) +Epoch: [0][3768/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.9551e+00 (6.0497e+00) Acc@1 8.20 ( 2.96) Acc@5 25.00 ( 9.13) +Epoch: [0][3769/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 5.1369e+00 (6.0495e+00) Acc@1 9.77 ( 2.96) Acc@5 20.70 ( 9.13) +Epoch: [0][3770/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 4.9523e+00 (6.0492e+00) Acc@1 8.20 ( 2.97) Acc@5 28.12 ( 9.13) +Epoch: [0][3771/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 5.2648e+00 (6.0490e+00) Acc@1 5.86 ( 2.97) Acc@5 18.36 ( 9.14) +Epoch: [0][3772/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.1203e+00 (6.0487e+00) Acc@1 6.64 ( 2.97) Acc@5 19.92 ( 9.14) +Epoch: [0][3773/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.0984e+00 (6.0485e+00) Acc@1 8.59 ( 2.97) Acc@5 21.48 ( 9.14) +Epoch: [0][3774/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.9562e+00 (6.0482e+00) Acc@1 9.38 ( 2.97) Acc@5 27.73 ( 9.15) +Epoch: [0][3775/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8941e+00 (6.0479e+00) Acc@1 9.38 ( 2.97) Acc@5 25.39 ( 9.15) +Epoch: [0][3776/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 5.0018e+00 (6.0476e+00) Acc@1 9.38 ( 2.97) Acc@5 21.09 ( 9.16) +Epoch: [0][3777/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9058e+00 (6.0473e+00) Acc@1 8.59 ( 2.98) Acc@5 24.61 ( 9.16) +Epoch: [0][3778/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 5.1637e+00 (6.0471e+00) Acc@1 9.38 ( 2.98) Acc@5 20.31 ( 9.16) +Epoch: [0][3779/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.9628e+00 (6.0468e+00) Acc@1 8.59 ( 2.98) Acc@5 23.05 ( 9.17) +Epoch: [0][3780/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9451e+00 (6.0465e+00) Acc@1 10.55 ( 2.98) Acc@5 24.61 ( 9.17) +Epoch: [0][3781/5004] Time 0.249 ( 0.242) Data 0.025 ( 0.027) Loss 5.1240e+00 (6.0463e+00) Acc@1 9.77 ( 2.98) Acc@5 21.48 ( 9.17) +Epoch: [0][3782/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.1680e+00 (6.0460e+00) Acc@1 9.38 ( 2.98) Acc@5 20.70 ( 9.18) +Epoch: [0][3783/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.0243e+00 (6.0458e+00) Acc@1 9.77 ( 2.99) Acc@5 25.78 ( 9.18) +Epoch: [0][3784/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 5.1382e+00 (6.0455e+00) Acc@1 8.98 ( 2.99) Acc@5 19.92 ( 9.18) +Epoch: [0][3785/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 5.1283e+00 (6.0453e+00) Acc@1 10.94 ( 2.99) Acc@5 22.27 ( 9.19) +Epoch: [0][3786/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 4.9276e+00 (6.0450e+00) Acc@1 10.94 ( 2.99) Acc@5 23.44 ( 9.19) +Epoch: [0][3787/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 4.8527e+00 (6.0447e+00) Acc@1 10.94 ( 2.99) Acc@5 24.22 ( 9.19) +Epoch: [0][3788/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.9393e+00 (6.0444e+00) Acc@1 10.55 ( 3.00) Acc@5 27.73 ( 9.20) +Epoch: [0][3789/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.8943e+00 (6.0441e+00) Acc@1 10.55 ( 3.00) Acc@5 26.17 ( 9.20) +Epoch: [0][3790/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 5.1638e+00 (6.0438e+00) Acc@1 6.64 ( 3.00) Acc@5 19.14 ( 9.21) +Epoch: [0][3791/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.9540e+00 (6.0436e+00) Acc@1 9.38 ( 3.00) Acc@5 24.22 ( 9.21) +Epoch: [0][3792/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 5.0777e+00 (6.0433e+00) Acc@1 10.16 ( 3.00) Acc@5 25.39 ( 9.22) +Epoch: [0][3793/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 5.0933e+00 (6.0430e+00) Acc@1 6.64 ( 3.00) Acc@5 21.48 ( 9.22) +Epoch: [0][3794/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9339e+00 (6.0428e+00) Acc@1 7.81 ( 3.01) Acc@5 26.95 ( 9.22) +Epoch: [0][3795/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.9632e+00 (6.0425e+00) Acc@1 9.77 ( 3.01) Acc@5 26.95 ( 9.23) +Epoch: [0][3796/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 4.8668e+00 (6.0422e+00) Acc@1 9.77 ( 3.01) Acc@5 28.52 ( 9.23) +Epoch: [0][3797/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 4.6673e+00 (6.0418e+00) Acc@1 10.16 ( 3.01) Acc@5 33.98 ( 9.24) +Epoch: [0][3798/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 4.8980e+00 (6.0415e+00) Acc@1 7.81 ( 3.01) Acc@5 23.05 ( 9.24) +Epoch: [0][3799/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 5.2347e+00 (6.0413e+00) Acc@1 7.81 ( 3.01) Acc@5 19.92 ( 9.25) +Epoch: [0][3800/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 5.2103e+00 (6.0411e+00) Acc@1 8.98 ( 3.01) Acc@5 19.53 ( 9.25) +Epoch: [0][3801/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.8439e+00 (6.0408e+00) Acc@1 12.11 ( 3.02) Acc@5 26.95 ( 9.25) +Epoch: [0][3802/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.1430e+00 (6.0405e+00) Acc@1 7.42 ( 3.02) Acc@5 21.48 ( 9.26) +Epoch: [0][3803/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 4.8613e+00 (6.0402e+00) Acc@1 11.72 ( 3.02) Acc@5 26.95 ( 9.26) +Epoch: [0][3804/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 5.1354e+00 (6.0400e+00) Acc@1 8.20 ( 3.02) Acc@5 19.14 ( 9.26) +Epoch: [0][3805/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.1322e+00 (6.0397e+00) Acc@1 8.20 ( 3.02) Acc@5 18.36 ( 9.27) +Epoch: [0][3806/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9316e+00 (6.0394e+00) Acc@1 7.81 ( 3.02) Acc@5 23.44 ( 9.27) +Epoch: [0][3807/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.9592e+00 (6.0392e+00) Acc@1 11.33 ( 3.03) Acc@5 25.00 ( 9.27) +Epoch: [0][3808/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 5.0234e+00 (6.0389e+00) Acc@1 7.81 ( 3.03) Acc@5 22.66 ( 9.28) +Epoch: [0][3809/5004] Time 0.249 ( 0.242) Data 0.025 ( 0.027) Loss 4.9356e+00 (6.0386e+00) Acc@1 11.72 ( 3.03) Acc@5 27.34 ( 9.28) +Epoch: [0][3810/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 5.1785e+00 (6.0384e+00) Acc@1 6.25 ( 3.03) Acc@5 17.97 ( 9.28) +Epoch: [0][3811/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 4.9104e+00 (6.0381e+00) Acc@1 9.77 ( 3.03) Acc@5 23.83 ( 9.29) +Epoch: [0][3812/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.9944e+00 (6.0378e+00) Acc@1 7.81 ( 3.03) Acc@5 21.09 ( 9.29) +Epoch: [0][3813/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.0517e+00 (6.0375e+00) Acc@1 10.94 ( 3.04) Acc@5 23.44 ( 9.30) +Epoch: [0][3814/5004] Time 0.247 ( 0.242) Data 0.024 ( 0.027) Loss 4.9068e+00 (6.0372e+00) Acc@1 11.33 ( 3.04) Acc@5 24.61 ( 9.30) +Epoch: [0][3815/5004] Time 0.254 ( 0.242) Data 0.023 ( 0.027) Loss 5.1912e+00 (6.0370e+00) Acc@1 7.42 ( 3.04) Acc@5 21.48 ( 9.30) +Epoch: [0][3816/5004] Time 0.236 ( 0.242) Data 0.015 ( 0.027) Loss 5.0087e+00 (6.0368e+00) Acc@1 7.42 ( 3.04) Acc@5 25.78 ( 9.31) +Epoch: [0][3817/5004] Time 0.251 ( 0.242) Data 0.024 ( 0.027) Loss 5.2064e+00 (6.0365e+00) Acc@1 6.25 ( 3.04) Acc@5 18.36 ( 9.31) +Epoch: [0][3818/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 5.0996e+00 (6.0363e+00) Acc@1 9.38 ( 3.04) Acc@5 25.39 ( 9.31) +Epoch: [0][3819/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 4.8923e+00 (6.0360e+00) Acc@1 11.33 ( 3.05) Acc@5 28.12 ( 9.32) +Epoch: [0][3820/5004] Time 0.238 ( 0.242) Data 0.017 ( 0.027) Loss 5.1282e+00 (6.0358e+00) Acc@1 8.59 ( 3.05) Acc@5 20.70 ( 9.32) +Epoch: [0][3821/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8930e+00 (6.0355e+00) Acc@1 10.16 ( 3.05) Acc@5 23.83 ( 9.32) +Epoch: [0][3822/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 4.8849e+00 (6.0352e+00) Acc@1 10.16 ( 3.05) Acc@5 25.39 ( 9.33) +Epoch: [0][3823/5004] Time 0.238 ( 0.242) Data 0.020 ( 0.027) Loss 5.0525e+00 (6.0349e+00) Acc@1 7.42 ( 3.05) Acc@5 24.22 ( 9.33) +Epoch: [0][3824/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 5.1210e+00 (6.0347e+00) Acc@1 8.59 ( 3.05) Acc@5 18.75 ( 9.34) +Epoch: [0][3825/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.0084e+00 (6.0344e+00) Acc@1 9.77 ( 3.05) Acc@5 21.88 ( 9.34) +Epoch: [0][3826/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 5.0010e+00 (6.0341e+00) Acc@1 9.38 ( 3.06) Acc@5 22.27 ( 9.34) +Epoch: [0][3827/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.9135e+00 (6.0338e+00) Acc@1 8.20 ( 3.06) Acc@5 25.00 ( 9.35) +Epoch: [0][3828/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.0124e+00 (6.0336e+00) Acc@1 10.16 ( 3.06) Acc@5 22.66 ( 9.35) +Epoch: [0][3829/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 4.9749e+00 (6.0333e+00) Acc@1 9.38 ( 3.06) Acc@5 22.27 ( 9.35) +Epoch: [0][3830/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0788e+00 (6.0330e+00) Acc@1 12.11 ( 3.06) Acc@5 22.27 ( 9.36) +Epoch: [0][3831/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.9963e+00 (6.0328e+00) Acc@1 10.55 ( 3.07) Acc@5 28.12 ( 9.36) +Epoch: [0][3832/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.0279e+00 (6.0325e+00) Acc@1 10.16 ( 3.07) Acc@5 24.61 ( 9.37) +Epoch: [0][3833/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 4.9778e+00 (6.0322e+00) Acc@1 7.81 ( 3.07) Acc@5 22.27 ( 9.37) +Epoch: [0][3834/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.0380e+00 (6.0320e+00) Acc@1 7.03 ( 3.07) Acc@5 25.39 ( 9.37) +Epoch: [0][3835/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.9520e+00 (6.0317e+00) Acc@1 8.20 ( 3.07) Acc@5 23.83 ( 9.38) +Epoch: [0][3836/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.8474e+00 (6.0314e+00) Acc@1 10.16 ( 3.07) Acc@5 28.12 ( 9.38) +Epoch: [0][3837/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 5.1163e+00 (6.0311e+00) Acc@1 8.98 ( 3.07) Acc@5 22.66 ( 9.38) +Epoch: [0][3838/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.0000e+00 (6.0309e+00) Acc@1 8.98 ( 3.08) Acc@5 25.78 ( 9.39) +Epoch: [0][3839/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.027) Loss 5.0011e+00 (6.0306e+00) Acc@1 8.98 ( 3.08) Acc@5 20.31 ( 9.39) +Epoch: [0][3840/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 4.9398e+00 (6.0303e+00) Acc@1 10.94 ( 3.08) Acc@5 26.17 ( 9.40) +Epoch: [0][3841/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.9334e+00 (6.0300e+00) Acc@1 11.33 ( 3.08) Acc@5 26.56 ( 9.40) +Epoch: [0][3842/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.2178e+00 (6.0298e+00) Acc@1 5.47 ( 3.08) Acc@5 18.36 ( 9.40) +Epoch: [0][3843/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.0000e+00 (6.0296e+00) Acc@1 8.59 ( 3.08) Acc@5 23.05 ( 9.41) +Epoch: [0][3844/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.9344e+00 (6.0293e+00) Acc@1 8.59 ( 3.09) Acc@5 22.66 ( 9.41) +Epoch: [0][3845/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.8908e+00 (6.0290e+00) Acc@1 10.94 ( 3.09) Acc@5 24.22 ( 9.41) +Epoch: [0][3846/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.8450e+00 (6.0287e+00) Acc@1 11.33 ( 3.09) Acc@5 30.86 ( 9.42) +Epoch: [0][3847/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.027) Loss 5.0535e+00 (6.0284e+00) Acc@1 7.81 ( 3.09) Acc@5 21.88 ( 9.42) +Epoch: [0][3848/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.027) Loss 5.0838e+00 (6.0282e+00) Acc@1 7.42 ( 3.09) Acc@5 22.27 ( 9.43) +Epoch: [0][3849/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.9285e+00 (6.0279e+00) Acc@1 10.94 ( 3.09) Acc@5 26.95 ( 9.43) +Epoch: [0][3850/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 5.1434e+00 (6.0277e+00) Acc@1 5.47 ( 3.09) Acc@5 21.48 ( 9.43) +Epoch: [0][3851/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.9512e+00 (6.0274e+00) Acc@1 7.42 ( 3.10) Acc@5 23.83 ( 9.44) +Epoch: [0][3852/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.9705e+00 (6.0271e+00) Acc@1 13.67 ( 3.10) Acc@5 25.00 ( 9.44) +Epoch: [0][3853/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.0775e+00 (6.0269e+00) Acc@1 6.25 ( 3.10) Acc@5 22.66 ( 9.45) +Epoch: [0][3854/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.0305e+00 (6.0266e+00) Acc@1 8.98 ( 3.10) Acc@5 18.75 ( 9.45) +Epoch: [0][3855/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 5.1316e+00 (6.0264e+00) Acc@1 7.81 ( 3.10) Acc@5 21.48 ( 9.45) +Epoch: [0][3856/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.1173e+00 (6.0261e+00) Acc@1 10.16 ( 3.10) Acc@5 22.66 ( 9.45) +Epoch: [0][3857/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 5.1362e+00 (6.0259e+00) Acc@1 8.59 ( 3.11) Acc@5 23.05 ( 9.46) +Epoch: [0][3858/5004] Time 0.243 ( 0.242) Data 0.029 ( 0.027) Loss 5.1090e+00 (6.0257e+00) Acc@1 5.86 ( 3.11) Acc@5 21.88 ( 9.46) +Epoch: [0][3859/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.9922e+00 (6.0254e+00) Acc@1 8.98 ( 3.11) Acc@5 23.83 ( 9.46) +Epoch: [0][3860/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.0611e+00 (6.0251e+00) Acc@1 9.38 ( 3.11) Acc@5 24.61 ( 9.47) +Epoch: [0][3861/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 5.0699e+00 (6.0249e+00) Acc@1 7.42 ( 3.11) Acc@5 22.66 ( 9.47) +Epoch: [0][3862/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 5.1117e+00 (6.0247e+00) Acc@1 7.03 ( 3.11) Acc@5 22.66 ( 9.48) +Epoch: [0][3863/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.027) Loss 4.7997e+00 (6.0243e+00) Acc@1 10.55 ( 3.11) Acc@5 26.95 ( 9.48) +Epoch: [0][3864/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.8490e+00 (6.0240e+00) Acc@1 8.59 ( 3.11) Acc@5 27.34 ( 9.48) +Epoch: [0][3865/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.9554e+00 (6.0238e+00) Acc@1 11.33 ( 3.12) Acc@5 28.91 ( 9.49) +Epoch: [0][3866/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.7643e+00 (6.0234e+00) Acc@1 12.89 ( 3.12) Acc@5 29.30 ( 9.49) +Epoch: [0][3867/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 4.9496e+00 (6.0232e+00) Acc@1 9.77 ( 3.12) Acc@5 26.95 ( 9.50) +Epoch: [0][3868/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 5.1001e+00 (6.0229e+00) Acc@1 7.03 ( 3.12) Acc@5 23.83 ( 9.50) +Epoch: [0][3869/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 4.8991e+00 (6.0226e+00) Acc@1 11.72 ( 3.12) Acc@5 28.52 ( 9.51) +Epoch: [0][3870/5004] Time 0.237 ( 0.242) Data 0.022 ( 0.027) Loss 4.6592e+00 (6.0223e+00) Acc@1 10.55 ( 3.13) Acc@5 32.03 ( 9.51) +Epoch: [0][3871/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 4.8646e+00 (6.0220e+00) Acc@1 14.45 ( 3.13) Acc@5 28.12 ( 9.52) +Epoch: [0][3872/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 5.0075e+00 (6.0217e+00) Acc@1 9.77 ( 3.13) Acc@5 24.22 ( 9.52) +Epoch: [0][3873/5004] Time 0.248 ( 0.242) Data 0.025 ( 0.027) Loss 4.8757e+00 (6.0214e+00) Acc@1 9.38 ( 3.13) Acc@5 25.39 ( 9.53) +Epoch: [0][3874/5004] Time 0.238 ( 0.242) Data 0.020 ( 0.027) Loss 4.9626e+00 (6.0211e+00) Acc@1 10.94 ( 3.13) Acc@5 24.61 ( 9.53) +Epoch: [0][3875/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 5.0051e+00 (6.0209e+00) Acc@1 7.81 ( 3.14) Acc@5 22.27 ( 9.53) +Epoch: [0][3876/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 4.9849e+00 (6.0206e+00) Acc@1 7.81 ( 3.14) Acc@5 21.48 ( 9.54) +Epoch: [0][3877/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 5.0060e+00 (6.0204e+00) Acc@1 7.81 ( 3.14) Acc@5 24.22 ( 9.54) +Epoch: [0][3878/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 5.0898e+00 (6.0201e+00) Acc@1 7.03 ( 3.14) Acc@5 19.53 ( 9.54) +Epoch: [0][3879/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 4.9435e+00 (6.0198e+00) Acc@1 10.16 ( 3.14) Acc@5 22.66 ( 9.55) +Epoch: [0][3880/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.8295e+00 (6.0195e+00) Acc@1 10.16 ( 3.14) Acc@5 25.78 ( 9.55) +Epoch: [0][3881/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 5.1745e+00 (6.0193e+00) Acc@1 4.69 ( 3.14) Acc@5 16.80 ( 9.55) +Epoch: [0][3882/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.027) Loss 5.1026e+00 (6.0191e+00) Acc@1 7.42 ( 3.14) Acc@5 22.66 ( 9.56) +Epoch: [0][3883/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.9560e+00 (6.0188e+00) Acc@1 9.77 ( 3.15) Acc@5 24.22 ( 9.56) +Epoch: [0][3884/5004] Time 0.254 ( 0.242) Data 0.024 ( 0.027) Loss 4.7347e+00 (6.0185e+00) Acc@1 8.59 ( 3.15) Acc@5 28.12 ( 9.56) +Epoch: [0][3885/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 5.1080e+00 (6.0182e+00) Acc@1 8.20 ( 3.15) Acc@5 23.05 ( 9.57) +Epoch: [0][3886/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9012e+00 (6.0180e+00) Acc@1 13.28 ( 3.15) Acc@5 25.78 ( 9.57) +Epoch: [0][3887/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.8229e+00 (6.0176e+00) Acc@1 16.80 ( 3.15) Acc@5 29.30 ( 9.58) +Epoch: [0][3888/5004] Time 0.247 ( 0.242) Data 0.025 ( 0.027) Loss 4.8969e+00 (6.0174e+00) Acc@1 9.38 ( 3.16) Acc@5 22.66 ( 9.58) +Epoch: [0][3889/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.9931e+00 (6.0171e+00) Acc@1 11.72 ( 3.16) Acc@5 27.73 ( 9.58) +Epoch: [0][3890/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 4.9918e+00 (6.0168e+00) Acc@1 7.42 ( 3.16) Acc@5 21.48 ( 9.59) +Epoch: [0][3891/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.9567e+00 (6.0166e+00) Acc@1 8.98 ( 3.16) Acc@5 23.44 ( 9.59) +Epoch: [0][3892/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.9697e+00 (6.0163e+00) Acc@1 11.72 ( 3.16) Acc@5 24.22 ( 9.60) +Epoch: [0][3893/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.8516e+00 (6.0160e+00) Acc@1 10.55 ( 3.17) Acc@5 28.12 ( 9.60) +Epoch: [0][3894/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8884e+00 (6.0157e+00) Acc@1 10.94 ( 3.17) Acc@5 22.66 ( 9.60) +Epoch: [0][3895/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.9851e+00 (6.0154e+00) Acc@1 7.03 ( 3.17) Acc@5 20.70 ( 9.61) +Epoch: [0][3896/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.8466e+00 (6.0151e+00) Acc@1 13.28 ( 3.17) Acc@5 27.73 ( 9.61) +Epoch: [0][3897/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.9025e+00 (6.0148e+00) Acc@1 8.20 ( 3.17) Acc@5 25.00 ( 9.61) +Epoch: [0][3898/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 5.0126e+00 (6.0146e+00) Acc@1 9.77 ( 3.17) Acc@5 25.00 ( 9.62) +Epoch: [0][3899/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 4.8736e+00 (6.0143e+00) Acc@1 8.20 ( 3.17) Acc@5 26.56 ( 9.62) +Epoch: [0][3900/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8762e+00 (6.0140e+00) Acc@1 9.38 ( 3.18) Acc@5 26.95 ( 9.63) +Epoch: [0][3901/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.1986e+00 (6.0138e+00) Acc@1 8.59 ( 3.18) Acc@5 19.53 ( 9.63) +Epoch: [0][3902/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.8916e+00 (6.0135e+00) Acc@1 10.94 ( 3.18) Acc@5 25.78 ( 9.63) +Epoch: [0][3903/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0010e+00 (6.0133e+00) Acc@1 6.25 ( 3.18) Acc@5 23.83 ( 9.64) +Epoch: [0][3904/5004] Time 0.246 ( 0.242) Data 0.017 ( 0.027) Loss 4.8815e+00 (6.0130e+00) Acc@1 11.72 ( 3.18) Acc@5 23.44 ( 9.64) +Epoch: [0][3905/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.9159e+00 (6.0127e+00) Acc@1 6.64 ( 3.18) Acc@5 21.48 ( 9.64) +Epoch: [0][3906/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.6775e+00 (6.0123e+00) Acc@1 12.11 ( 3.19) Acc@5 29.69 ( 9.65) +Epoch: [0][3907/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.8360e+00 (6.0120e+00) Acc@1 11.72 ( 3.19) Acc@5 29.30 ( 9.65) +Epoch: [0][3908/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.0660e+00 (6.0118e+00) Acc@1 8.98 ( 3.19) Acc@5 25.39 ( 9.66) +Epoch: [0][3909/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 5.0212e+00 (6.0115e+00) Acc@1 11.72 ( 3.19) Acc@5 23.83 ( 9.66) +Epoch: [0][3910/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.9139e+00 (6.0113e+00) Acc@1 8.59 ( 3.19) Acc@5 25.39 ( 9.67) +Epoch: [0][3911/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.8917e+00 (6.0110e+00) Acc@1 12.50 ( 3.20) Acc@5 23.83 ( 9.67) +Epoch: [0][3912/5004] Time 0.240 ( 0.242) Data 0.018 ( 0.027) Loss 4.8418e+00 (6.0107e+00) Acc@1 9.77 ( 3.20) Acc@5 25.39 ( 9.67) +Epoch: [0][3913/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.8042e+00 (6.0104e+00) Acc@1 7.81 ( 3.20) Acc@5 22.66 ( 9.68) +Epoch: [0][3914/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.7540e+00 (6.0100e+00) Acc@1 12.11 ( 3.20) Acc@5 26.17 ( 9.68) +Epoch: [0][3915/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.7650e+00 (6.0097e+00) Acc@1 9.77 ( 3.20) Acc@5 30.47 ( 9.69) +Epoch: [0][3916/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 5.1054e+00 (6.0095e+00) Acc@1 8.20 ( 3.20) Acc@5 21.09 ( 9.69) +Epoch: [0][3917/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.8123e+00 (6.0092e+00) Acc@1 9.77 ( 3.21) Acc@5 26.56 ( 9.69) +Epoch: [0][3918/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9078e+00 (6.0089e+00) Acc@1 8.98 ( 3.21) Acc@5 24.61 ( 9.70) +Epoch: [0][3919/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.2231e+00 (6.0087e+00) Acc@1 7.03 ( 3.21) Acc@5 21.09 ( 9.70) +Epoch: [0][3920/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 5.0292e+00 (6.0085e+00) Acc@1 8.20 ( 3.21) Acc@5 23.83 ( 9.70) +Epoch: [0][3921/5004] Time 0.241 ( 0.242) Data 0.018 ( 0.027) Loss 4.9288e+00 (6.0082e+00) Acc@1 8.59 ( 3.21) Acc@5 25.39 ( 9.71) +Epoch: [0][3922/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 4.9203e+00 (6.0079e+00) Acc@1 7.42 ( 3.21) Acc@5 25.39 ( 9.71) +Epoch: [0][3923/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 5.0606e+00 (6.0077e+00) Acc@1 6.25 ( 3.21) Acc@5 23.05 ( 9.72) +Epoch: [0][3924/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.8595e+00 (6.0074e+00) Acc@1 10.94 ( 3.21) Acc@5 28.12 ( 9.72) +Epoch: [0][3925/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 5.0775e+00 (6.0071e+00) Acc@1 5.86 ( 3.21) Acc@5 23.05 ( 9.72) +Epoch: [0][3926/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0497e+00 (6.0069e+00) Acc@1 9.77 ( 3.22) Acc@5 24.61 ( 9.73) +Epoch: [0][3927/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.8232e+00 (6.0066e+00) Acc@1 7.42 ( 3.22) Acc@5 25.78 ( 9.73) +Epoch: [0][3928/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 4.9110e+00 (6.0063e+00) Acc@1 12.11 ( 3.22) Acc@5 32.81 ( 9.74) +Epoch: [0][3929/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.0393e+00 (6.0061e+00) Acc@1 10.55 ( 3.22) Acc@5 25.00 ( 9.74) +Epoch: [0][3930/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.027) Loss 4.8549e+00 (6.0058e+00) Acc@1 9.38 ( 3.22) Acc@5 26.56 ( 9.75) +Epoch: [0][3931/5004] Time 0.242 ( 0.242) Data 0.019 ( 0.027) Loss 5.0224e+00 (6.0055e+00) Acc@1 9.38 ( 3.22) Acc@5 23.44 ( 9.75) +Epoch: [0][3932/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 4.8077e+00 (6.0052e+00) Acc@1 10.94 ( 3.23) Acc@5 25.00 ( 9.75) +Epoch: [0][3933/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 5.1577e+00 (6.0050e+00) Acc@1 5.47 ( 3.23) Acc@5 20.70 ( 9.76) +Epoch: [0][3934/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 5.1156e+00 (6.0048e+00) Acc@1 9.77 ( 3.23) Acc@5 23.83 ( 9.76) +Epoch: [0][3935/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.9132e+00 (6.0045e+00) Acc@1 9.38 ( 3.23) Acc@5 25.39 ( 9.76) +Epoch: [0][3936/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 5.0345e+00 (6.0043e+00) Acc@1 6.25 ( 3.23) Acc@5 22.27 ( 9.77) +Epoch: [0][3937/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 5.0873e+00 (6.0040e+00) Acc@1 6.25 ( 3.23) Acc@5 24.22 ( 9.77) +Epoch: [0][3938/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.8087e+00 (6.0037e+00) Acc@1 10.16 ( 3.23) Acc@5 28.12 ( 9.77) +Epoch: [0][3939/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 4.9255e+00 (6.0034e+00) Acc@1 10.55 ( 3.24) Acc@5 25.39 ( 9.78) +Epoch: [0][3940/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.9256e+00 (6.0032e+00) Acc@1 7.42 ( 3.24) Acc@5 22.66 ( 9.78) +Epoch: [0][3941/5004] Time 0.238 ( 0.242) Data 0.021 ( 0.027) Loss 5.0400e+00 (6.0029e+00) Acc@1 7.42 ( 3.24) Acc@5 22.27 ( 9.79) +Epoch: [0][3942/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.9462e+00 (6.0027e+00) Acc@1 9.77 ( 3.24) Acc@5 25.00 ( 9.79) +Epoch: [0][3943/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 4.9314e+00 (6.0024e+00) Acc@1 10.16 ( 3.24) Acc@5 24.22 ( 9.79) +Epoch: [0][3944/5004] Time 0.239 ( 0.242) Data 0.019 ( 0.027) Loss 4.8956e+00 (6.0021e+00) Acc@1 8.59 ( 3.24) Acc@5 27.73 ( 9.80) +Epoch: [0][3945/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 5.0175e+00 (6.0019e+00) Acc@1 7.03 ( 3.24) Acc@5 24.61 ( 9.80) +Epoch: [0][3946/5004] Time 0.237 ( 0.242) Data 0.015 ( 0.027) Loss 4.8819e+00 (6.0016e+00) Acc@1 10.94 ( 3.25) Acc@5 28.12 ( 9.81) +Epoch: [0][3947/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.0446e+00 (6.0013e+00) Acc@1 7.03 ( 3.25) Acc@5 23.05 ( 9.81) +Epoch: [0][3948/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 5.0438e+00 (6.0011e+00) Acc@1 7.42 ( 3.25) Acc@5 20.31 ( 9.81) +Epoch: [0][3949/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8729e+00 (6.0008e+00) Acc@1 10.16 ( 3.25) Acc@5 24.61 ( 9.82) +Epoch: [0][3950/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9314e+00 (6.0005e+00) Acc@1 10.16 ( 3.25) Acc@5 23.83 ( 9.82) +Epoch: [0][3951/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9856e+00 (6.0003e+00) Acc@1 7.42 ( 3.25) Acc@5 25.00 ( 9.82) +Epoch: [0][3952/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.9297e+00 (6.0000e+00) Acc@1 9.77 ( 3.25) Acc@5 25.78 ( 9.83) +Epoch: [0][3953/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.027) Loss 4.8876e+00 (5.9997e+00) Acc@1 11.33 ( 3.26) Acc@5 27.73 ( 9.83) +Epoch: [0][3954/5004] Time 0.239 ( 0.242) Data 0.018 ( 0.027) Loss 4.6881e+00 (5.9994e+00) Acc@1 11.72 ( 3.26) Acc@5 27.34 ( 9.84) +Epoch: [0][3955/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.0620e+00 (5.9992e+00) Acc@1 7.81 ( 3.26) Acc@5 19.14 ( 9.84) +Epoch: [0][3956/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.7945e+00 (5.9989e+00) Acc@1 10.94 ( 3.26) Acc@5 28.91 ( 9.84) +Epoch: [0][3957/5004] Time 0.256 ( 0.242) Data 0.022 ( 0.027) Loss 5.0100e+00 (5.9986e+00) Acc@1 8.59 ( 3.26) Acc@5 23.44 ( 9.85) +Epoch: [0][3958/5004] Time 0.245 ( 0.242) Data 0.017 ( 0.027) Loss 4.9018e+00 (5.9983e+00) Acc@1 11.33 ( 3.26) Acc@5 24.61 ( 9.85) +Epoch: [0][3959/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 4.9256e+00 (5.9981e+00) Acc@1 9.77 ( 3.27) Acc@5 24.22 ( 9.85) +Epoch: [0][3960/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.9002e+00 (5.9978e+00) Acc@1 10.55 ( 3.27) Acc@5 25.78 ( 9.86) +Epoch: [0][3961/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.8614e+00 (5.9975e+00) Acc@1 10.16 ( 3.27) Acc@5 26.17 ( 9.86) +Epoch: [0][3962/5004] Time 0.248 ( 0.242) Data 0.024 ( 0.027) Loss 5.1905e+00 (5.9973e+00) Acc@1 7.03 ( 3.27) Acc@5 18.75 ( 9.86) +Epoch: [0][3963/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.8404e+00 (5.9970e+00) Acc@1 9.38 ( 3.27) Acc@5 25.78 ( 9.87) +Epoch: [0][3964/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8837e+00 (5.9967e+00) Acc@1 8.20 ( 3.27) Acc@5 22.27 ( 9.87) +Epoch: [0][3965/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.6434e+00 (5.9964e+00) Acc@1 11.72 ( 3.28) Acc@5 29.30 ( 9.88) +Epoch: [0][3966/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 5.0951e+00 (5.9961e+00) Acc@1 5.86 ( 3.28) Acc@5 21.09 ( 9.88) +Epoch: [0][3967/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.9372e+00 (5.9959e+00) Acc@1 7.42 ( 3.28) Acc@5 23.44 ( 9.88) +Epoch: [0][3968/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 5.1052e+00 (5.9957e+00) Acc@1 7.42 ( 3.28) Acc@5 21.48 ( 9.89) +Epoch: [0][3969/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.9433e+00 (5.9954e+00) Acc@1 11.33 ( 3.28) Acc@5 28.12 ( 9.89) +Epoch: [0][3970/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 4.9717e+00 (5.9951e+00) Acc@1 7.81 ( 3.28) Acc@5 25.00 ( 9.89) +Epoch: [0][3971/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 5.0378e+00 (5.9949e+00) Acc@1 9.38 ( 3.28) Acc@5 25.00 ( 9.90) +Epoch: [0][3972/5004] Time 0.251 ( 0.242) Data 0.020 ( 0.027) Loss 4.7210e+00 (5.9946e+00) Acc@1 11.33 ( 3.29) Acc@5 25.39 ( 9.90) +Epoch: [0][3973/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 4.9659e+00 (5.9943e+00) Acc@1 11.72 ( 3.29) Acc@5 26.95 ( 9.91) +Epoch: [0][3974/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 4.8542e+00 (5.9940e+00) Acc@1 9.77 ( 3.29) Acc@5 28.12 ( 9.91) +Epoch: [0][3975/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.8578e+00 (5.9937e+00) Acc@1 13.28 ( 3.29) Acc@5 27.34 ( 9.91) +Epoch: [0][3976/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7709e+00 (5.9934e+00) Acc@1 12.11 ( 3.29) Acc@5 26.56 ( 9.92) +Epoch: [0][3977/5004] Time 0.231 ( 0.242) Data 0.023 ( 0.027) Loss 4.9954e+00 (5.9932e+00) Acc@1 10.94 ( 3.30) Acc@5 26.56 ( 9.92) +Epoch: [0][3978/5004] Time 0.224 ( 0.242) Data 0.036 ( 0.027) Loss 4.8573e+00 (5.9929e+00) Acc@1 8.98 ( 3.30) Acc@5 23.44 ( 9.93) +Epoch: [0][3979/5004] Time 0.238 ( 0.242) Data 0.049 ( 0.027) Loss 5.0022e+00 (5.9926e+00) Acc@1 8.20 ( 3.30) Acc@5 23.83 ( 9.93) +Epoch: [0][3980/5004] Time 0.239 ( 0.242) Data 0.049 ( 0.027) Loss 4.9776e+00 (5.9924e+00) Acc@1 10.94 ( 3.30) Acc@5 22.66 ( 9.93) +Epoch: [0][3981/5004] Time 0.226 ( 0.242) Data 0.049 ( 0.027) Loss 4.9320e+00 (5.9921e+00) Acc@1 10.55 ( 3.30) Acc@5 25.00 ( 9.94) +Epoch: [0][3982/5004] Time 0.240 ( 0.242) Data 0.060 ( 0.027) Loss 4.7609e+00 (5.9918e+00) Acc@1 14.84 ( 3.30) Acc@5 29.30 ( 9.94) +Epoch: [0][3983/5004] Time 0.235 ( 0.242) Data 0.059 ( 0.027) Loss 5.0484e+00 (5.9916e+00) Acc@1 10.16 ( 3.31) Acc@5 27.34 ( 9.95) +Epoch: [0][3984/5004] Time 0.232 ( 0.242) Data 0.059 ( 0.027) Loss 4.9427e+00 (5.9913e+00) Acc@1 8.59 ( 3.31) Acc@5 27.34 ( 9.95) +Epoch: [0][3985/5004] Time 0.241 ( 0.242) Data 0.063 ( 0.027) Loss 5.0486e+00 (5.9911e+00) Acc@1 9.77 ( 3.31) Acc@5 21.88 ( 9.95) +Epoch: [0][3986/5004] Time 0.233 ( 0.242) Data 0.059 ( 0.027) Loss 5.0304e+00 (5.9908e+00) Acc@1 6.64 ( 3.31) Acc@5 22.66 ( 9.96) +Epoch: [0][3987/5004] Time 0.238 ( 0.242) Data 0.063 ( 0.027) Loss 4.8379e+00 (5.9905e+00) Acc@1 11.72 ( 3.31) Acc@5 25.78 ( 9.96) +Epoch: [0][3988/5004] Time 0.247 ( 0.242) Data 0.062 ( 0.027) Loss 4.7186e+00 (5.9902e+00) Acc@1 12.11 ( 3.31) Acc@5 29.30 ( 9.97) +Epoch: [0][3989/5004] Time 0.242 ( 0.242) Data 0.059 ( 0.027) Loss 4.9491e+00 (5.9900e+00) Acc@1 7.42 ( 3.32) Acc@5 25.00 ( 9.97) +Epoch: [0][3990/5004] Time 0.237 ( 0.242) Data 0.055 ( 0.027) Loss 5.0571e+00 (5.9897e+00) Acc@1 7.81 ( 3.32) Acc@5 24.61 ( 9.97) +Epoch: [0][3991/5004] Time 0.276 ( 0.242) Data 0.059 ( 0.027) Loss 4.8663e+00 (5.9895e+00) Acc@1 8.98 ( 3.32) Acc@5 26.17 ( 9.98) +Epoch: [0][3992/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.9015e+00 (5.9892e+00) Acc@1 8.59 ( 3.32) Acc@5 24.61 ( 9.98) +Epoch: [0][3993/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.027) Loss 4.8330e+00 (5.9889e+00) Acc@1 11.72 ( 3.32) Acc@5 26.17 ( 9.98) +Epoch: [0][3994/5004] Time 0.252 ( 0.242) Data 0.027 ( 0.027) Loss 4.7622e+00 (5.9886e+00) Acc@1 10.94 ( 3.32) Acc@5 27.34 ( 9.99) +Epoch: [0][3995/5004] Time 0.247 ( 0.242) Data 0.026 ( 0.027) Loss 5.1000e+00 (5.9884e+00) Acc@1 7.42 ( 3.32) Acc@5 22.27 ( 9.99) +Epoch: [0][3996/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 5.2169e+00 (5.9882e+00) Acc@1 7.81 ( 3.33) Acc@5 19.92 ( 9.99) +Epoch: [0][3997/5004] Time 0.251 ( 0.242) Data 0.029 ( 0.027) Loss 4.7650e+00 (5.9879e+00) Acc@1 12.89 ( 3.33) Acc@5 30.47 ( 10.00) +Epoch: [0][3998/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 5.1141e+00 (5.9876e+00) Acc@1 6.25 ( 3.33) Acc@5 21.09 ( 10.00) +Epoch: [0][3999/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.027) Loss 4.8038e+00 (5.9873e+00) Acc@1 10.55 ( 3.33) Acc@5 28.52 ( 10.01) +Epoch: [0][4000/5004] Time 0.251 ( 0.242) Data 0.029 ( 0.027) Loss 4.8809e+00 (5.9871e+00) Acc@1 9.38 ( 3.33) Acc@5 22.66 ( 10.01) +Epoch: [0][4001/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 4.7161e+00 (5.9868e+00) Acc@1 10.16 ( 3.33) Acc@5 24.61 ( 10.01) +Epoch: [0][4002/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9274e+00 (5.9865e+00) Acc@1 10.16 ( 3.34) Acc@5 24.22 ( 10.02) +Epoch: [0][4003/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.9185e+00 (5.9862e+00) Acc@1 10.55 ( 3.34) Acc@5 28.91 ( 10.02) +Epoch: [0][4004/5004] Time 0.250 ( 0.242) Data 0.027 ( 0.027) Loss 4.7182e+00 (5.9859e+00) Acc@1 10.16 ( 3.34) Acc@5 25.78 ( 10.03) +Epoch: [0][4005/5004] Time 0.227 ( 0.242) Data 0.020 ( 0.027) Loss 4.8768e+00 (5.9856e+00) Acc@1 8.59 ( 3.34) Acc@5 23.05 ( 10.03) +Epoch: [0][4006/5004] Time 0.238 ( 0.242) Data 0.031 ( 0.027) Loss 4.7774e+00 (5.9853e+00) Acc@1 11.72 ( 3.34) Acc@5 26.95 ( 10.03) +Epoch: [0][4007/5004] Time 0.239 ( 0.242) Data 0.032 ( 0.027) Loss 5.0049e+00 (5.9851e+00) Acc@1 10.16 ( 3.34) Acc@5 26.56 ( 10.04) +Epoch: [0][4008/5004] Time 0.237 ( 0.242) Data 0.031 ( 0.027) Loss 4.8563e+00 (5.9848e+00) Acc@1 11.72 ( 3.35) Acc@5 26.17 ( 10.04) +Epoch: [0][4009/5004] Time 0.240 ( 0.242) Data 0.032 ( 0.027) Loss 4.6943e+00 (5.9845e+00) Acc@1 11.33 ( 3.35) Acc@5 30.47 ( 10.05) +Epoch: [0][4010/5004] Time 0.236 ( 0.242) Data 0.031 ( 0.027) Loss 4.9221e+00 (5.9842e+00) Acc@1 11.72 ( 3.35) Acc@5 26.17 ( 10.05) +Epoch: [0][4011/5004] Time 0.241 ( 0.242) Data 0.033 ( 0.027) Loss 4.9081e+00 (5.9839e+00) Acc@1 10.94 ( 3.35) Acc@5 25.39 ( 10.05) +Epoch: [0][4012/5004] Time 0.238 ( 0.242) Data 0.031 ( 0.027) Loss 4.9415e+00 (5.9837e+00) Acc@1 7.81 ( 3.35) Acc@5 23.44 ( 10.06) +Epoch: [0][4013/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 5.1030e+00 (5.9835e+00) Acc@1 6.64 ( 3.35) Acc@5 22.66 ( 10.06) +Epoch: [0][4014/5004] Time 0.239 ( 0.242) Data 0.032 ( 0.027) Loss 4.7834e+00 (5.9832e+00) Acc@1 10.55 ( 3.36) Acc@5 28.52 ( 10.07) +Epoch: [0][4015/5004] Time 0.240 ( 0.242) Data 0.032 ( 0.027) Loss 4.8249e+00 (5.9829e+00) Acc@1 10.94 ( 3.36) Acc@5 27.73 ( 10.07) +Epoch: [0][4016/5004] Time 0.240 ( 0.242) Data 0.032 ( 0.027) Loss 4.8540e+00 (5.9826e+00) Acc@1 10.55 ( 3.36) Acc@5 25.00 ( 10.07) +Epoch: [0][4017/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 4.9058e+00 (5.9823e+00) Acc@1 9.77 ( 3.36) Acc@5 23.05 ( 10.08) +Epoch: [0][4018/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 5.0029e+00 (5.9821e+00) Acc@1 8.59 ( 3.36) Acc@5 24.61 ( 10.08) +Epoch: [0][4019/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.027) Loss 4.8639e+00 (5.9818e+00) Acc@1 7.42 ( 3.36) Acc@5 25.39 ( 10.08) +Epoch: [0][4020/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.8660e+00 (5.9815e+00) Acc@1 11.72 ( 3.37) Acc@5 29.69 ( 10.09) +Epoch: [0][4021/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 4.8267e+00 (5.9812e+00) Acc@1 8.98 ( 3.37) Acc@5 25.00 ( 10.09) +Epoch: [0][4022/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.6555e+00 (5.9809e+00) Acc@1 15.23 ( 3.37) Acc@5 31.25 ( 10.10) +Epoch: [0][4023/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 4.8995e+00 (5.9806e+00) Acc@1 10.16 ( 3.37) Acc@5 24.61 ( 10.10) +Epoch: [0][4024/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 5.1105e+00 (5.9804e+00) Acc@1 8.98 ( 3.37) Acc@5 25.00 ( 10.11) +Epoch: [0][4025/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9628e+00 (5.9802e+00) Acc@1 7.03 ( 3.37) Acc@5 21.09 ( 10.11) +Epoch: [0][4026/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.0365e+00 (5.9799e+00) Acc@1 8.98 ( 3.38) Acc@5 24.22 ( 10.11) +Epoch: [0][4027/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.9751e+00 (5.9797e+00) Acc@1 9.38 ( 3.38) Acc@5 26.56 ( 10.12) +Epoch: [0][4028/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9376e+00 (5.9794e+00) Acc@1 10.16 ( 3.38) Acc@5 29.30 ( 10.12) +Epoch: [0][4029/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 4.7531e+00 (5.9791e+00) Acc@1 8.59 ( 3.38) Acc@5 26.56 ( 10.12) +Epoch: [0][4030/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.7970e+00 (5.9788e+00) Acc@1 10.55 ( 3.38) Acc@5 27.73 ( 10.13) +Epoch: [0][4031/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9426e+00 (5.9786e+00) Acc@1 7.03 ( 3.38) Acc@5 22.27 ( 10.13) +Epoch: [0][4032/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 4.9024e+00 (5.9783e+00) Acc@1 13.28 ( 3.38) Acc@5 26.56 ( 10.14) +Epoch: [0][4033/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 4.8525e+00 (5.9780e+00) Acc@1 9.77 ( 3.39) Acc@5 23.83 ( 10.14) +Epoch: [0][4034/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.8035e+00 (5.9777e+00) Acc@1 11.72 ( 3.39) Acc@5 30.08 ( 10.14) +Epoch: [0][4035/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.7688e+00 (5.9774e+00) Acc@1 13.28 ( 3.39) Acc@5 28.52 ( 10.15) +Epoch: [0][4036/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 4.7535e+00 (5.9771e+00) Acc@1 10.16 ( 3.39) Acc@5 28.12 ( 10.15) +Epoch: [0][4037/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 4.9894e+00 (5.9769e+00) Acc@1 7.03 ( 3.39) Acc@5 25.00 ( 10.16) +Epoch: [0][4038/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 4.9087e+00 (5.9766e+00) Acc@1 11.72 ( 3.40) Acc@5 24.22 ( 10.16) +Epoch: [0][4039/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 5.1030e+00 (5.9764e+00) Acc@1 8.98 ( 3.40) Acc@5 20.70 ( 10.16) +Epoch: [0][4040/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 4.8476e+00 (5.9761e+00) Acc@1 10.16 ( 3.40) Acc@5 25.39 ( 10.17) +Epoch: [0][4041/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.7660e+00 (5.9758e+00) Acc@1 10.16 ( 3.40) Acc@5 25.00 ( 10.17) +Epoch: [0][4042/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.7712e+00 (5.9755e+00) Acc@1 9.38 ( 3.40) Acc@5 27.73 ( 10.18) +Epoch: [0][4043/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.0316e+00 (5.9753e+00) Acc@1 8.98 ( 3.40) Acc@5 22.27 ( 10.18) +Epoch: [0][4044/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.9323e+00 (5.9750e+00) Acc@1 8.20 ( 3.40) Acc@5 27.73 ( 10.18) +Epoch: [0][4045/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.8536e+00 (5.9748e+00) Acc@1 10.94 ( 3.41) Acc@5 29.30 ( 10.19) +Epoch: [0][4046/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.8955e+00 (5.9745e+00) Acc@1 11.72 ( 3.41) Acc@5 26.56 ( 10.19) +Epoch: [0][4047/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.8502e+00 (5.9742e+00) Acc@1 5.86 ( 3.41) Acc@5 25.00 ( 10.20) +Epoch: [0][4048/5004] Time 0.237 ( 0.242) Data 0.024 ( 0.027) Loss 4.7833e+00 (5.9739e+00) Acc@1 12.11 ( 3.41) Acc@5 31.64 ( 10.20) +Epoch: [0][4049/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.8528e+00 (5.9737e+00) Acc@1 10.55 ( 3.41) Acc@5 28.12 ( 10.20) +Epoch: [0][4050/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 4.7581e+00 (5.9734e+00) Acc@1 13.28 ( 3.42) Acc@5 30.08 ( 10.21) +Epoch: [0][4051/5004] Time 0.257 ( 0.242) Data 0.025 ( 0.027) Loss 4.7238e+00 (5.9730e+00) Acc@1 13.67 ( 3.42) Acc@5 28.52 ( 10.21) +Epoch: [0][4052/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.8571e+00 (5.9728e+00) Acc@1 10.16 ( 3.42) Acc@5 26.95 ( 10.22) +Epoch: [0][4053/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 4.8010e+00 (5.9725e+00) Acc@1 10.16 ( 3.42) Acc@5 27.34 ( 10.22) +Epoch: [0][4054/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 5.0922e+00 (5.9723e+00) Acc@1 8.98 ( 3.42) Acc@5 22.66 ( 10.23) +Epoch: [0][4055/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9844e+00 (5.9720e+00) Acc@1 8.20 ( 3.42) Acc@5 23.44 ( 10.23) +Epoch: [0][4056/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.0105e+00 (5.9718e+00) Acc@1 9.77 ( 3.43) Acc@5 23.44 ( 10.23) +Epoch: [0][4057/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 4.8529e+00 (5.9715e+00) Acc@1 12.89 ( 3.43) Acc@5 30.47 ( 10.24) +Epoch: [0][4058/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.1632e+00 (5.9713e+00) Acc@1 8.59 ( 3.43) Acc@5 22.66 ( 10.24) +Epoch: [0][4059/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.0048e+00 (5.9711e+00) Acc@1 11.33 ( 3.43) Acc@5 23.83 ( 10.24) +Epoch: [0][4060/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.9288e+00 (5.9708e+00) Acc@1 13.28 ( 3.43) Acc@5 25.00 ( 10.25) +Epoch: [0][4061/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.9683e+00 (5.9706e+00) Acc@1 9.77 ( 3.43) Acc@5 22.66 ( 10.25) +Epoch: [0][4062/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.0147e+00 (5.9703e+00) Acc@1 8.98 ( 3.44) Acc@5 24.61 ( 10.25) +Epoch: [0][4063/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.8247e+00 (5.9701e+00) Acc@1 8.20 ( 3.44) Acc@5 28.12 ( 10.26) +Epoch: [0][4064/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 4.6903e+00 (5.9697e+00) Acc@1 9.38 ( 3.44) Acc@5 26.17 ( 10.26) +Epoch: [0][4065/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 5.0856e+00 (5.9695e+00) Acc@1 7.03 ( 3.44) Acc@5 23.83 ( 10.27) +Epoch: [0][4066/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.8859e+00 (5.9693e+00) Acc@1 11.33 ( 3.44) Acc@5 27.73 ( 10.27) +Epoch: [0][4067/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.027) Loss 4.9378e+00 (5.9690e+00) Acc@1 9.77 ( 3.44) Acc@5 23.05 ( 10.27) +Epoch: [0][4068/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 4.7873e+00 (5.9687e+00) Acc@1 11.33 ( 3.45) Acc@5 28.91 ( 10.28) +Epoch: [0][4069/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 5.0487e+00 (5.9685e+00) Acc@1 7.03 ( 3.45) Acc@5 22.66 ( 10.28) +Epoch: [0][4070/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.6776e+00 (5.9682e+00) Acc@1 14.06 ( 3.45) Acc@5 30.47 ( 10.29) +Epoch: [0][4071/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.8475e+00 (5.9679e+00) Acc@1 10.16 ( 3.45) Acc@5 25.39 ( 10.29) +Epoch: [0][4072/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 4.8526e+00 (5.9676e+00) Acc@1 8.59 ( 3.45) Acc@5 25.39 ( 10.29) +Epoch: [0][4073/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.8074e+00 (5.9673e+00) Acc@1 11.33 ( 3.45) Acc@5 28.12 ( 10.30) +Epoch: [0][4074/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.8539e+00 (5.9671e+00) Acc@1 10.16 ( 3.46) Acc@5 29.30 ( 10.30) +Epoch: [0][4075/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.8416e+00 (5.9668e+00) Acc@1 9.77 ( 3.46) Acc@5 25.78 ( 10.31) +Epoch: [0][4076/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.0144e+00 (5.9665e+00) Acc@1 7.03 ( 3.46) Acc@5 21.88 ( 10.31) +Epoch: [0][4077/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.8899e+00 (5.9663e+00) Acc@1 8.59 ( 3.46) Acc@5 26.17 ( 10.31) +Epoch: [0][4078/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.7135e+00 (5.9660e+00) Acc@1 12.50 ( 3.46) Acc@5 28.52 ( 10.32) +Epoch: [0][4079/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7365e+00 (5.9657e+00) Acc@1 10.55 ( 3.46) Acc@5 25.00 ( 10.32) +Epoch: [0][4080/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.9676e+00 (5.9654e+00) Acc@1 10.55 ( 3.46) Acc@5 24.61 ( 10.32) +Epoch: [0][4081/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 5.0160e+00 (5.9652e+00) Acc@1 7.42 ( 3.47) Acc@5 20.31 ( 10.33) +Epoch: [0][4082/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 5.0294e+00 (5.9650e+00) Acc@1 8.98 ( 3.47) Acc@5 21.09 ( 10.33) +Epoch: [0][4083/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 5.0992e+00 (5.9648e+00) Acc@1 5.86 ( 3.47) Acc@5 22.27 ( 10.33) +Epoch: [0][4084/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 4.9506e+00 (5.9645e+00) Acc@1 7.81 ( 3.47) Acc@5 25.00 ( 10.34) +Epoch: [0][4085/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 4.6098e+00 (5.9642e+00) Acc@1 10.16 ( 3.47) Acc@5 29.69 ( 10.34) +Epoch: [0][4086/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 4.8354e+00 (5.9639e+00) Acc@1 9.38 ( 3.47) Acc@5 24.61 ( 10.34) +Epoch: [0][4087/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.8966e+00 (5.9636e+00) Acc@1 10.16 ( 3.47) Acc@5 26.17 ( 10.35) +Epoch: [0][4088/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7828e+00 (5.9634e+00) Acc@1 15.23 ( 3.48) Acc@5 25.39 ( 10.35) +Epoch: [0][4089/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.027) Loss 5.1990e+00 (5.9632e+00) Acc@1 7.03 ( 3.48) Acc@5 20.31 ( 10.35) +Epoch: [0][4090/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 4.9557e+00 (5.9629e+00) Acc@1 10.55 ( 3.48) Acc@5 25.39 ( 10.36) +Epoch: [0][4091/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.8174e+00 (5.9626e+00) Acc@1 9.77 ( 3.48) Acc@5 26.56 ( 10.36) +Epoch: [0][4092/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7285e+00 (5.9623e+00) Acc@1 12.89 ( 3.48) Acc@5 27.34 ( 10.37) +Epoch: [0][4093/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 5.0580e+00 (5.9621e+00) Acc@1 8.59 ( 3.48) Acc@5 19.92 ( 10.37) +Epoch: [0][4094/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.9251e+00 (5.9619e+00) Acc@1 9.77 ( 3.49) Acc@5 25.39 ( 10.37) +Epoch: [0][4095/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 4.8522e+00 (5.9616e+00) Acc@1 10.16 ( 3.49) Acc@5 26.56 ( 10.38) +Epoch: [0][4096/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.027) Loss 5.0766e+00 (5.9614e+00) Acc@1 6.25 ( 3.49) Acc@5 21.88 ( 10.38) +Epoch: [0][4097/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.8613e+00 (5.9611e+00) Acc@1 9.77 ( 3.49) Acc@5 26.56 ( 10.38) +Epoch: [0][4098/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.8521e+00 (5.9608e+00) Acc@1 13.67 ( 3.49) Acc@5 29.30 ( 10.39) +Epoch: [0][4099/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.7365e+00 (5.9605e+00) Acc@1 12.89 ( 3.49) Acc@5 33.20 ( 10.39) +Epoch: [0][4100/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.9443e+00 (5.9603e+00) Acc@1 11.33 ( 3.50) Acc@5 26.17 ( 10.40) +Epoch: [0][4101/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7161e+00 (5.9600e+00) Acc@1 9.77 ( 3.50) Acc@5 28.52 ( 10.40) +Epoch: [0][4102/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.7820e+00 (5.9597e+00) Acc@1 9.38 ( 3.50) Acc@5 26.95 ( 10.40) +Epoch: [0][4103/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 4.7147e+00 (5.9594e+00) Acc@1 9.77 ( 3.50) Acc@5 26.56 ( 10.41) +Epoch: [0][4104/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.8447e+00 (5.9591e+00) Acc@1 10.94 ( 3.50) Acc@5 26.95 ( 10.41) +Epoch: [0][4105/5004] Time 0.238 ( 0.242) Data 0.028 ( 0.027) Loss 4.7615e+00 (5.9588e+00) Acc@1 9.77 ( 3.50) Acc@5 25.39 ( 10.42) +Epoch: [0][4106/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.6530e+00 (5.9585e+00) Acc@1 11.33 ( 3.51) Acc@5 28.91 ( 10.42) +Epoch: [0][4107/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 4.8877e+00 (5.9583e+00) Acc@1 10.94 ( 3.51) Acc@5 27.34 ( 10.42) +Epoch: [0][4108/5004] Time 0.240 ( 0.242) Data 0.029 ( 0.027) Loss 4.8212e+00 (5.9580e+00) Acc@1 14.06 ( 3.51) Acc@5 26.56 ( 10.43) +Epoch: [0][4109/5004] Time 0.239 ( 0.242) Data 0.032 ( 0.027) Loss 4.7842e+00 (5.9577e+00) Acc@1 12.11 ( 3.51) Acc@5 27.34 ( 10.43) +Epoch: [0][4110/5004] Time 0.236 ( 0.242) Data 0.030 ( 0.027) Loss 4.8895e+00 (5.9574e+00) Acc@1 12.11 ( 3.51) Acc@5 27.34 ( 10.44) +Epoch: [0][4111/5004] Time 0.245 ( 0.242) Data 0.033 ( 0.027) Loss 4.8026e+00 (5.9572e+00) Acc@1 7.42 ( 3.51) Acc@5 27.34 ( 10.44) +Epoch: [0][4112/5004] Time 0.238 ( 0.242) Data 0.029 ( 0.027) Loss 5.0084e+00 (5.9569e+00) Acc@1 9.38 ( 3.52) Acc@5 23.83 ( 10.44) +Epoch: [0][4113/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 4.7093e+00 (5.9566e+00) Acc@1 12.89 ( 3.52) Acc@5 28.52 ( 10.45) +Epoch: [0][4114/5004] Time 0.238 ( 0.242) Data 0.031 ( 0.027) Loss 4.8350e+00 (5.9563e+00) Acc@1 12.50 ( 3.52) Acc@5 27.34 ( 10.45) +Epoch: [0][4115/5004] Time 0.249 ( 0.242) Data 0.031 ( 0.027) Loss 5.0481e+00 (5.9561e+00) Acc@1 7.03 ( 3.52) Acc@5 22.27 ( 10.46) +Epoch: [0][4116/5004] Time 0.233 ( 0.242) Data 0.022 ( 0.027) Loss 4.8087e+00 (5.9558e+00) Acc@1 9.38 ( 3.52) Acc@5 26.17 ( 10.46) +Epoch: [0][4117/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.9881e+00 (5.9556e+00) Acc@1 9.77 ( 3.52) Acc@5 24.22 ( 10.46) +Epoch: [0][4118/5004] Time 0.233 ( 0.242) Data 0.027 ( 0.027) Loss 4.6102e+00 (5.9553e+00) Acc@1 14.84 ( 3.53) Acc@5 30.86 ( 10.47) +Epoch: [0][4119/5004] Time 0.240 ( 0.242) Data 0.031 ( 0.027) Loss 5.1350e+00 (5.9551e+00) Acc@1 6.64 ( 3.53) Acc@5 25.00 ( 10.47) +Epoch: [0][4120/5004] Time 0.237 ( 0.242) Data 0.030 ( 0.027) Loss 4.9811e+00 (5.9548e+00) Acc@1 6.64 ( 3.53) Acc@5 22.27 ( 10.47) +Epoch: [0][4121/5004] Time 0.239 ( 0.242) Data 0.030 ( 0.027) Loss 4.8343e+00 (5.9546e+00) Acc@1 9.38 ( 3.53) Acc@5 25.78 ( 10.48) +Epoch: [0][4122/5004] Time 0.236 ( 0.242) Data 0.030 ( 0.027) Loss 4.7268e+00 (5.9543e+00) Acc@1 12.11 ( 3.53) Acc@5 27.73 ( 10.48) +Epoch: [0][4123/5004] Time 0.238 ( 0.242) Data 0.032 ( 0.027) Loss 4.8368e+00 (5.9540e+00) Acc@1 9.38 ( 3.53) Acc@5 29.30 ( 10.49) +Epoch: [0][4124/5004] Time 0.239 ( 0.242) Data 0.031 ( 0.027) Loss 4.9270e+00 (5.9538e+00) Acc@1 10.55 ( 3.54) Acc@5 28.12 ( 10.49) +Epoch: [0][4125/5004] Time 0.249 ( 0.242) Data 0.029 ( 0.027) Loss 4.8360e+00 (5.9535e+00) Acc@1 12.11 ( 3.54) Acc@5 26.17 ( 10.49) +Epoch: [0][4126/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.7841e+00 (5.9532e+00) Acc@1 11.72 ( 3.54) Acc@5 27.73 ( 10.50) +Epoch: [0][4127/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.7841e+00 (5.9529e+00) Acc@1 9.77 ( 3.54) Acc@5 24.22 ( 10.50) +Epoch: [0][4128/5004] Time 0.237 ( 0.242) Data 0.024 ( 0.027) Loss 4.8784e+00 (5.9527e+00) Acc@1 10.16 ( 3.54) Acc@5 27.73 ( 10.51) +Epoch: [0][4129/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.7650e+00 (5.9524e+00) Acc@1 10.94 ( 3.54) Acc@5 28.91 ( 10.51) +Epoch: [0][4130/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.0443e+00 (5.9522e+00) Acc@1 10.94 ( 3.55) Acc@5 26.95 ( 10.52) +Epoch: [0][4131/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.9057e+00 (5.9519e+00) Acc@1 15.62 ( 3.55) Acc@5 26.56 ( 10.52) +Epoch: [0][4132/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.8060e+00 (5.9516e+00) Acc@1 11.33 ( 3.55) Acc@5 25.39 ( 10.52) +Epoch: [0][4133/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.8533e+00 (5.9514e+00) Acc@1 14.84 ( 3.55) Acc@5 26.56 ( 10.53) +Epoch: [0][4134/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.9556e+00 (5.9511e+00) Acc@1 8.98 ( 3.56) Acc@5 24.22 ( 10.53) +Epoch: [0][4135/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.7142e+00 (5.9508e+00) Acc@1 10.94 ( 3.56) Acc@5 30.47 ( 10.53) +Epoch: [0][4136/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.9018e+00 (5.9506e+00) Acc@1 9.38 ( 3.56) Acc@5 28.91 ( 10.54) +Epoch: [0][4137/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.7980e+00 (5.9503e+00) Acc@1 8.98 ( 3.56) Acc@5 24.61 ( 10.54) +Epoch: [0][4138/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 4.8382e+00 (5.9500e+00) Acc@1 12.11 ( 3.56) Acc@5 25.39 ( 10.55) +Epoch: [0][4139/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.8941e+00 (5.9498e+00) Acc@1 9.38 ( 3.56) Acc@5 22.66 ( 10.55) +Epoch: [0][4140/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.8679e+00 (5.9495e+00) Acc@1 6.25 ( 3.56) Acc@5 24.22 ( 10.55) +Epoch: [0][4141/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.9110e+00 (5.9493e+00) Acc@1 10.55 ( 3.57) Acc@5 26.95 ( 10.56) +Epoch: [0][4142/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.8198e+00 (5.9490e+00) Acc@1 11.33 ( 3.57) Acc@5 27.73 ( 10.56) +Epoch: [0][4143/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.9128e+00 (5.9487e+00) Acc@1 10.55 ( 3.57) Acc@5 23.44 ( 10.56) +Epoch: [0][4144/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.8738e+00 (5.9485e+00) Acc@1 12.50 ( 3.57) Acc@5 26.56 ( 10.57) +Epoch: [0][4145/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.9060e+00 (5.9482e+00) Acc@1 10.94 ( 3.57) Acc@5 26.17 ( 10.57) +Epoch: [0][4146/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.0036e+00 (5.9480e+00) Acc@1 9.38 ( 3.57) Acc@5 23.83 ( 10.57) +Epoch: [0][4147/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.7496e+00 (5.9477e+00) Acc@1 12.89 ( 3.58) Acc@5 28.91 ( 10.58) +Epoch: [0][4148/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 5.0046e+00 (5.9475e+00) Acc@1 11.33 ( 3.58) Acc@5 25.39 ( 10.58) +Epoch: [0][4149/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.7154e+00 (5.9472e+00) Acc@1 6.64 ( 3.58) Acc@5 29.30 ( 10.59) +Epoch: [0][4150/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.7487e+00 (5.9469e+00) Acc@1 8.98 ( 3.58) Acc@5 28.12 ( 10.59) +Epoch: [0][4151/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.8441e+00 (5.9466e+00) Acc@1 11.72 ( 3.58) Acc@5 26.17 ( 10.59) +Epoch: [0][4152/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.7793e+00 (5.9463e+00) Acc@1 12.89 ( 3.58) Acc@5 28.52 ( 10.60) +Epoch: [0][4153/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.8739e+00 (5.9461e+00) Acc@1 10.55 ( 3.59) Acc@5 23.83 ( 10.60) +Epoch: [0][4154/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.7562e+00 (5.9458e+00) Acc@1 11.72 ( 3.59) Acc@5 28.91 ( 10.61) +Epoch: [0][4155/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 4.9036e+00 (5.9455e+00) Acc@1 8.98 ( 3.59) Acc@5 26.17 ( 10.61) +Epoch: [0][4156/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 4.8576e+00 (5.9453e+00) Acc@1 9.38 ( 3.59) Acc@5 25.39 ( 10.61) +Epoch: [0][4157/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.6800e+00 (5.9450e+00) Acc@1 10.94 ( 3.59) Acc@5 27.73 ( 10.62) +Epoch: [0][4158/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.8495e+00 (5.9447e+00) Acc@1 11.72 ( 3.59) Acc@5 30.47 ( 10.62) +Epoch: [0][4159/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 4.9749e+00 (5.9445e+00) Acc@1 10.55 ( 3.60) Acc@5 27.34 ( 10.63) +Epoch: [0][4160/5004] Time 0.245 ( 0.242) Data 0.027 ( 0.027) Loss 5.0087e+00 (5.9443e+00) Acc@1 9.77 ( 3.60) Acc@5 26.17 ( 10.63) +Epoch: [0][4161/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.8370e+00 (5.9440e+00) Acc@1 10.55 ( 3.60) Acc@5 27.34 ( 10.63) +Epoch: [0][4162/5004] Time 0.237 ( 0.242) Data 0.023 ( 0.027) Loss 4.8301e+00 (5.9437e+00) Acc@1 12.89 ( 3.60) Acc@5 30.08 ( 10.64) +Epoch: [0][4163/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.8103e+00 (5.9435e+00) Acc@1 11.72 ( 3.60) Acc@5 26.56 ( 10.64) +Epoch: [0][4164/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 4.7218e+00 (5.9432e+00) Acc@1 11.33 ( 3.61) Acc@5 25.00 ( 10.65) +Epoch: [0][4165/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.8191e+00 (5.9429e+00) Acc@1 11.72 ( 3.61) Acc@5 28.52 ( 10.65) +Epoch: [0][4166/5004] Time 0.247 ( 0.242) Data 0.026 ( 0.027) Loss 4.9641e+00 (5.9427e+00) Acc@1 7.81 ( 3.61) Acc@5 26.17 ( 10.65) +Epoch: [0][4167/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.8907e+00 (5.9424e+00) Acc@1 9.38 ( 3.61) Acc@5 24.61 ( 10.66) +Epoch: [0][4168/5004] Time 0.243 ( 0.242) Data 0.019 ( 0.027) Loss 4.7300e+00 (5.9421e+00) Acc@1 8.59 ( 3.61) Acc@5 28.12 ( 10.66) +Epoch: [0][4169/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 4.8998e+00 (5.9419e+00) Acc@1 11.33 ( 3.61) Acc@5 24.22 ( 10.67) +Epoch: [0][4170/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.8525e+00 (5.9416e+00) Acc@1 10.94 ( 3.61) Acc@5 27.34 ( 10.67) +Epoch: [0][4171/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.8219e+00 (5.9413e+00) Acc@1 10.55 ( 3.62) Acc@5 27.73 ( 10.67) +Epoch: [0][4172/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.9279e+00 (5.9411e+00) Acc@1 10.94 ( 3.62) Acc@5 26.95 ( 10.68) +Epoch: [0][4173/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6517e+00 (5.9408e+00) Acc@1 14.45 ( 3.62) Acc@5 30.86 ( 10.68) +Epoch: [0][4174/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.9346e+00 (5.9405e+00) Acc@1 8.98 ( 3.62) Acc@5 26.95 ( 10.69) +Epoch: [0][4175/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9728e+00 (5.9403e+00) Acc@1 9.38 ( 3.62) Acc@5 23.44 ( 10.69) +Epoch: [0][4176/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.9828e+00 (5.9401e+00) Acc@1 8.20 ( 3.62) Acc@5 20.70 ( 10.69) +Epoch: [0][4177/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 4.7761e+00 (5.9398e+00) Acc@1 13.67 ( 3.63) Acc@5 28.12 ( 10.70) +Epoch: [0][4178/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 4.9656e+00 (5.9396e+00) Acc@1 8.20 ( 3.63) Acc@5 21.88 ( 10.70) +Epoch: [0][4179/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.7258e+00 (5.9393e+00) Acc@1 10.94 ( 3.63) Acc@5 25.78 ( 10.70) +Epoch: [0][4180/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 4.7851e+00 (5.9390e+00) Acc@1 8.59 ( 3.63) Acc@5 25.00 ( 10.71) +Epoch: [0][4181/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7929e+00 (5.9387e+00) Acc@1 9.38 ( 3.63) Acc@5 25.78 ( 10.71) +Epoch: [0][4182/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 4.9279e+00 (5.9385e+00) Acc@1 9.77 ( 3.63) Acc@5 26.17 ( 10.71) +Epoch: [0][4183/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.7627e+00 (5.9382e+00) Acc@1 10.94 ( 3.64) Acc@5 30.08 ( 10.72) +Epoch: [0][4184/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 4.7712e+00 (5.9379e+00) Acc@1 11.72 ( 3.64) Acc@5 26.95 ( 10.72) +Epoch: [0][4185/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.027) Loss 4.6684e+00 (5.9376e+00) Acc@1 12.11 ( 3.64) Acc@5 29.30 ( 10.73) +Epoch: [0][4186/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.8564e+00 (5.9374e+00) Acc@1 12.89 ( 3.64) Acc@5 24.61 ( 10.73) +Epoch: [0][4187/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.6489e+00 (5.9371e+00) Acc@1 11.33 ( 3.64) Acc@5 30.47 ( 10.73) +Epoch: [0][4188/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.7767e+00 (5.9368e+00) Acc@1 9.38 ( 3.64) Acc@5 25.39 ( 10.74) +Epoch: [0][4189/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.8087e+00 (5.9365e+00) Acc@1 10.94 ( 3.65) Acc@5 29.30 ( 10.74) +Epoch: [0][4190/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 4.9606e+00 (5.9363e+00) Acc@1 9.77 ( 3.65) Acc@5 23.83 ( 10.74) +Epoch: [0][4191/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 4.8464e+00 (5.9360e+00) Acc@1 11.72 ( 3.65) Acc@5 25.00 ( 10.75) +Epoch: [0][4192/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.7988e+00 (5.9357e+00) Acc@1 11.33 ( 3.65) Acc@5 25.39 ( 10.75) +Epoch: [0][4193/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.8571e+00 (5.9355e+00) Acc@1 9.77 ( 3.65) Acc@5 29.30 ( 10.76) +Epoch: [0][4194/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.8865e+00 (5.9352e+00) Acc@1 8.59 ( 3.65) Acc@5 29.69 ( 10.76) +Epoch: [0][4195/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.9389e+00 (5.9350e+00) Acc@1 9.38 ( 3.66) Acc@5 25.78 ( 10.76) +Epoch: [0][4196/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.9274e+00 (5.9348e+00) Acc@1 10.16 ( 3.66) Acc@5 26.56 ( 10.77) +Epoch: [0][4197/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.6202e+00 (5.9344e+00) Acc@1 12.89 ( 3.66) Acc@5 30.47 ( 10.77) +Epoch: [0][4198/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.9006e+00 (5.9342e+00) Acc@1 9.38 ( 3.66) Acc@5 25.39 ( 10.78) +Epoch: [0][4199/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.9399e+00 (5.9340e+00) Acc@1 8.98 ( 3.66) Acc@5 26.17 ( 10.78) +Epoch: [0][4200/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.6898e+00 (5.9337e+00) Acc@1 10.55 ( 3.66) Acc@5 27.73 ( 10.78) +Epoch: [0][4201/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 4.8640e+00 (5.9334e+00) Acc@1 8.59 ( 3.67) Acc@5 27.73 ( 10.79) +Epoch: [0][4202/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.7640e+00 (5.9331e+00) Acc@1 12.11 ( 3.67) Acc@5 26.95 ( 10.79) +Epoch: [0][4203/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 4.6238e+00 (5.9328e+00) Acc@1 10.16 ( 3.67) Acc@5 30.08 ( 10.80) +Epoch: [0][4204/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.5923e+00 (5.9325e+00) Acc@1 12.11 ( 3.67) Acc@5 29.69 ( 10.80) +Epoch: [0][4205/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.9729e+00 (5.9323e+00) Acc@1 8.98 ( 3.67) Acc@5 21.88 ( 10.80) +Epoch: [0][4206/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.8715e+00 (5.9320e+00) Acc@1 12.50 ( 3.67) Acc@5 25.00 ( 10.81) +Epoch: [0][4207/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.6214e+00 (5.9317e+00) Acc@1 10.94 ( 3.68) Acc@5 32.81 ( 10.81) +Epoch: [0][4208/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7989e+00 (5.9314e+00) Acc@1 12.89 ( 3.68) Acc@5 25.00 ( 10.82) +Epoch: [0][4209/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 4.8222e+00 (5.9312e+00) Acc@1 10.16 ( 3.68) Acc@5 27.34 ( 10.82) +Epoch: [0][4210/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.027) Loss 4.9261e+00 (5.9309e+00) Acc@1 7.42 ( 3.68) Acc@5 25.78 ( 10.82) +Epoch: [0][4211/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.7473e+00 (5.9307e+00) Acc@1 8.98 ( 3.68) Acc@5 28.52 ( 10.83) +Epoch: [0][4212/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.7753e+00 (5.9304e+00) Acc@1 9.77 ( 3.68) Acc@5 30.86 ( 10.83) +Epoch: [0][4213/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.8018e+00 (5.9301e+00) Acc@1 10.94 ( 3.68) Acc@5 27.34 ( 10.84) +Epoch: [0][4214/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.5895e+00 (5.9298e+00) Acc@1 13.67 ( 3.69) Acc@5 30.08 ( 10.84) +Epoch: [0][4215/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.7872e+00 (5.9295e+00) Acc@1 8.20 ( 3.69) Acc@5 29.30 ( 10.84) +Epoch: [0][4216/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.7412e+00 (5.9292e+00) Acc@1 12.11 ( 3.69) Acc@5 28.12 ( 10.85) +Epoch: [0][4217/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 4.8826e+00 (5.9290e+00) Acc@1 11.72 ( 3.69) Acc@5 26.17 ( 10.85) +Epoch: [0][4218/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.8314e+00 (5.9287e+00) Acc@1 10.55 ( 3.69) Acc@5 29.69 ( 10.86) +Epoch: [0][4219/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9671e+00 (5.9285e+00) Acc@1 10.55 ( 3.70) Acc@5 25.00 ( 10.86) +Epoch: [0][4220/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 5.0379e+00 (5.9283e+00) Acc@1 12.11 ( 3.70) Acc@5 25.00 ( 10.86) +Epoch: [0][4221/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.6965e+00 (5.9280e+00) Acc@1 11.72 ( 3.70) Acc@5 30.47 ( 10.87) +Epoch: [0][4222/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.8594e+00 (5.9278e+00) Acc@1 11.33 ( 3.70) Acc@5 27.73 ( 10.87) +Epoch: [0][4223/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7897e+00 (5.9275e+00) Acc@1 8.59 ( 3.70) Acc@5 25.78 ( 10.88) +Epoch: [0][4224/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.7054e+00 (5.9272e+00) Acc@1 11.33 ( 3.70) Acc@5 30.86 ( 10.88) +Epoch: [0][4225/5004] Time 0.255 ( 0.242) Data 0.020 ( 0.027) Loss 4.7445e+00 (5.9269e+00) Acc@1 10.16 ( 3.71) Acc@5 23.44 ( 10.88) +Epoch: [0][4226/5004] Time 0.251 ( 0.242) Data 0.018 ( 0.027) Loss 4.7427e+00 (5.9266e+00) Acc@1 10.55 ( 3.71) Acc@5 29.69 ( 10.89) +Epoch: [0][4227/5004] Time 0.238 ( 0.242) Data 0.020 ( 0.027) Loss 4.7659e+00 (5.9264e+00) Acc@1 9.77 ( 3.71) Acc@5 26.56 ( 10.89) +Epoch: [0][4228/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.8434e+00 (5.9261e+00) Acc@1 10.16 ( 3.71) Acc@5 26.17 ( 10.90) +Epoch: [0][4229/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 4.7966e+00 (5.9258e+00) Acc@1 11.33 ( 3.71) Acc@5 27.34 ( 10.90) +Epoch: [0][4230/5004] Time 0.259 ( 0.242) Data 0.019 ( 0.027) Loss 4.8604e+00 (5.9256e+00) Acc@1 8.98 ( 3.71) Acc@5 23.05 ( 10.90) +Epoch: [0][4231/5004] Time 0.245 ( 0.242) Data 0.017 ( 0.027) Loss 4.9604e+00 (5.9254e+00) Acc@1 10.16 ( 3.71) Acc@5 26.56 ( 10.91) +Epoch: [0][4232/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 4.6941e+00 (5.9251e+00) Acc@1 12.11 ( 3.72) Acc@5 26.56 ( 10.91) +Epoch: [0][4233/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.9741e+00 (5.9248e+00) Acc@1 11.33 ( 3.72) Acc@5 26.95 ( 10.91) +Epoch: [0][4234/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 4.8375e+00 (5.9246e+00) Acc@1 12.50 ( 3.72) Acc@5 25.78 ( 10.92) +Epoch: [0][4235/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.6897e+00 (5.9243e+00) Acc@1 12.50 ( 3.72) Acc@5 30.86 ( 10.92) +Epoch: [0][4236/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 5.0310e+00 (5.9241e+00) Acc@1 6.64 ( 3.72) Acc@5 25.00 ( 10.92) +Epoch: [0][4237/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.8477e+00 (5.9238e+00) Acc@1 7.81 ( 3.72) Acc@5 28.91 ( 10.93) +Epoch: [0][4238/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.8085e+00 (5.9236e+00) Acc@1 9.77 ( 3.73) Acc@5 23.44 ( 10.93) +Epoch: [0][4239/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.7398e+00 (5.9233e+00) Acc@1 11.33 ( 3.73) Acc@5 31.25 ( 10.94) +Epoch: [0][4240/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 5.1197e+00 (5.9231e+00) Acc@1 7.03 ( 3.73) Acc@5 21.48 ( 10.94) +Epoch: [0][4241/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6595e+00 (5.9228e+00) Acc@1 12.89 ( 3.73) Acc@5 30.47 ( 10.94) +Epoch: [0][4242/5004] Time 0.240 ( 0.242) Data 0.020 ( 0.027) Loss 4.7503e+00 (5.9225e+00) Acc@1 9.38 ( 3.73) Acc@5 26.95 ( 10.95) +Epoch: [0][4243/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.8639e+00 (5.9223e+00) Acc@1 14.84 ( 3.73) Acc@5 28.52 ( 10.95) +Epoch: [0][4244/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.8968e+00 (5.9220e+00) Acc@1 10.16 ( 3.74) Acc@5 27.73 ( 10.96) +Epoch: [0][4245/5004] Time 0.241 ( 0.242) Data 0.020 ( 0.027) Loss 4.7176e+00 (5.9218e+00) Acc@1 12.11 ( 3.74) Acc@5 30.47 ( 10.96) +Epoch: [0][4246/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.8005e+00 (5.9215e+00) Acc@1 12.50 ( 3.74) Acc@5 25.00 ( 10.96) +Epoch: [0][4247/5004] Time 0.241 ( 0.242) Data 0.021 ( 0.027) Loss 4.8796e+00 (5.9212e+00) Acc@1 11.33 ( 3.74) Acc@5 27.34 ( 10.97) +Epoch: [0][4248/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.8194e+00 (5.9210e+00) Acc@1 9.77 ( 3.74) Acc@5 26.17 ( 10.97) +Epoch: [0][4249/5004] Time 0.249 ( 0.242) Data 0.019 ( 0.027) Loss 4.7286e+00 (5.9207e+00) Acc@1 10.16 ( 3.74) Acc@5 27.34 ( 10.97) +Epoch: [0][4250/5004] Time 0.234 ( 0.242) Data 0.019 ( 0.027) Loss 4.8192e+00 (5.9204e+00) Acc@1 11.72 ( 3.75) Acc@5 28.12 ( 10.98) +Epoch: [0][4251/5004] Time 0.242 ( 0.242) Data 0.030 ( 0.027) Loss 4.9174e+00 (5.9202e+00) Acc@1 7.03 ( 3.75) Acc@5 26.17 ( 10.98) +Epoch: [0][4252/5004] Time 0.241 ( 0.242) Data 0.030 ( 0.027) Loss 4.7714e+00 (5.9199e+00) Acc@1 12.50 ( 3.75) Acc@5 28.91 ( 10.99) +Epoch: [0][4253/5004] Time 0.246 ( 0.242) Data 0.031 ( 0.027) Loss 4.8381e+00 (5.9197e+00) Acc@1 10.55 ( 3.75) Acc@5 28.52 ( 10.99) +Epoch: [0][4254/5004] Time 0.244 ( 0.242) Data 0.031 ( 0.027) Loss 4.5979e+00 (5.9194e+00) Acc@1 13.67 ( 3.75) Acc@5 31.25 ( 11.00) +Epoch: [0][4255/5004] Time 0.244 ( 0.242) Data 0.029 ( 0.027) Loss 4.8908e+00 (5.9191e+00) Acc@1 7.42 ( 3.75) Acc@5 27.34 ( 11.00) +Epoch: [0][4256/5004] Time 0.242 ( 0.242) Data 0.029 ( 0.027) Loss 4.9048e+00 (5.9189e+00) Acc@1 8.20 ( 3.76) Acc@5 23.83 ( 11.00) +Epoch: [0][4257/5004] Time 0.241 ( 0.242) Data 0.030 ( 0.027) Loss 4.7775e+00 (5.9186e+00) Acc@1 7.42 ( 3.76) Acc@5 28.12 ( 11.01) +Epoch: [0][4258/5004] Time 0.233 ( 0.242) Data 0.030 ( 0.027) Loss 4.7138e+00 (5.9183e+00) Acc@1 12.50 ( 3.76) Acc@5 27.73 ( 11.01) +Epoch: [0][4259/5004] Time 0.226 ( 0.242) Data 0.038 ( 0.027) Loss 4.7287e+00 (5.9181e+00) Acc@1 12.11 ( 3.76) Acc@5 26.95 ( 11.01) +Epoch: [0][4260/5004] Time 0.237 ( 0.242) Data 0.049 ( 0.027) Loss 4.7377e+00 (5.9178e+00) Acc@1 13.28 ( 3.76) Acc@5 23.83 ( 11.02) +Epoch: [0][4261/5004] Time 0.238 ( 0.242) Data 0.051 ( 0.027) Loss 4.8354e+00 (5.9175e+00) Acc@1 8.59 ( 3.76) Acc@5 27.73 ( 11.02) +Epoch: [0][4262/5004] Time 0.243 ( 0.242) Data 0.052 ( 0.027) Loss 4.7454e+00 (5.9173e+00) Acc@1 11.33 ( 3.77) Acc@5 28.52 ( 11.03) +Epoch: [0][4263/5004] Time 0.240 ( 0.242) Data 0.051 ( 0.027) Loss 4.7975e+00 (5.9170e+00) Acc@1 12.11 ( 3.77) Acc@5 31.64 ( 11.03) +Epoch: [0][4264/5004] Time 0.240 ( 0.242) Data 0.050 ( 0.027) Loss 4.8793e+00 (5.9167e+00) Acc@1 11.33 ( 3.77) Acc@5 23.44 ( 11.03) +Epoch: [0][4265/5004] Time 0.241 ( 0.242) Data 0.049 ( 0.027) Loss 4.8561e+00 (5.9165e+00) Acc@1 9.77 ( 3.77) Acc@5 26.17 ( 11.04) +Epoch: [0][4266/5004] Time 0.236 ( 0.242) Data 0.048 ( 0.027) Loss 4.8661e+00 (5.9163e+00) Acc@1 10.16 ( 3.77) Acc@5 24.61 ( 11.04) +Epoch: [0][4267/5004] Time 0.238 ( 0.242) Data 0.049 ( 0.027) Loss 4.9215e+00 (5.9160e+00) Acc@1 12.50 ( 3.77) Acc@5 26.17 ( 11.04) +Epoch: [0][4268/5004] Time 0.237 ( 0.242) Data 0.048 ( 0.027) Loss 4.7058e+00 (5.9157e+00) Acc@1 12.89 ( 3.78) Acc@5 30.47 ( 11.05) +Epoch: [0][4269/5004] Time 0.235 ( 0.242) Data 0.050 ( 0.027) Loss 4.7123e+00 (5.9155e+00) Acc@1 14.45 ( 3.78) Acc@5 30.86 ( 11.05) +Epoch: [0][4270/5004] Time 0.242 ( 0.242) Data 0.052 ( 0.027) Loss 4.8565e+00 (5.9152e+00) Acc@1 13.67 ( 3.78) Acc@5 26.95 ( 11.06) +Epoch: [0][4271/5004] Time 0.238 ( 0.242) Data 0.050 ( 0.027) Loss 4.7593e+00 (5.9149e+00) Acc@1 11.33 ( 3.78) Acc@5 25.00 ( 11.06) +Epoch: [0][4272/5004] Time 0.237 ( 0.242) Data 0.051 ( 0.027) Loss 4.6200e+00 (5.9146e+00) Acc@1 13.28 ( 3.78) Acc@5 28.52 ( 11.06) +Epoch: [0][4273/5004] Time 0.237 ( 0.242) Data 0.051 ( 0.027) Loss 4.7595e+00 (5.9144e+00) Acc@1 14.06 ( 3.79) Acc@5 30.08 ( 11.07) +Epoch: [0][4274/5004] Time 0.279 ( 0.242) Data 0.055 ( 0.027) Loss 4.9182e+00 (5.9141e+00) Acc@1 7.42 ( 3.79) Acc@5 23.44 ( 11.07) +Epoch: [0][4275/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.7593e+00 (5.9139e+00) Acc@1 10.94 ( 3.79) Acc@5 32.42 ( 11.08) +Epoch: [0][4276/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.7934e+00 (5.9136e+00) Acc@1 11.72 ( 3.79) Acc@5 26.56 ( 11.08) +Epoch: [0][4277/5004] Time 0.254 ( 0.242) Data 0.022 ( 0.027) Loss 4.7614e+00 (5.9133e+00) Acc@1 12.11 ( 3.79) Acc@5 28.52 ( 11.08) +Epoch: [0][4278/5004] Time 0.248 ( 0.242) Data 0.018 ( 0.027) Loss 4.5701e+00 (5.9130e+00) Acc@1 9.77 ( 3.79) Acc@5 27.73 ( 11.09) +Epoch: [0][4279/5004] Time 0.239 ( 0.242) Data 0.018 ( 0.027) Loss 4.9376e+00 (5.9128e+00) Acc@1 8.98 ( 3.80) Acc@5 26.17 ( 11.09) +Epoch: [0][4280/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.7880e+00 (5.9125e+00) Acc@1 11.33 ( 3.80) Acc@5 28.52 ( 11.09) +Epoch: [0][4281/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.7368e+00 (5.9123e+00) Acc@1 10.16 ( 3.80) Acc@5 25.78 ( 11.10) +Epoch: [0][4282/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.7460e+00 (5.9120e+00) Acc@1 13.28 ( 3.80) Acc@5 27.73 ( 11.10) +Epoch: [0][4283/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.8431e+00 (5.9117e+00) Acc@1 9.38 ( 3.80) Acc@5 29.30 ( 11.11) +Epoch: [0][4284/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.027) Loss 4.8211e+00 (5.9115e+00) Acc@1 12.11 ( 3.80) Acc@5 25.00 ( 11.11) +Epoch: [0][4285/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 4.6950e+00 (5.9112e+00) Acc@1 12.11 ( 3.81) Acc@5 28.91 ( 11.11) +Epoch: [0][4286/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.7502e+00 (5.9109e+00) Acc@1 9.77 ( 3.81) Acc@5 30.08 ( 11.12) +Epoch: [0][4287/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 4.9691e+00 (5.9107e+00) Acc@1 10.94 ( 3.81) Acc@5 24.61 ( 11.12) +Epoch: [0][4288/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.8992e+00 (5.9105e+00) Acc@1 10.16 ( 3.81) Acc@5 26.17 ( 11.12) +Epoch: [0][4289/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.9013e+00 (5.9102e+00) Acc@1 9.38 ( 3.81) Acc@5 25.00 ( 11.13) +Epoch: [0][4290/5004] Time 0.250 ( 0.242) Data 0.025 ( 0.027) Loss 4.6599e+00 (5.9099e+00) Acc@1 12.11 ( 3.81) Acc@5 31.25 ( 11.13) +Epoch: [0][4291/5004] Time 0.235 ( 0.242) Data 0.019 ( 0.027) Loss 4.5909e+00 (5.9096e+00) Acc@1 10.94 ( 3.82) Acc@5 33.20 ( 11.14) +Epoch: [0][4292/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.4896e+00 (5.9093e+00) Acc@1 11.33 ( 3.82) Acc@5 34.77 ( 11.14) +Epoch: [0][4293/5004] Time 0.250 ( 0.242) Data 0.024 ( 0.027) Loss 4.5771e+00 (5.9090e+00) Acc@1 11.72 ( 3.82) Acc@5 28.52 ( 11.15) +Epoch: [0][4294/5004] Time 0.236 ( 0.242) Data 0.018 ( 0.027) Loss 4.7886e+00 (5.9087e+00) Acc@1 7.42 ( 3.82) Acc@5 29.69 ( 11.15) +Epoch: [0][4295/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.6953e+00 (5.9084e+00) Acc@1 13.67 ( 3.82) Acc@5 28.91 ( 11.16) +Epoch: [0][4296/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.7537e+00 (5.9082e+00) Acc@1 12.50 ( 3.82) Acc@5 30.08 ( 11.16) +Epoch: [0][4297/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.7052e+00 (5.9079e+00) Acc@1 14.84 ( 3.83) Acc@5 28.52 ( 11.16) +Epoch: [0][4298/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.6409e+00 (5.9076e+00) Acc@1 9.77 ( 3.83) Acc@5 29.30 ( 11.17) +Epoch: [0][4299/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.5253e+00 (5.9073e+00) Acc@1 15.23 ( 3.83) Acc@5 31.25 ( 11.17) +Epoch: [0][4300/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.8865e+00 (5.9070e+00) Acc@1 9.77 ( 3.83) Acc@5 27.34 ( 11.18) +Epoch: [0][4301/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.6540e+00 (5.9068e+00) Acc@1 10.94 ( 3.83) Acc@5 31.64 ( 11.18) +Epoch: [0][4302/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9764e+00 (5.9065e+00) Acc@1 11.72 ( 3.84) Acc@5 26.17 ( 11.19) +Epoch: [0][4303/5004] Time 0.238 ( 0.242) Data 0.021 ( 0.027) Loss 4.6258e+00 (5.9062e+00) Acc@1 13.67 ( 3.84) Acc@5 30.86 ( 11.19) +Epoch: [0][4304/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.8290e+00 (5.9060e+00) Acc@1 9.38 ( 3.84) Acc@5 27.73 ( 11.19) +Epoch: [0][4305/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.7701e+00 (5.9057e+00) Acc@1 10.16 ( 3.84) Acc@5 26.95 ( 11.20) +Epoch: [0][4306/5004] Time 0.254 ( 0.242) Data 0.021 ( 0.027) Loss 4.7567e+00 (5.9055e+00) Acc@1 9.38 ( 3.84) Acc@5 27.34 ( 11.20) +Epoch: [0][4307/5004] Time 0.239 ( 0.242) Data 0.018 ( 0.027) Loss 4.7334e+00 (5.9052e+00) Acc@1 13.28 ( 3.84) Acc@5 25.00 ( 11.20) +Epoch: [0][4308/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8292e+00 (5.9049e+00) Acc@1 10.55 ( 3.85) Acc@5 25.78 ( 11.21) +Epoch: [0][4309/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.8248e+00 (5.9047e+00) Acc@1 10.16 ( 3.85) Acc@5 26.17 ( 11.21) +Epoch: [0][4310/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.8139e+00 (5.9044e+00) Acc@1 9.77 ( 3.85) Acc@5 22.27 ( 11.21) +Epoch: [0][4311/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.7347e+00 (5.9042e+00) Acc@1 8.98 ( 3.85) Acc@5 26.95 ( 11.22) +Epoch: [0][4312/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.8306e+00 (5.9039e+00) Acc@1 11.33 ( 3.85) Acc@5 27.34 ( 11.22) +Epoch: [0][4313/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.7741e+00 (5.9037e+00) Acc@1 10.94 ( 3.85) Acc@5 28.12 ( 11.22) +Epoch: [0][4314/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.9588e+00 (5.9034e+00) Acc@1 7.42 ( 3.85) Acc@5 23.83 ( 11.23) +Epoch: [0][4315/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.9207e+00 (5.9032e+00) Acc@1 11.33 ( 3.86) Acc@5 26.95 ( 11.23) +Epoch: [0][4316/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 4.9889e+00 (5.9030e+00) Acc@1 7.81 ( 3.86) Acc@5 23.44 ( 11.23) +Epoch: [0][4317/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.7923e+00 (5.9027e+00) Acc@1 9.77 ( 3.86) Acc@5 26.56 ( 11.24) +Epoch: [0][4318/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8128e+00 (5.9025e+00) Acc@1 10.94 ( 3.86) Acc@5 26.17 ( 11.24) +Epoch: [0][4319/5004] Time 0.240 ( 0.242) Data 0.022 ( 0.027) Loss 4.7896e+00 (5.9022e+00) Acc@1 10.16 ( 3.86) Acc@5 24.22 ( 11.24) +Epoch: [0][4320/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.7552e+00 (5.9020e+00) Acc@1 11.72 ( 3.86) Acc@5 30.08 ( 11.25) +Epoch: [0][4321/5004] Time 0.248 ( 0.242) Data 0.023 ( 0.027) Loss 4.7996e+00 (5.9017e+00) Acc@1 10.55 ( 3.87) Acc@5 30.08 ( 11.25) +Epoch: [0][4322/5004] Time 0.251 ( 0.242) Data 0.022 ( 0.027) Loss 4.7925e+00 (5.9014e+00) Acc@1 12.11 ( 3.87) Acc@5 25.78 ( 11.26) +Epoch: [0][4323/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.9689e+00 (5.9012e+00) Acc@1 7.03 ( 3.87) Acc@5 23.05 ( 11.26) +Epoch: [0][4324/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.6224e+00 (5.9009e+00) Acc@1 13.28 ( 3.87) Acc@5 29.69 ( 11.26) +Epoch: [0][4325/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 4.9648e+00 (5.9007e+00) Acc@1 13.67 ( 3.87) Acc@5 21.48 ( 11.27) +Epoch: [0][4326/5004] Time 0.245 ( 0.242) Data 0.024 ( 0.027) Loss 4.8443e+00 (5.9005e+00) Acc@1 9.77 ( 3.87) Acc@5 25.78 ( 11.27) +Epoch: [0][4327/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.8629e+00 (5.9002e+00) Acc@1 10.55 ( 3.88) Acc@5 27.34 ( 11.27) +Epoch: [0][4328/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.7824e+00 (5.9000e+00) Acc@1 9.77 ( 3.88) Acc@5 28.52 ( 11.28) +Epoch: [0][4329/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.7636e+00 (5.8997e+00) Acc@1 12.11 ( 3.88) Acc@5 30.08 ( 11.28) +Epoch: [0][4330/5004] Time 0.250 ( 0.242) Data 0.023 ( 0.027) Loss 4.7994e+00 (5.8995e+00) Acc@1 11.33 ( 3.88) Acc@5 27.73 ( 11.29) +Epoch: [0][4331/5004] Time 0.256 ( 0.242) Data 0.020 ( 0.027) Loss 4.8181e+00 (5.8992e+00) Acc@1 10.94 ( 3.88) Acc@5 26.56 ( 11.29) +Epoch: [0][4332/5004] Time 0.257 ( 0.242) Data 0.015 ( 0.027) Loss 4.6602e+00 (5.8989e+00) Acc@1 10.55 ( 3.88) Acc@5 30.08 ( 11.29) +Epoch: [0][4333/5004] Time 0.252 ( 0.242) Data 0.013 ( 0.027) Loss 5.0688e+00 (5.8987e+00) Acc@1 7.42 ( 3.88) Acc@5 23.05 ( 11.30) +Epoch: [0][4334/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 4.5669e+00 (5.8984e+00) Acc@1 13.67 ( 3.89) Acc@5 35.94 ( 11.30) +Epoch: [0][4335/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.6091e+00 (5.8981e+00) Acc@1 16.41 ( 3.89) Acc@5 31.25 ( 11.31) +Epoch: [0][4336/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.6903e+00 (5.8979e+00) Acc@1 14.45 ( 3.89) Acc@5 30.08 ( 11.31) +Epoch: [0][4337/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 4.8456e+00 (5.8976e+00) Acc@1 11.72 ( 3.89) Acc@5 32.03 ( 11.31) +Epoch: [0][4338/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.9356e+00 (5.8974e+00) Acc@1 10.94 ( 3.90) Acc@5 23.83 ( 11.32) +Epoch: [0][4339/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.6169e+00 (5.8971e+00) Acc@1 14.45 ( 3.90) Acc@5 29.30 ( 11.32) +Epoch: [0][4340/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.9525e+00 (5.8969e+00) Acc@1 8.98 ( 3.90) Acc@5 25.39 ( 11.33) +Epoch: [0][4341/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.9203e+00 (5.8966e+00) Acc@1 11.72 ( 3.90) Acc@5 26.56 ( 11.33) +Epoch: [0][4342/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8464e+00 (5.8964e+00) Acc@1 8.98 ( 3.90) Acc@5 28.52 ( 11.33) +Epoch: [0][4343/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 4.7011e+00 (5.8961e+00) Acc@1 8.59 ( 3.90) Acc@5 30.08 ( 11.34) +Epoch: [0][4344/5004] Time 0.249 ( 0.242) Data 0.024 ( 0.027) Loss 4.8028e+00 (5.8959e+00) Acc@1 9.38 ( 3.90) Acc@5 26.17 ( 11.34) +Epoch: [0][4345/5004] Time 0.237 ( 0.242) Data 0.018 ( 0.027) Loss 4.7744e+00 (5.8956e+00) Acc@1 12.50 ( 3.91) Acc@5 30.08 ( 11.34) +Epoch: [0][4346/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.9243e+00 (5.8954e+00) Acc@1 9.38 ( 3.91) Acc@5 22.66 ( 11.35) +Epoch: [0][4347/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.7480e+00 (5.8951e+00) Acc@1 13.67 ( 3.91) Acc@5 29.30 ( 11.35) +Epoch: [0][4348/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.7489e+00 (5.8949e+00) Acc@1 9.77 ( 3.91) Acc@5 27.34 ( 11.36) +Epoch: [0][4349/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.6675e+00 (5.8946e+00) Acc@1 14.06 ( 3.91) Acc@5 28.52 ( 11.36) +Epoch: [0][4350/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.7124e+00 (5.8943e+00) Acc@1 14.06 ( 3.92) Acc@5 30.08 ( 11.36) +Epoch: [0][4351/5004] Time 0.247 ( 0.242) Data 0.025 ( 0.027) Loss 4.6712e+00 (5.8940e+00) Acc@1 12.50 ( 3.92) Acc@5 27.73 ( 11.37) +Epoch: [0][4352/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.9541e+00 (5.8938e+00) Acc@1 11.33 ( 3.92) Acc@5 25.39 ( 11.37) +Epoch: [0][4353/5004] Time 0.247 ( 0.242) Data 0.026 ( 0.027) Loss 4.6457e+00 (5.8935e+00) Acc@1 12.89 ( 3.92) Acc@5 30.08 ( 11.37) +Epoch: [0][4354/5004] Time 0.256 ( 0.242) Data 0.025 ( 0.027) Loss 4.8151e+00 (5.8933e+00) Acc@1 10.16 ( 3.92) Acc@5 24.22 ( 11.38) +Epoch: [0][4355/5004] Time 0.255 ( 0.242) Data 0.022 ( 0.027) Loss 4.5125e+00 (5.8930e+00) Acc@1 15.62 ( 3.93) Acc@5 32.81 ( 11.38) +Epoch: [0][4356/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.5891e+00 (5.8927e+00) Acc@1 12.11 ( 3.93) Acc@5 32.42 ( 11.39) +Epoch: [0][4357/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 4.4711e+00 (5.8923e+00) Acc@1 16.80 ( 3.93) Acc@5 34.77 ( 11.39) +Epoch: [0][4358/5004] Time 0.236 ( 0.242) Data 0.022 ( 0.027) Loss 4.8306e+00 (5.8921e+00) Acc@1 9.77 ( 3.93) Acc@5 28.12 ( 11.40) +Epoch: [0][4359/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 4.7197e+00 (5.8918e+00) Acc@1 10.16 ( 3.93) Acc@5 30.08 ( 11.40) +Epoch: [0][4360/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.8753e+00 (5.8916e+00) Acc@1 12.11 ( 3.93) Acc@5 25.39 ( 11.40) +Epoch: [0][4361/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.8066e+00 (5.8913e+00) Acc@1 8.59 ( 3.94) Acc@5 28.12 ( 11.41) +Epoch: [0][4362/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.9068e+00 (5.8911e+00) Acc@1 10.94 ( 3.94) Acc@5 28.12 ( 11.41) +Epoch: [0][4363/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.8610e+00 (5.8909e+00) Acc@1 9.77 ( 3.94) Acc@5 24.61 ( 11.41) +Epoch: [0][4364/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.7009e+00 (5.8906e+00) Acc@1 10.55 ( 3.94) Acc@5 30.08 ( 11.42) +Epoch: [0][4365/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.7882e+00 (5.8904e+00) Acc@1 15.62 ( 3.94) Acc@5 28.91 ( 11.42) +Epoch: [0][4366/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.8030e+00 (5.8901e+00) Acc@1 10.16 ( 3.94) Acc@5 27.34 ( 11.43) +Epoch: [0][4367/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.027) Loss 4.6859e+00 (5.8898e+00) Acc@1 13.67 ( 3.95) Acc@5 28.12 ( 11.43) +Epoch: [0][4368/5004] Time 0.247 ( 0.242) Data 0.026 ( 0.027) Loss 4.6165e+00 (5.8895e+00) Acc@1 14.45 ( 3.95) Acc@5 32.03 ( 11.44) +Epoch: [0][4369/5004] Time 0.236 ( 0.242) Data 0.022 ( 0.027) Loss 4.9743e+00 (5.8893e+00) Acc@1 10.94 ( 3.95) Acc@5 23.44 ( 11.44) +Epoch: [0][4370/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.8503e+00 (5.8891e+00) Acc@1 11.72 ( 3.95) Acc@5 26.95 ( 11.44) +Epoch: [0][4371/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.7944e+00 (5.8888e+00) Acc@1 10.94 ( 3.95) Acc@5 27.73 ( 11.45) +Epoch: [0][4372/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.7091e+00 (5.8886e+00) Acc@1 12.50 ( 3.96) Acc@5 28.52 ( 11.45) +Epoch: [0][4373/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.6182e+00 (5.8883e+00) Acc@1 13.28 ( 3.96) Acc@5 30.47 ( 11.45) +Epoch: [0][4374/5004] Time 0.211 ( 0.242) Data 0.027 ( 0.027) Loss 4.7312e+00 (5.8880e+00) Acc@1 12.89 ( 3.96) Acc@5 29.69 ( 11.46) +Epoch: [0][4375/5004] Time 0.235 ( 0.242) Data 0.054 ( 0.027) Loss 4.7046e+00 (5.8878e+00) Acc@1 14.06 ( 3.96) Acc@5 30.08 ( 11.46) +Epoch: [0][4376/5004] Time 0.235 ( 0.242) Data 0.056 ( 0.027) Loss 4.7626e+00 (5.8875e+00) Acc@1 8.98 ( 3.96) Acc@5 24.61 ( 11.46) +Epoch: [0][4377/5004] Time 0.239 ( 0.242) Data 0.058 ( 0.027) Loss 4.7343e+00 (5.8872e+00) Acc@1 10.94 ( 3.97) Acc@5 28.12 ( 11.47) +Epoch: [0][4378/5004] Time 0.242 ( 0.242) Data 0.058 ( 0.027) Loss 4.9357e+00 (5.8870e+00) Acc@1 9.77 ( 3.97) Acc@5 25.00 ( 11.47) +Epoch: [0][4379/5004] Time 0.237 ( 0.242) Data 0.053 ( 0.027) Loss 4.6885e+00 (5.8867e+00) Acc@1 10.16 ( 3.97) Acc@5 25.78 ( 11.48) +Epoch: [0][4380/5004] Time 0.241 ( 0.242) Data 0.053 ( 0.027) Loss 4.9012e+00 (5.8865e+00) Acc@1 11.33 ( 3.97) Acc@5 28.52 ( 11.48) +Epoch: [0][4381/5004] Time 0.232 ( 0.242) Data 0.049 ( 0.027) Loss 4.8345e+00 (5.8863e+00) Acc@1 10.55 ( 3.97) Acc@5 26.95 ( 11.48) +Epoch: [0][4382/5004] Time 0.236 ( 0.242) Data 0.055 ( 0.027) Loss 4.8070e+00 (5.8860e+00) Acc@1 12.50 ( 3.97) Acc@5 29.30 ( 11.49) +Epoch: [0][4383/5004] Time 0.240 ( 0.242) Data 0.056 ( 0.027) Loss 4.7272e+00 (5.8858e+00) Acc@1 11.72 ( 3.97) Acc@5 30.08 ( 11.49) +Epoch: [0][4384/5004] Time 0.235 ( 0.242) Data 0.054 ( 0.027) Loss 4.7214e+00 (5.8855e+00) Acc@1 11.72 ( 3.98) Acc@5 30.08 ( 11.50) +Epoch: [0][4385/5004] Time 0.239 ( 0.242) Data 0.055 ( 0.027) Loss 4.9454e+00 (5.8853e+00) Acc@1 9.77 ( 3.98) Acc@5 23.83 ( 11.50) +Epoch: [0][4386/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.6405e+00 (5.8850e+00) Acc@1 12.89 ( 3.98) Acc@5 31.64 ( 11.50) +Epoch: [0][4387/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.6987e+00 (5.8847e+00) Acc@1 14.84 ( 3.98) Acc@5 27.73 ( 11.51) +Epoch: [0][4388/5004] Time 0.235 ( 0.242) Data 0.054 ( 0.027) Loss 4.6975e+00 (5.8845e+00) Acc@1 12.11 ( 3.98) Acc@5 29.69 ( 11.51) +Epoch: [0][4389/5004] Time 0.245 ( 0.242) Data 0.055 ( 0.027) Loss 4.7785e+00 (5.8842e+00) Acc@1 9.38 ( 3.99) Acc@5 28.12 ( 11.51) +Epoch: [0][4390/5004] Time 0.229 ( 0.242) Data 0.052 ( 0.027) Loss 4.5341e+00 (5.8839e+00) Acc@1 16.80 ( 3.99) Acc@5 32.03 ( 11.52) +Epoch: [0][4391/5004] Time 0.243 ( 0.242) Data 0.059 ( 0.027) Loss 4.8412e+00 (5.8837e+00) Acc@1 10.55 ( 3.99) Acc@5 26.56 ( 11.52) +Epoch: [0][4392/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.7058e+00 (5.8834e+00) Acc@1 14.84 ( 3.99) Acc@5 28.12 ( 11.53) +Epoch: [0][4393/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.8107e+00 (5.8832e+00) Acc@1 14.06 ( 3.99) Acc@5 28.91 ( 11.53) +Epoch: [0][4394/5004] Time 0.237 ( 0.242) Data 0.054 ( 0.027) Loss 4.4474e+00 (5.8828e+00) Acc@1 12.50 ( 4.00) Acc@5 32.81 ( 11.53) +Epoch: [0][4395/5004] Time 0.237 ( 0.242) Data 0.053 ( 0.027) Loss 4.7510e+00 (5.8826e+00) Acc@1 12.11 ( 4.00) Acc@5 26.95 ( 11.54) +Epoch: [0][4396/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.7525e+00 (5.8823e+00) Acc@1 12.11 ( 4.00) Acc@5 27.73 ( 11.54) +Epoch: [0][4397/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.8148e+00 (5.8821e+00) Acc@1 11.33 ( 4.00) Acc@5 26.56 ( 11.55) +Epoch: [0][4398/5004] Time 0.246 ( 0.242) Data 0.055 ( 0.027) Loss 4.7304e+00 (5.8818e+00) Acc@1 12.11 ( 4.00) Acc@5 27.34 ( 11.55) +Epoch: [0][4399/5004] Time 0.229 ( 0.242) Data 0.047 ( 0.027) Loss 4.6771e+00 (5.8815e+00) Acc@1 12.11 ( 4.01) Acc@5 32.42 ( 11.55) +Epoch: [0][4400/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.8744e+00 (5.8813e+00) Acc@1 8.98 ( 4.01) Acc@5 23.83 ( 11.56) +Epoch: [0][4401/5004] Time 0.236 ( 0.242) Data 0.053 ( 0.027) Loss 4.8977e+00 (5.8811e+00) Acc@1 9.77 ( 4.01) Acc@5 25.00 ( 11.56) +Epoch: [0][4402/5004] Time 0.237 ( 0.242) Data 0.054 ( 0.027) Loss 4.7922e+00 (5.8808e+00) Acc@1 8.98 ( 4.01) Acc@5 25.39 ( 11.56) +Epoch: [0][4403/5004] Time 0.232 ( 0.242) Data 0.054 ( 0.027) Loss 5.0195e+00 (5.8806e+00) Acc@1 9.38 ( 4.01) Acc@5 23.44 ( 11.57) +Epoch: [0][4404/5004] Time 0.243 ( 0.242) Data 0.058 ( 0.027) Loss 4.5749e+00 (5.8803e+00) Acc@1 12.50 ( 4.01) Acc@5 33.20 ( 11.57) +Epoch: [0][4405/5004] Time 0.235 ( 0.242) Data 0.053 ( 0.027) Loss 4.6754e+00 (5.8801e+00) Acc@1 10.16 ( 4.01) Acc@5 28.91 ( 11.57) +Epoch: [0][4406/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.7931e+00 (5.8798e+00) Acc@1 10.55 ( 4.02) Acc@5 31.64 ( 11.58) +Epoch: [0][4407/5004] Time 0.242 ( 0.242) Data 0.055 ( 0.027) Loss 4.8249e+00 (5.8796e+00) Acc@1 11.33 ( 4.02) Acc@5 28.12 ( 11.58) +Epoch: [0][4408/5004] Time 0.234 ( 0.242) Data 0.050 ( 0.027) Loss 4.6917e+00 (5.8793e+00) Acc@1 13.67 ( 4.02) Acc@5 30.86 ( 11.59) +Epoch: [0][4409/5004] Time 0.234 ( 0.242) Data 0.054 ( 0.027) Loss 4.7552e+00 (5.8791e+00) Acc@1 10.55 ( 4.02) Acc@5 31.25 ( 11.59) +Epoch: [0][4410/5004] Time 0.235 ( 0.242) Data 0.056 ( 0.027) Loss 4.7324e+00 (5.8788e+00) Acc@1 12.50 ( 4.02) Acc@5 28.12 ( 11.60) +Epoch: [0][4411/5004] Time 0.240 ( 0.242) Data 0.057 ( 0.027) Loss 4.7785e+00 (5.8785e+00) Acc@1 10.94 ( 4.02) Acc@5 30.47 ( 11.60) +Epoch: [0][4412/5004] Time 0.239 ( 0.242) Data 0.055 ( 0.027) Loss 4.8963e+00 (5.8783e+00) Acc@1 10.94 ( 4.03) Acc@5 24.61 ( 11.60) +Epoch: [0][4413/5004] Time 0.238 ( 0.242) Data 0.054 ( 0.027) Loss 4.7772e+00 (5.8781e+00) Acc@1 11.33 ( 4.03) Acc@5 32.42 ( 11.61) +Epoch: [0][4414/5004] Time 0.238 ( 0.242) Data 0.054 ( 0.027) Loss 4.7115e+00 (5.8778e+00) Acc@1 10.16 ( 4.03) Acc@5 32.81 ( 11.61) +Epoch: [0][4415/5004] Time 0.237 ( 0.242) Data 0.053 ( 0.027) Loss 4.8106e+00 (5.8776e+00) Acc@1 9.77 ( 4.03) Acc@5 26.95 ( 11.62) +Epoch: [0][4416/5004] Time 0.238 ( 0.242) Data 0.054 ( 0.027) Loss 4.7229e+00 (5.8773e+00) Acc@1 12.11 ( 4.03) Acc@5 31.25 ( 11.62) +Epoch: [0][4417/5004] Time 0.232 ( 0.242) Data 0.054 ( 0.027) Loss 4.6480e+00 (5.8770e+00) Acc@1 12.50 ( 4.03) Acc@5 32.81 ( 11.62) +Epoch: [0][4418/5004] Time 0.241 ( 0.242) Data 0.058 ( 0.027) Loss 4.8067e+00 (5.8768e+00) Acc@1 14.06 ( 4.04) Acc@5 28.52 ( 11.63) +Epoch: [0][4419/5004] Time 0.237 ( 0.242) Data 0.055 ( 0.027) Loss 4.5676e+00 (5.8765e+00) Acc@1 16.02 ( 4.04) Acc@5 29.30 ( 11.63) +Epoch: [0][4420/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.7684e+00 (5.8762e+00) Acc@1 13.67 ( 4.04) Acc@5 28.91 ( 11.64) +Epoch: [0][4421/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.7182e+00 (5.8760e+00) Acc@1 13.28 ( 4.04) Acc@5 28.52 ( 11.64) +Epoch: [0][4422/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.7117e+00 (5.8757e+00) Acc@1 10.16 ( 4.04) Acc@5 32.42 ( 11.64) +Epoch: [0][4423/5004] Time 0.235 ( 0.242) Data 0.054 ( 0.027) Loss 4.8450e+00 (5.8755e+00) Acc@1 8.59 ( 4.05) Acc@5 26.95 ( 11.65) +Epoch: [0][4424/5004] Time 0.242 ( 0.242) Data 0.055 ( 0.027) Loss 4.6870e+00 (5.8752e+00) Acc@1 10.94 ( 4.05) Acc@5 27.34 ( 11.65) +Epoch: [0][4425/5004] Time 0.233 ( 0.242) Data 0.051 ( 0.027) Loss 4.7259e+00 (5.8750e+00) Acc@1 10.16 ( 4.05) Acc@5 26.56 ( 11.66) +Epoch: [0][4426/5004] Time 0.246 ( 0.242) Data 0.058 ( 0.027) Loss 4.7873e+00 (5.8747e+00) Acc@1 8.59 ( 4.05) Acc@5 27.34 ( 11.66) +Epoch: [0][4427/5004] Time 0.237 ( 0.242) Data 0.049 ( 0.027) Loss 4.7378e+00 (5.8745e+00) Acc@1 13.67 ( 4.05) Acc@5 27.73 ( 11.66) +Epoch: [0][4428/5004] Time 0.231 ( 0.242) Data 0.050 ( 0.027) Loss 4.8891e+00 (5.8742e+00) Acc@1 9.77 ( 4.05) Acc@5 25.00 ( 11.67) +Epoch: [0][4429/5004] Time 0.239 ( 0.242) Data 0.055 ( 0.027) Loss 4.7970e+00 (5.8740e+00) Acc@1 12.11 ( 4.05) Acc@5 27.73 ( 11.67) +Epoch: [0][4430/5004] Time 0.238 ( 0.242) Data 0.053 ( 0.027) Loss 4.7698e+00 (5.8737e+00) Acc@1 10.94 ( 4.06) Acc@5 26.56 ( 11.67) +Epoch: [0][4431/5004] Time 0.237 ( 0.242) Data 0.055 ( 0.027) Loss 4.8313e+00 (5.8735e+00) Acc@1 10.94 ( 4.06) Acc@5 26.95 ( 11.68) +Epoch: [0][4432/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.5979e+00 (5.8732e+00) Acc@1 11.72 ( 4.06) Acc@5 33.20 ( 11.68) +Epoch: [0][4433/5004] Time 0.236 ( 0.242) Data 0.054 ( 0.027) Loss 4.6025e+00 (5.8729e+00) Acc@1 12.89 ( 4.06) Acc@5 32.03 ( 11.69) +Epoch: [0][4434/5004] Time 0.238 ( 0.242) Data 0.055 ( 0.027) Loss 4.8463e+00 (5.8727e+00) Acc@1 8.59 ( 4.06) Acc@5 23.44 ( 11.69) +Epoch: [0][4435/5004] Time 0.246 ( 0.242) Data 0.054 ( 0.027) Loss 4.6303e+00 (5.8724e+00) Acc@1 13.28 ( 4.06) Acc@5 32.03 ( 11.69) +Epoch: [0][4436/5004] Time 0.236 ( 0.242) Data 0.051 ( 0.027) Loss 4.6430e+00 (5.8721e+00) Acc@1 10.94 ( 4.07) Acc@5 32.81 ( 11.70) +Epoch: [0][4437/5004] Time 0.269 ( 0.242) Data 0.053 ( 0.027) Loss 4.6193e+00 (5.8719e+00) Acc@1 14.45 ( 4.07) Acc@5 30.47 ( 11.70) +Epoch: [0][4438/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.8254e+00 (5.8716e+00) Acc@1 12.50 ( 4.07) Acc@5 25.78 ( 11.70) +Epoch: [0][4439/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.6807e+00 (5.8714e+00) Acc@1 10.16 ( 4.07) Acc@5 28.91 ( 11.71) +Epoch: [0][4440/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.7728e+00 (5.8711e+00) Acc@1 13.28 ( 4.07) Acc@5 29.30 ( 11.71) +Epoch: [0][4441/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.5857e+00 (5.8708e+00) Acc@1 11.33 ( 4.08) Acc@5 32.42 ( 11.72) +Epoch: [0][4442/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 4.6396e+00 (5.8705e+00) Acc@1 12.50 ( 4.08) Acc@5 30.47 ( 11.72) +Epoch: [0][4443/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 4.5800e+00 (5.8703e+00) Acc@1 12.11 ( 4.08) Acc@5 30.86 ( 11.73) +Epoch: [0][4444/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.8073e+00 (5.8700e+00) Acc@1 10.16 ( 4.08) Acc@5 26.95 ( 11.73) +Epoch: [0][4445/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 4.5509e+00 (5.8697e+00) Acc@1 11.33 ( 4.08) Acc@5 30.08 ( 11.73) +Epoch: [0][4446/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 4.9992e+00 (5.8695e+00) Acc@1 8.98 ( 4.08) Acc@5 23.05 ( 11.74) +Epoch: [0][4447/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.7653e+00 (5.8693e+00) Acc@1 11.72 ( 4.08) Acc@5 28.52 ( 11.74) +Epoch: [0][4448/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.7472e+00 (5.8690e+00) Acc@1 10.16 ( 4.09) Acc@5 30.47 ( 11.74) +Epoch: [0][4449/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.6330e+00 (5.8687e+00) Acc@1 9.77 ( 4.09) Acc@5 27.34 ( 11.75) +Epoch: [0][4450/5004] Time 0.240 ( 0.242) Data 0.025 ( 0.027) Loss 4.6733e+00 (5.8685e+00) Acc@1 11.33 ( 4.09) Acc@5 26.56 ( 11.75) +Epoch: [0][4451/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.027) Loss 4.6680e+00 (5.8682e+00) Acc@1 12.11 ( 4.09) Acc@5 30.86 ( 11.75) +Epoch: [0][4452/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 4.7679e+00 (5.8680e+00) Acc@1 12.11 ( 4.09) Acc@5 25.78 ( 11.76) +Epoch: [0][4453/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.7522e+00 (5.8677e+00) Acc@1 14.06 ( 4.10) Acc@5 27.73 ( 11.76) +Epoch: [0][4454/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 4.5239e+00 (5.8674e+00) Acc@1 12.50 ( 4.10) Acc@5 35.94 ( 11.77) +Epoch: [0][4455/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.8313e+00 (5.8672e+00) Acc@1 9.77 ( 4.10) Acc@5 25.00 ( 11.77) +Epoch: [0][4456/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.5582e+00 (5.8669e+00) Acc@1 17.97 ( 4.10) Acc@5 35.16 ( 11.78) +Epoch: [0][4457/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.6424e+00 (5.8666e+00) Acc@1 10.16 ( 4.10) Acc@5 32.03 ( 11.78) +Epoch: [0][4458/5004] Time 0.246 ( 0.242) Data 0.025 ( 0.027) Loss 4.4859e+00 (5.8663e+00) Acc@1 10.55 ( 4.10) Acc@5 32.81 ( 11.78) +Epoch: [0][4459/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 4.6577e+00 (5.8660e+00) Acc@1 12.11 ( 4.11) Acc@5 30.86 ( 11.79) +Epoch: [0][4460/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.9651e+00 (5.8658e+00) Acc@1 8.20 ( 4.11) Acc@5 23.83 ( 11.79) +Epoch: [0][4461/5004] Time 0.240 ( 0.242) Data 0.021 ( 0.027) Loss 4.6415e+00 (5.8655e+00) Acc@1 7.81 ( 4.11) Acc@5 30.47 ( 11.80) +Epoch: [0][4462/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 4.8349e+00 (5.8653e+00) Acc@1 14.06 ( 4.11) Acc@5 31.64 ( 11.80) +Epoch: [0][4463/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.8724e+00 (5.8651e+00) Acc@1 7.81 ( 4.11) Acc@5 23.83 ( 11.80) +Epoch: [0][4464/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.6700e+00 (5.8648e+00) Acc@1 11.33 ( 4.11) Acc@5 30.47 ( 11.81) +Epoch: [0][4465/5004] Time 0.241 ( 0.242) Data 0.023 ( 0.027) Loss 4.6703e+00 (5.8646e+00) Acc@1 11.33 ( 4.11) Acc@5 28.91 ( 11.81) +Epoch: [0][4466/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.6118e+00 (5.8643e+00) Acc@1 14.84 ( 4.12) Acc@5 27.73 ( 11.81) +Epoch: [0][4467/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.6393e+00 (5.8640e+00) Acc@1 10.94 ( 4.12) Acc@5 30.08 ( 11.82) +Epoch: [0][4468/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.7994e+00 (5.8638e+00) Acc@1 10.94 ( 4.12) Acc@5 29.69 ( 11.82) +Epoch: [0][4469/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 4.6168e+00 (5.8635e+00) Acc@1 14.84 ( 4.12) Acc@5 31.25 ( 11.83) +Epoch: [0][4470/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.6344e+00 (5.8632e+00) Acc@1 8.20 ( 4.12) Acc@5 30.08 ( 11.83) +Epoch: [0][4471/5004] Time 0.241 ( 0.242) Data 0.025 ( 0.027) Loss 4.5356e+00 (5.8629e+00) Acc@1 14.45 ( 4.13) Acc@5 32.03 ( 11.84) +Epoch: [0][4472/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.8693e+00 (5.8627e+00) Acc@1 11.33 ( 4.13) Acc@5 25.78 ( 11.84) +Epoch: [0][4473/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.7713e+00 (5.8624e+00) Acc@1 11.72 ( 4.13) Acc@5 28.52 ( 11.84) +Epoch: [0][4474/5004] Time 0.243 ( 0.242) Data 0.025 ( 0.027) Loss 4.8009e+00 (5.8622e+00) Acc@1 10.55 ( 4.13) Acc@5 26.95 ( 11.85) +Epoch: [0][4475/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 4.7548e+00 (5.8620e+00) Acc@1 10.16 ( 4.13) Acc@5 28.91 ( 11.85) +Epoch: [0][4476/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.7440e+00 (5.8617e+00) Acc@1 13.28 ( 4.13) Acc@5 25.00 ( 11.85) +Epoch: [0][4477/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.027) Loss 4.6899e+00 (5.8615e+00) Acc@1 12.50 ( 4.14) Acc@5 26.95 ( 11.86) +Epoch: [0][4478/5004] Time 0.238 ( 0.242) Data 0.024 ( 0.027) Loss 4.8985e+00 (5.8612e+00) Acc@1 10.16 ( 4.14) Acc@5 26.17 ( 11.86) +Epoch: [0][4479/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.9043e+00 (5.8610e+00) Acc@1 8.59 ( 4.14) Acc@5 28.12 ( 11.86) +Epoch: [0][4480/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.8511e+00 (5.8608e+00) Acc@1 8.20 ( 4.14) Acc@5 28.52 ( 11.87) +Epoch: [0][4481/5004] Time 0.246 ( 0.242) Data 0.026 ( 0.027) Loss 4.7635e+00 (5.8606e+00) Acc@1 12.11 ( 4.14) Acc@5 30.47 ( 11.87) +Epoch: [0][4482/5004] Time 0.237 ( 0.242) Data 0.023 ( 0.027) Loss 4.8584e+00 (5.8603e+00) Acc@1 11.33 ( 4.14) Acc@5 27.73 ( 11.87) +Epoch: [0][4483/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.6103e+00 (5.8601e+00) Acc@1 10.55 ( 4.14) Acc@5 30.86 ( 11.88) +Epoch: [0][4484/5004] Time 0.236 ( 0.242) Data 0.024 ( 0.027) Loss 4.7633e+00 (5.8598e+00) Acc@1 7.81 ( 4.14) Acc@5 27.34 ( 11.88) +Epoch: [0][4485/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.7892e+00 (5.8596e+00) Acc@1 8.98 ( 4.15) Acc@5 24.22 ( 11.88) +Epoch: [0][4486/5004] Time 0.250 ( 0.242) Data 0.024 ( 0.027) Loss 4.7905e+00 (5.8593e+00) Acc@1 10.16 ( 4.15) Acc@5 30.86 ( 11.89) +Epoch: [0][4487/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.7219e+00 (5.8591e+00) Acc@1 14.45 ( 4.15) Acc@5 29.30 ( 11.89) +Epoch: [0][4488/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.7513e+00 (5.8588e+00) Acc@1 9.77 ( 4.15) Acc@5 28.12 ( 11.90) +Epoch: [0][4489/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.027) Loss 4.7836e+00 (5.8586e+00) Acc@1 10.94 ( 4.15) Acc@5 27.34 ( 11.90) +Epoch: [0][4490/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.6031e+00 (5.8583e+00) Acc@1 15.23 ( 4.15) Acc@5 27.34 ( 11.90) +Epoch: [0][4491/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 4.6707e+00 (5.8580e+00) Acc@1 14.84 ( 4.16) Acc@5 28.91 ( 11.91) +Epoch: [0][4492/5004] Time 0.256 ( 0.242) Data 0.020 ( 0.027) Loss 4.7315e+00 (5.8578e+00) Acc@1 12.50 ( 4.16) Acc@5 29.69 ( 11.91) +Epoch: [0][4493/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 4.9562e+00 (5.8576e+00) Acc@1 10.16 ( 4.16) Acc@5 30.08 ( 11.91) +Epoch: [0][4494/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.6998e+00 (5.8573e+00) Acc@1 12.11 ( 4.16) Acc@5 30.47 ( 11.92) +Epoch: [0][4495/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.7004e+00 (5.8571e+00) Acc@1 12.11 ( 4.16) Acc@5 29.30 ( 11.92) +Epoch: [0][4496/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.6539e+00 (5.8568e+00) Acc@1 8.20 ( 4.16) Acc@5 32.42 ( 11.93) +Epoch: [0][4497/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.027) Loss 4.6790e+00 (5.8565e+00) Acc@1 14.45 ( 4.17) Acc@5 27.34 ( 11.93) +Epoch: [0][4498/5004] Time 0.247 ( 0.242) Data 0.017 ( 0.027) Loss 4.5157e+00 (5.8563e+00) Acc@1 12.89 ( 4.17) Acc@5 33.20 ( 11.94) +Epoch: [0][4499/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 4.4823e+00 (5.8559e+00) Acc@1 16.02 ( 4.17) Acc@5 35.16 ( 11.94) +Epoch: [0][4500/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 4.5413e+00 (5.8557e+00) Acc@1 15.23 ( 4.17) Acc@5 31.64 ( 11.95) +Epoch: [0][4501/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.8054e+00 (5.8554e+00) Acc@1 10.55 ( 4.17) Acc@5 29.30 ( 11.95) +Epoch: [0][4502/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.7300e+00 (5.8552e+00) Acc@1 14.06 ( 4.18) Acc@5 28.12 ( 11.95) +Epoch: [0][4503/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.7236e+00 (5.8549e+00) Acc@1 12.50 ( 4.18) Acc@5 26.95 ( 11.96) +Epoch: [0][4504/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 4.6037e+00 (5.8546e+00) Acc@1 12.11 ( 4.18) Acc@5 33.59 ( 11.96) +Epoch: [0][4505/5004] Time 0.249 ( 0.242) Data 0.021 ( 0.027) Loss 4.5645e+00 (5.8544e+00) Acc@1 11.72 ( 4.18) Acc@5 31.64 ( 11.97) +Epoch: [0][4506/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.6089e+00 (5.8541e+00) Acc@1 9.77 ( 4.18) Acc@5 31.64 ( 11.97) +Epoch: [0][4507/5004] Time 0.251 ( 0.242) Data 0.020 ( 0.027) Loss 4.6632e+00 (5.8538e+00) Acc@1 14.84 ( 4.19) Acc@5 33.20 ( 11.97) +Epoch: [0][4508/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.8380e+00 (5.8536e+00) Acc@1 12.11 ( 4.19) Acc@5 32.03 ( 11.98) +Epoch: [0][4509/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.027) Loss 4.8603e+00 (5.8534e+00) Acc@1 10.94 ( 4.19) Acc@5 28.12 ( 11.98) +Epoch: [0][4510/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.027) Loss 4.7580e+00 (5.8531e+00) Acc@1 10.55 ( 4.19) Acc@5 27.34 ( 11.99) +Epoch: [0][4511/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.7079e+00 (5.8529e+00) Acc@1 15.62 ( 4.19) Acc@5 28.91 ( 11.99) +Epoch: [0][4512/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.6875e+00 (5.8526e+00) Acc@1 14.84 ( 4.20) Acc@5 31.64 ( 11.99) +Epoch: [0][4513/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.7821e+00 (5.8524e+00) Acc@1 12.11 ( 4.20) Acc@5 28.12 ( 12.00) +Epoch: [0][4514/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.7040e+00 (5.8521e+00) Acc@1 12.89 ( 4.20) Acc@5 27.73 ( 12.00) +Epoch: [0][4515/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.6857e+00 (5.8519e+00) Acc@1 12.50 ( 4.20) Acc@5 32.03 ( 12.01) +Epoch: [0][4516/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6967e+00 (5.8516e+00) Acc@1 12.50 ( 4.20) Acc@5 29.30 ( 12.01) +Epoch: [0][4517/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.5437e+00 (5.8513e+00) Acc@1 11.33 ( 4.20) Acc@5 33.98 ( 12.01) +Epoch: [0][4518/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.5659e+00 (5.8510e+00) Acc@1 14.06 ( 4.21) Acc@5 35.16 ( 12.02) +Epoch: [0][4519/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.8928e+00 (5.8508e+00) Acc@1 9.77 ( 4.21) Acc@5 27.34 ( 12.02) +Epoch: [0][4520/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.4583e+00 (5.8505e+00) Acc@1 14.84 ( 4.21) Acc@5 33.98 ( 12.03) +Epoch: [0][4521/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.6374e+00 (5.8502e+00) Acc@1 14.84 ( 4.21) Acc@5 33.98 ( 12.03) +Epoch: [0][4522/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.8041e+00 (5.8500e+00) Acc@1 12.50 ( 4.21) Acc@5 27.73 ( 12.04) +Epoch: [0][4523/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.7803e+00 (5.8498e+00) Acc@1 10.55 ( 4.22) Acc@5 26.17 ( 12.04) +Epoch: [0][4524/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.8303e+00 (5.8496e+00) Acc@1 9.77 ( 4.22) Acc@5 23.83 ( 12.04) +Epoch: [0][4525/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.7299e+00 (5.8493e+00) Acc@1 16.80 ( 4.22) Acc@5 30.47 ( 12.05) +Epoch: [0][4526/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.9272e+00 (5.8491e+00) Acc@1 9.38 ( 4.22) Acc@5 26.17 ( 12.05) +Epoch: [0][4527/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 5.0180e+00 (5.8489e+00) Acc@1 10.55 ( 4.22) Acc@5 26.17 ( 12.05) +Epoch: [0][4528/5004] Time 0.253 ( 0.242) Data 0.020 ( 0.027) Loss 4.8121e+00 (5.8487e+00) Acc@1 9.77 ( 4.22) Acc@5 25.78 ( 12.05) +Epoch: [0][4529/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 4.7466e+00 (5.8484e+00) Acc@1 12.11 ( 4.23) Acc@5 31.64 ( 12.06) +Epoch: [0][4530/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.6130e+00 (5.8482e+00) Acc@1 12.11 ( 4.23) Acc@5 26.95 ( 12.06) +Epoch: [0][4531/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.8138e+00 (5.8479e+00) Acc@1 11.72 ( 4.23) Acc@5 25.78 ( 12.07) +Epoch: [0][4532/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 4.7587e+00 (5.8477e+00) Acc@1 12.11 ( 4.23) Acc@5 27.34 ( 12.07) +Epoch: [0][4533/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.7756e+00 (5.8475e+00) Acc@1 13.67 ( 4.23) Acc@5 26.95 ( 12.07) +Epoch: [0][4534/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.7280e+00 (5.8472e+00) Acc@1 11.33 ( 4.23) Acc@5 28.12 ( 12.08) +Epoch: [0][4535/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.8034e+00 (5.8470e+00) Acc@1 12.11 ( 4.24) Acc@5 26.56 ( 12.08) +Epoch: [0][4536/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.7340e+00 (5.8467e+00) Acc@1 10.55 ( 4.24) Acc@5 28.52 ( 12.08) +Epoch: [0][4537/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 4.6928e+00 (5.8465e+00) Acc@1 10.16 ( 4.24) Acc@5 28.12 ( 12.09) +Epoch: [0][4538/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 4.8180e+00 (5.8463e+00) Acc@1 11.33 ( 4.24) Acc@5 27.34 ( 12.09) +Epoch: [0][4539/5004] Time 0.250 ( 0.242) Data 0.021 ( 0.027) Loss 4.7520e+00 (5.8460e+00) Acc@1 11.33 ( 4.24) Acc@5 30.47 ( 12.09) +Epoch: [0][4540/5004] Time 0.251 ( 0.242) Data 0.019 ( 0.027) Loss 4.4803e+00 (5.8457e+00) Acc@1 13.28 ( 4.24) Acc@5 35.16 ( 12.10) +Epoch: [0][4541/5004] Time 0.247 ( 0.242) Data 0.019 ( 0.027) Loss 4.7077e+00 (5.8455e+00) Acc@1 12.89 ( 4.25) Acc@5 28.12 ( 12.10) +Epoch: [0][4542/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 4.7105e+00 (5.8452e+00) Acc@1 10.94 ( 4.25) Acc@5 26.56 ( 12.10) +Epoch: [0][4543/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.7805e+00 (5.8450e+00) Acc@1 7.03 ( 4.25) Acc@5 28.52 ( 12.11) +Epoch: [0][4544/5004] Time 0.249 ( 0.242) Data 0.022 ( 0.027) Loss 4.8452e+00 (5.8448e+00) Acc@1 7.03 ( 4.25) Acc@5 24.61 ( 12.11) +Epoch: [0][4545/5004] Time 0.244 ( 0.242) Data 0.020 ( 0.027) Loss 4.4804e+00 (5.8445e+00) Acc@1 12.50 ( 4.25) Acc@5 32.42 ( 12.12) +Epoch: [0][4546/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.6616e+00 (5.8442e+00) Acc@1 9.38 ( 4.25) Acc@5 28.12 ( 12.12) +Epoch: [0][4547/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.7444e+00 (5.8440e+00) Acc@1 10.16 ( 4.25) Acc@5 28.12 ( 12.12) +Epoch: [0][4548/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.8081e+00 (5.8437e+00) Acc@1 8.20 ( 4.25) Acc@5 26.95 ( 12.13) +Epoch: [0][4549/5004] Time 0.251 ( 0.242) Data 0.021 ( 0.027) Loss 4.6724e+00 (5.8435e+00) Acc@1 15.62 ( 4.26) Acc@5 33.98 ( 12.13) +Epoch: [0][4550/5004] Time 0.244 ( 0.242) Data 0.019 ( 0.027) Loss 4.6040e+00 (5.8432e+00) Acc@1 14.06 ( 4.26) Acc@5 29.69 ( 12.13) +Epoch: [0][4551/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.7745e+00 (5.8430e+00) Acc@1 11.72 ( 4.26) Acc@5 26.17 ( 12.14) +Epoch: [0][4552/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.7786e+00 (5.8427e+00) Acc@1 10.55 ( 4.26) Acc@5 29.30 ( 12.14) +Epoch: [0][4553/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.5311e+00 (5.8425e+00) Acc@1 12.89 ( 4.26) Acc@5 31.25 ( 12.15) +Epoch: [0][4554/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.6532e+00 (5.8422e+00) Acc@1 12.11 ( 4.26) Acc@5 30.08 ( 12.15) +Epoch: [0][4555/5004] Time 0.250 ( 0.242) Data 0.020 ( 0.027) Loss 4.9156e+00 (5.8420e+00) Acc@1 10.55 ( 4.27) Acc@5 26.56 ( 12.15) +Epoch: [0][4556/5004] Time 0.242 ( 0.242) Data 0.016 ( 0.027) Loss 4.5898e+00 (5.8417e+00) Acc@1 10.94 ( 4.27) Acc@5 30.86 ( 12.16) +Epoch: [0][4557/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.6241e+00 (5.8414e+00) Acc@1 16.02 ( 4.27) Acc@5 32.81 ( 12.16) +Epoch: [0][4558/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.7498e+00 (5.8412e+00) Acc@1 14.06 ( 4.27) Acc@5 29.30 ( 12.17) +Epoch: [0][4559/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 4.8515e+00 (5.8410e+00) Acc@1 11.33 ( 4.27) Acc@5 26.17 ( 12.17) +Epoch: [0][4560/5004] Time 0.249 ( 0.242) Data 0.025 ( 0.027) Loss 4.5701e+00 (5.8407e+00) Acc@1 12.11 ( 4.28) Acc@5 31.64 ( 12.17) +Epoch: [0][4561/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.7026e+00 (5.8405e+00) Acc@1 13.28 ( 4.28) Acc@5 29.30 ( 12.18) +Epoch: [0][4562/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.7499e+00 (5.8402e+00) Acc@1 11.72 ( 4.28) Acc@5 28.91 ( 12.18) +Epoch: [0][4563/5004] Time 0.248 ( 0.242) Data 0.021 ( 0.027) Loss 4.6097e+00 (5.8400e+00) Acc@1 14.45 ( 4.28) Acc@5 32.42 ( 12.18) +Epoch: [0][4564/5004] Time 0.252 ( 0.242) Data 0.020 ( 0.027) Loss 4.7902e+00 (5.8397e+00) Acc@1 10.55 ( 4.28) Acc@5 30.08 ( 12.19) +Epoch: [0][4565/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.8753e+00 (5.8395e+00) Acc@1 9.38 ( 4.28) Acc@5 27.34 ( 12.19) +Epoch: [0][4566/5004] Time 0.247 ( 0.242) Data 0.020 ( 0.027) Loss 4.5807e+00 (5.8392e+00) Acc@1 14.84 ( 4.29) Acc@5 33.20 ( 12.20) +Epoch: [0][4567/5004] Time 0.253 ( 0.242) Data 0.021 ( 0.027) Loss 4.6874e+00 (5.8390e+00) Acc@1 12.50 ( 4.29) Acc@5 27.34 ( 12.20) +Epoch: [0][4568/5004] Time 0.247 ( 0.242) Data 0.017 ( 0.027) Loss 4.5665e+00 (5.8387e+00) Acc@1 14.84 ( 4.29) Acc@5 30.08 ( 12.20) +Epoch: [0][4569/5004] Time 0.249 ( 0.242) Data 0.020 ( 0.027) Loss 4.5320e+00 (5.8384e+00) Acc@1 16.02 ( 4.29) Acc@5 34.38 ( 12.21) +Epoch: [0][4570/5004] Time 0.245 ( 0.242) Data 0.020 ( 0.027) Loss 5.0587e+00 (5.8382e+00) Acc@1 8.20 ( 4.29) Acc@5 22.66 ( 12.21) +Epoch: [0][4571/5004] Time 0.247 ( 0.242) Data 0.021 ( 0.027) Loss 4.6365e+00 (5.8380e+00) Acc@1 11.72 ( 4.29) Acc@5 29.69 ( 12.21) +Epoch: [0][4572/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 4.7112e+00 (5.8377e+00) Acc@1 12.11 ( 4.30) Acc@5 32.03 ( 12.22) +Epoch: [0][4573/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.4903e+00 (5.8374e+00) Acc@1 11.72 ( 4.30) Acc@5 32.81 ( 12.22) +Epoch: [0][4574/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.4488e+00 (5.8371e+00) Acc@1 13.28 ( 4.30) Acc@5 33.59 ( 12.23) +Epoch: [0][4575/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.7798e+00 (5.8369e+00) Acc@1 12.89 ( 4.30) Acc@5 27.73 ( 12.23) +Epoch: [0][4576/5004] Time 0.256 ( 0.242) Data 0.022 ( 0.027) Loss 4.6224e+00 (5.8366e+00) Acc@1 14.45 ( 4.30) Acc@5 29.69 ( 12.24) +Epoch: [0][4577/5004] Time 0.243 ( 0.242) Data 0.016 ( 0.027) Loss 4.4521e+00 (5.8363e+00) Acc@1 13.67 ( 4.31) Acc@5 35.16 ( 12.24) +Epoch: [0][4578/5004] Time 0.243 ( 0.242) Data 0.020 ( 0.027) Loss 4.6405e+00 (5.8361e+00) Acc@1 15.62 ( 4.31) Acc@5 31.25 ( 12.24) +Epoch: [0][4579/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.6285e+00 (5.8358e+00) Acc@1 12.89 ( 4.31) Acc@5 33.98 ( 12.25) +Epoch: [0][4580/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.7266e+00 (5.8356e+00) Acc@1 14.84 ( 4.31) Acc@5 30.86 ( 12.25) +Epoch: [0][4581/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.8152e+00 (5.8354e+00) Acc@1 9.77 ( 4.31) Acc@5 29.69 ( 12.26) +Epoch: [0][4582/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.8745e+00 (5.8351e+00) Acc@1 9.77 ( 4.32) Acc@5 25.39 ( 12.26) +Epoch: [0][4583/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 4.5143e+00 (5.8349e+00) Acc@1 15.23 ( 4.32) Acc@5 32.81 ( 12.26) +Epoch: [0][4584/5004] Time 0.247 ( 0.242) Data 0.029 ( 0.027) Loss 4.6275e+00 (5.8346e+00) Acc@1 14.45 ( 4.32) Acc@5 33.59 ( 12.27) +Epoch: [0][4585/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.7700e+00 (5.8344e+00) Acc@1 14.45 ( 4.32) Acc@5 28.91 ( 12.27) +Epoch: [0][4586/5004] Time 0.250 ( 0.242) Data 0.028 ( 0.027) Loss 4.5827e+00 (5.8341e+00) Acc@1 14.84 ( 4.32) Acc@5 31.64 ( 12.28) +Epoch: [0][4587/5004] Time 0.252 ( 0.242) Data 0.028 ( 0.027) Loss 4.9815e+00 (5.8339e+00) Acc@1 11.72 ( 4.33) Acc@5 26.56 ( 12.28) +Epoch: [0][4588/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.7681e+00 (5.8337e+00) Acc@1 12.89 ( 4.33) Acc@5 25.78 ( 12.28) +Epoch: [0][4589/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 4.7479e+00 (5.8334e+00) Acc@1 10.94 ( 4.33) Acc@5 28.12 ( 12.29) +Epoch: [0][4590/5004] Time 0.247 ( 0.242) Data 0.027 ( 0.027) Loss 4.5086e+00 (5.8331e+00) Acc@1 15.62 ( 4.33) Acc@5 33.98 ( 12.29) +Epoch: [0][4591/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.027) Loss 4.5688e+00 (5.8329e+00) Acc@1 15.23 ( 4.33) Acc@5 29.30 ( 12.29) +Epoch: [0][4592/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.027) Loss 4.5949e+00 (5.8326e+00) Acc@1 13.28 ( 4.34) Acc@5 33.20 ( 12.30) +Epoch: [0][4593/5004] Time 0.248 ( 0.242) Data 0.029 ( 0.027) Loss 4.7700e+00 (5.8324e+00) Acc@1 12.89 ( 4.34) Acc@5 29.30 ( 12.30) +Epoch: [0][4594/5004] Time 0.250 ( 0.242) Data 0.027 ( 0.027) Loss 4.7095e+00 (5.8321e+00) Acc@1 9.77 ( 4.34) Acc@5 27.34 ( 12.31) +Epoch: [0][4595/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 4.8128e+00 (5.8319e+00) Acc@1 9.38 ( 4.34) Acc@5 26.56 ( 12.31) +Epoch: [0][4596/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.027) Loss 4.7492e+00 (5.8317e+00) Acc@1 12.89 ( 4.34) Acc@5 29.69 ( 12.31) +Epoch: [0][4597/5004] Time 0.249 ( 0.242) Data 0.029 ( 0.027) Loss 4.4384e+00 (5.8314e+00) Acc@1 15.62 ( 4.34) Acc@5 32.42 ( 12.32) +Epoch: [0][4598/5004] Time 0.242 ( 0.242) Data 0.025 ( 0.027) Loss 4.6424e+00 (5.8311e+00) Acc@1 12.50 ( 4.35) Acc@5 30.86 ( 12.32) +Epoch: [0][4599/5004] Time 0.252 ( 0.242) Data 0.028 ( 0.027) Loss 4.6497e+00 (5.8308e+00) Acc@1 10.16 ( 4.35) Acc@5 30.86 ( 12.33) +Epoch: [0][4600/5004] Time 0.239 ( 0.242) Data 0.022 ( 0.027) Loss 4.5436e+00 (5.8306e+00) Acc@1 12.89 ( 4.35) Acc@5 29.30 ( 12.33) +Epoch: [0][4601/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.7843e+00 (5.8303e+00) Acc@1 13.67 ( 4.35) Acc@5 28.12 ( 12.33) +Epoch: [0][4602/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.5062e+00 (5.8301e+00) Acc@1 15.23 ( 4.35) Acc@5 33.59 ( 12.34) +Epoch: [0][4603/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 4.6245e+00 (5.8298e+00) Acc@1 10.55 ( 4.36) Acc@5 28.52 ( 12.34) +Epoch: [0][4604/5004] Time 0.246 ( 0.242) Data 0.029 ( 0.027) Loss 4.8145e+00 (5.8296e+00) Acc@1 10.94 ( 4.36) Acc@5 25.78 ( 12.34) +Epoch: [0][4605/5004] Time 0.250 ( 0.242) Data 0.029 ( 0.027) Loss 4.8745e+00 (5.8294e+00) Acc@1 12.11 ( 4.36) Acc@5 24.61 ( 12.35) +Epoch: [0][4606/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 4.6017e+00 (5.8291e+00) Acc@1 16.02 ( 4.36) Acc@5 33.20 ( 12.35) +Epoch: [0][4607/5004] Time 0.249 ( 0.242) Data 0.029 ( 0.027) Loss 4.6129e+00 (5.8288e+00) Acc@1 14.84 ( 4.36) Acc@5 34.38 ( 12.36) +Epoch: [0][4608/5004] Time 0.244 ( 0.242) Data 0.026 ( 0.027) Loss 4.4833e+00 (5.8285e+00) Acc@1 17.19 ( 4.37) Acc@5 36.33 ( 12.36) +Epoch: [0][4609/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.027) Loss 4.7052e+00 (5.8283e+00) Acc@1 11.33 ( 4.37) Acc@5 28.52 ( 12.36) +Epoch: [0][4610/5004] Time 0.249 ( 0.242) Data 0.028 ( 0.027) Loss 4.5251e+00 (5.8280e+00) Acc@1 14.06 ( 4.37) Acc@5 33.98 ( 12.37) +Epoch: [0][4611/5004] Time 0.250 ( 0.242) Data 0.027 ( 0.027) Loss 4.6615e+00 (5.8278e+00) Acc@1 10.16 ( 4.37) Acc@5 27.34 ( 12.37) +Epoch: [0][4612/5004] Time 0.246 ( 0.242) Data 0.027 ( 0.027) Loss 4.2295e+00 (5.8274e+00) Acc@1 20.31 ( 4.37) Acc@5 41.02 ( 12.38) +Epoch: [0][4613/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 4.5539e+00 (5.8271e+00) Acc@1 12.50 ( 4.38) Acc@5 33.98 ( 12.38) +Epoch: [0][4614/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.7313e+00 (5.8269e+00) Acc@1 11.33 ( 4.38) Acc@5 27.73 ( 12.39) +Epoch: [0][4615/5004] Time 0.246 ( 0.242) Data 0.028 ( 0.027) Loss 4.5597e+00 (5.8266e+00) Acc@1 18.36 ( 4.38) Acc@5 34.77 ( 12.39) +Epoch: [0][4616/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 4.8348e+00 (5.8264e+00) Acc@1 8.59 ( 4.38) Acc@5 29.69 ( 12.40) +Epoch: [0][4617/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.8232e+00 (5.8262e+00) Acc@1 11.33 ( 4.38) Acc@5 28.52 ( 12.40) +Epoch: [0][4618/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.5981e+00 (5.8259e+00) Acc@1 8.98 ( 4.38) Acc@5 28.91 ( 12.40) +Epoch: [0][4619/5004] Time 0.237 ( 0.242) Data 0.024 ( 0.027) Loss 4.4609e+00 (5.8256e+00) Acc@1 14.84 ( 4.39) Acc@5 33.59 ( 12.41) +Epoch: [0][4620/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 4.7186e+00 (5.8254e+00) Acc@1 9.38 ( 4.39) Acc@5 31.64 ( 12.41) +Epoch: [0][4621/5004] Time 0.239 ( 0.242) Data 0.025 ( 0.027) Loss 4.6939e+00 (5.8252e+00) Acc@1 11.33 ( 4.39) Acc@5 30.86 ( 12.42) +Epoch: [0][4622/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 4.5211e+00 (5.8249e+00) Acc@1 14.84 ( 4.39) Acc@5 34.38 ( 12.42) +Epoch: [0][4623/5004] Time 0.243 ( 0.242) Data 0.027 ( 0.027) Loss 4.5953e+00 (5.8246e+00) Acc@1 15.62 ( 4.39) Acc@5 30.86 ( 12.42) +Epoch: [0][4624/5004] Time 0.235 ( 0.242) Data 0.023 ( 0.027) Loss 4.6104e+00 (5.8243e+00) Acc@1 16.02 ( 4.40) Acc@5 30.47 ( 12.43) +Epoch: [0][4625/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.6115e+00 (5.8241e+00) Acc@1 10.55 ( 4.40) Acc@5 29.69 ( 12.43) +Epoch: [0][4626/5004] Time 0.235 ( 0.242) Data 0.024 ( 0.027) Loss 4.8671e+00 (5.8239e+00) Acc@1 13.28 ( 4.40) Acc@5 26.95 ( 12.43) +Epoch: [0][4627/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.8126e+00 (5.8237e+00) Acc@1 11.72 ( 4.40) Acc@5 29.30 ( 12.44) +Epoch: [0][4628/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.6334e+00 (5.8234e+00) Acc@1 16.02 ( 4.40) Acc@5 34.38 ( 12.44) +Epoch: [0][4629/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 4.6718e+00 (5.8231e+00) Acc@1 12.89 ( 4.41) Acc@5 26.17 ( 12.45) +Epoch: [0][4630/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.6376e+00 (5.8229e+00) Acc@1 10.16 ( 4.41) Acc@5 31.64 ( 12.45) +Epoch: [0][4631/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.8069e+00 (5.8227e+00) Acc@1 12.50 ( 4.41) Acc@5 28.91 ( 12.45) +Epoch: [0][4632/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.6435e+00 (5.8224e+00) Acc@1 13.67 ( 4.41) Acc@5 36.33 ( 12.46) +Epoch: [0][4633/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.4340e+00 (5.8221e+00) Acc@1 15.62 ( 4.41) Acc@5 33.59 ( 12.46) +Epoch: [0][4634/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.5987e+00 (5.8219e+00) Acc@1 14.84 ( 4.41) Acc@5 30.86 ( 12.47) +Epoch: [0][4635/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 4.6143e+00 (5.8216e+00) Acc@1 14.06 ( 4.42) Acc@5 30.08 ( 12.47) +Epoch: [0][4636/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.6637e+00 (5.8213e+00) Acc@1 14.84 ( 4.42) Acc@5 33.20 ( 12.48) +Epoch: [0][4637/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.5957e+00 (5.8211e+00) Acc@1 14.06 ( 4.42) Acc@5 28.91 ( 12.48) +Epoch: [0][4638/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 4.6917e+00 (5.8208e+00) Acc@1 16.41 ( 4.42) Acc@5 32.03 ( 12.48) +Epoch: [0][4639/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 4.5770e+00 (5.8206e+00) Acc@1 16.80 ( 4.43) Acc@5 34.77 ( 12.49) +Epoch: [0][4640/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 4.8146e+00 (5.8204e+00) Acc@1 10.16 ( 4.43) Acc@5 23.83 ( 12.49) +Epoch: [0][4641/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.8137e+00 (5.8201e+00) Acc@1 9.38 ( 4.43) Acc@5 25.39 ( 12.49) +Epoch: [0][4642/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.5229e+00 (5.8199e+00) Acc@1 12.50 ( 4.43) Acc@5 35.55 ( 12.50) +Epoch: [0][4643/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.7612e+00 (5.8196e+00) Acc@1 10.94 ( 4.43) Acc@5 27.34 ( 12.50) +Epoch: [0][4644/5004] Time 0.240 ( 0.242) Data 0.026 ( 0.027) Loss 4.6934e+00 (5.8194e+00) Acc@1 12.89 ( 4.43) Acc@5 28.52 ( 12.50) +Epoch: [0][4645/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 4.7597e+00 (5.8192e+00) Acc@1 8.59 ( 4.43) Acc@5 26.56 ( 12.51) +Epoch: [0][4646/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7563e+00 (5.8189e+00) Acc@1 10.55 ( 4.44) Acc@5 24.22 ( 12.51) +Epoch: [0][4647/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.5309e+00 (5.8186e+00) Acc@1 13.67 ( 4.44) Acc@5 32.03 ( 12.51) +Epoch: [0][4648/5004] Time 0.244 ( 0.242) Data 0.024 ( 0.027) Loss 4.8763e+00 (5.8184e+00) Acc@1 11.33 ( 4.44) Acc@5 26.56 ( 12.52) +Epoch: [0][4649/5004] Time 0.235 ( 0.242) Data 0.019 ( 0.027) Loss 4.7729e+00 (5.8182e+00) Acc@1 10.16 ( 4.44) Acc@5 30.08 ( 12.52) +Epoch: [0][4650/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.5213e+00 (5.8179e+00) Acc@1 14.45 ( 4.44) Acc@5 30.08 ( 12.53) +Epoch: [0][4651/5004] Time 0.238 ( 0.242) Data 0.022 ( 0.027) Loss 4.5484e+00 (5.8177e+00) Acc@1 15.23 ( 4.45) Acc@5 29.69 ( 12.53) +Epoch: [0][4652/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.7515e+00 (5.8174e+00) Acc@1 12.89 ( 4.45) Acc@5 26.56 ( 12.53) +Epoch: [0][4653/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.8079e+00 (5.8172e+00) Acc@1 8.98 ( 4.45) Acc@5 24.61 ( 12.53) +Epoch: [0][4654/5004] Time 0.239 ( 0.242) Data 0.021 ( 0.027) Loss 4.4443e+00 (5.8169e+00) Acc@1 13.67 ( 4.45) Acc@5 33.59 ( 12.54) +Epoch: [0][4655/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.7435e+00 (5.8167e+00) Acc@1 11.33 ( 4.45) Acc@5 29.69 ( 12.54) +Epoch: [0][4656/5004] Time 0.238 ( 0.242) Data 0.022 ( 0.027) Loss 4.5957e+00 (5.8164e+00) Acc@1 10.94 ( 4.45) Acc@5 29.30 ( 12.55) +Epoch: [0][4657/5004] Time 0.239 ( 0.242) Data 0.024 ( 0.027) Loss 4.6892e+00 (5.8162e+00) Acc@1 9.38 ( 4.45) Acc@5 27.73 ( 12.55) +Epoch: [0][4658/5004] Time 0.241 ( 0.242) Data 0.024 ( 0.027) Loss 4.7305e+00 (5.8160e+00) Acc@1 11.72 ( 4.46) Acc@5 30.86 ( 12.55) +Epoch: [0][4659/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7977e+00 (5.8157e+00) Acc@1 7.03 ( 4.46) Acc@5 25.00 ( 12.56) +Epoch: [0][4660/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.5781e+00 (5.8155e+00) Acc@1 12.89 ( 4.46) Acc@5 28.91 ( 12.56) +Epoch: [0][4661/5004] Time 0.245 ( 0.242) Data 0.019 ( 0.027) Loss 4.8025e+00 (5.8153e+00) Acc@1 10.94 ( 4.46) Acc@5 28.52 ( 12.56) +Epoch: [0][4662/5004] Time 0.233 ( 0.242) Data 0.016 ( 0.027) Loss 4.7691e+00 (5.8150e+00) Acc@1 11.33 ( 4.46) Acc@5 31.25 ( 12.57) +Epoch: [0][4663/5004] Time 0.249 ( 0.242) Data 0.023 ( 0.027) Loss 4.5089e+00 (5.8148e+00) Acc@1 15.62 ( 4.46) Acc@5 30.86 ( 12.57) +Epoch: [0][4664/5004] Time 0.250 ( 0.242) Data 0.019 ( 0.027) Loss 4.7003e+00 (5.8145e+00) Acc@1 10.16 ( 4.46) Acc@5 28.91 ( 12.57) +Epoch: [0][4665/5004] Time 0.241 ( 0.242) Data 0.018 ( 0.027) Loss 4.6087e+00 (5.8143e+00) Acc@1 16.80 ( 4.47) Acc@5 35.16 ( 12.58) +Epoch: [0][4666/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.5580e+00 (5.8140e+00) Acc@1 10.94 ( 4.47) Acc@5 29.69 ( 12.58) +Epoch: [0][4667/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.4228e+00 (5.8137e+00) Acc@1 11.72 ( 4.47) Acc@5 32.03 ( 12.59) +Epoch: [0][4668/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7961e+00 (5.8135e+00) Acc@1 9.77 ( 4.47) Acc@5 27.73 ( 12.59) +Epoch: [0][4669/5004] Time 0.246 ( 0.242) Data 0.023 ( 0.027) Loss 4.5645e+00 (5.8132e+00) Acc@1 14.45 ( 4.47) Acc@5 31.25 ( 12.59) +Epoch: [0][4670/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.8219e+00 (5.8130e+00) Acc@1 15.62 ( 4.48) Acc@5 26.56 ( 12.60) +Epoch: [0][4671/5004] Time 0.242 ( 0.242) Data 0.019 ( 0.027) Loss 4.7460e+00 (5.8128e+00) Acc@1 11.72 ( 4.48) Acc@5 25.00 ( 12.60) +Epoch: [0][4672/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.6655e+00 (5.8125e+00) Acc@1 12.50 ( 4.48) Acc@5 29.69 ( 12.60) +Epoch: [0][4673/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.7843e+00 (5.8123e+00) Acc@1 12.11 ( 4.48) Acc@5 27.34 ( 12.61) +Epoch: [0][4674/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.6681e+00 (5.8121e+00) Acc@1 14.06 ( 4.48) Acc@5 32.81 ( 12.61) +Epoch: [0][4675/5004] Time 0.244 ( 0.242) Data 0.021 ( 0.027) Loss 4.5005e+00 (5.8118e+00) Acc@1 11.72 ( 4.48) Acc@5 33.20 ( 12.62) +Epoch: [0][4676/5004] Time 0.248 ( 0.242) Data 0.019 ( 0.027) Loss 4.6895e+00 (5.8115e+00) Acc@1 9.77 ( 4.49) Acc@5 26.95 ( 12.62) +Epoch: [0][4677/5004] Time 0.245 ( 0.242) Data 0.016 ( 0.027) Loss 4.6347e+00 (5.8113e+00) Acc@1 11.33 ( 4.49) Acc@5 30.86 ( 12.62) +Epoch: [0][4678/5004] Time 0.242 ( 0.242) Data 0.021 ( 0.027) Loss 4.8816e+00 (5.8111e+00) Acc@1 10.94 ( 4.49) Acc@5 25.00 ( 12.63) +Epoch: [0][4679/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6986e+00 (5.8108e+00) Acc@1 13.28 ( 4.49) Acc@5 29.69 ( 12.63) +Epoch: [0][4680/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.5890e+00 (5.8106e+00) Acc@1 15.23 ( 4.49) Acc@5 32.03 ( 12.63) +Epoch: [0][4681/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6973e+00 (5.8103e+00) Acc@1 10.55 ( 4.49) Acc@5 28.12 ( 12.64) +Epoch: [0][4682/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.8257e+00 (5.8101e+00) Acc@1 11.72 ( 4.50) Acc@5 30.47 ( 12.64) +Epoch: [0][4683/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.7764e+00 (5.8099e+00) Acc@1 8.20 ( 4.50) Acc@5 25.78 ( 12.64) +Epoch: [0][4684/5004] Time 0.248 ( 0.242) Data 0.022 ( 0.027) Loss 4.4778e+00 (5.8096e+00) Acc@1 11.72 ( 4.50) Acc@5 32.81 ( 12.65) +Epoch: [0][4685/5004] Time 0.245 ( 0.242) Data 0.019 ( 0.027) Loss 4.5912e+00 (5.8094e+00) Acc@1 12.50 ( 4.50) Acc@5 28.12 ( 12.65) +Epoch: [0][4686/5004] Time 0.248 ( 0.242) Data 0.020 ( 0.027) Loss 4.7656e+00 (5.8091e+00) Acc@1 12.11 ( 4.50) Acc@5 27.73 ( 12.65) +Epoch: [0][4687/5004] Time 0.242 ( 0.242) Data 0.020 ( 0.027) Loss 4.7324e+00 (5.8089e+00) Acc@1 8.98 ( 4.50) Acc@5 27.73 ( 12.66) +Epoch: [0][4688/5004] Time 0.245 ( 0.242) Data 0.022 ( 0.027) Loss 4.5279e+00 (5.8086e+00) Acc@1 13.67 ( 4.50) Acc@5 33.59 ( 12.66) +Epoch: [0][4689/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.8671e+00 (5.8084e+00) Acc@1 8.98 ( 4.50) Acc@5 22.66 ( 12.66) +Epoch: [0][4690/5004] Time 0.243 ( 0.242) Data 0.021 ( 0.027) Loss 4.5185e+00 (5.8082e+00) Acc@1 17.58 ( 4.51) Acc@5 32.42 ( 12.67) +Epoch: [0][4691/5004] Time 0.247 ( 0.242) Data 0.022 ( 0.027) Loss 4.7548e+00 (5.8079e+00) Acc@1 9.38 ( 4.51) Acc@5 27.73 ( 12.67) +Epoch: [0][4692/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.5431e+00 (5.8077e+00) Acc@1 12.50 ( 4.51) Acc@5 31.64 ( 12.68) +Epoch: [0][4693/5004] Time 0.245 ( 0.242) Data 0.021 ( 0.027) Loss 4.7991e+00 (5.8075e+00) Acc@1 12.89 ( 4.51) Acc@5 27.34 ( 12.68) +Epoch: [0][4694/5004] Time 0.246 ( 0.242) Data 0.020 ( 0.027) Loss 4.7156e+00 (5.8072e+00) Acc@1 8.98 ( 4.51) Acc@5 31.64 ( 12.68) +Epoch: [0][4695/5004] Time 0.241 ( 0.242) Data 0.022 ( 0.027) Loss 4.6825e+00 (5.8070e+00) Acc@1 14.84 ( 4.52) Acc@5 32.03 ( 12.69) +Epoch: [0][4696/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.6453e+00 (5.8067e+00) Acc@1 8.98 ( 4.52) Acc@5 27.73 ( 12.69) +Epoch: [0][4697/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.6232e+00 (5.8065e+00) Acc@1 10.16 ( 4.52) Acc@5 31.25 ( 12.69) +Epoch: [0][4698/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.7666e+00 (5.8063e+00) Acc@1 12.11 ( 4.52) Acc@5 29.69 ( 12.70) +Epoch: [0][4699/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.6799e+00 (5.8060e+00) Acc@1 15.23 ( 4.52) Acc@5 30.86 ( 12.70) +Epoch: [0][4700/5004] Time 0.248 ( 0.242) Data 0.025 ( 0.027) Loss 4.6130e+00 (5.8058e+00) Acc@1 12.11 ( 4.52) Acc@5 32.03 ( 12.71) +Epoch: [0][4701/5004] Time 0.237 ( 0.242) Data 0.020 ( 0.027) Loss 4.6456e+00 (5.8055e+00) Acc@1 16.41 ( 4.53) Acc@5 32.42 ( 12.71) +Epoch: [0][4702/5004] Time 0.240 ( 0.242) Data 0.024 ( 0.027) Loss 4.8592e+00 (5.8053e+00) Acc@1 10.16 ( 4.53) Acc@5 26.56 ( 12.71) +Epoch: [0][4703/5004] Time 0.250 ( 0.242) Data 0.025 ( 0.027) Loss 4.6683e+00 (5.8051e+00) Acc@1 10.16 ( 4.53) Acc@5 31.25 ( 12.72) +Epoch: [0][4704/5004] Time 0.240 ( 0.242) Data 0.023 ( 0.027) Loss 4.7765e+00 (5.8049e+00) Acc@1 13.67 ( 4.53) Acc@5 26.56 ( 12.72) +Epoch: [0][4705/5004] Time 0.242 ( 0.242) Data 0.024 ( 0.027) Loss 4.5973e+00 (5.8046e+00) Acc@1 16.41 ( 4.53) Acc@5 33.20 ( 12.72) +Epoch: [0][4706/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.7375e+00 (5.8044e+00) Acc@1 12.50 ( 4.53) Acc@5 30.86 ( 12.73) +Epoch: [0][4707/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8271e+00 (5.8042e+00) Acc@1 12.11 ( 4.54) Acc@5 27.34 ( 12.73) +Epoch: [0][4708/5004] Time 0.246 ( 0.242) Data 0.024 ( 0.027) Loss 4.7242e+00 (5.8039e+00) Acc@1 13.67 ( 4.54) Acc@5 30.86 ( 12.73) +Epoch: [0][4709/5004] Time 0.244 ( 0.242) Data 0.022 ( 0.027) Loss 4.5052e+00 (5.8037e+00) Acc@1 9.77 ( 4.54) Acc@5 32.81 ( 12.74) +Epoch: [0][4710/5004] Time 0.243 ( 0.242) Data 0.023 ( 0.027) Loss 4.4145e+00 (5.8034e+00) Acc@1 14.45 ( 4.54) Acc@5 36.33 ( 12.74) +Epoch: [0][4711/5004] Time 0.245 ( 0.242) Data 0.023 ( 0.027) Loss 4.8311e+00 (5.8032e+00) Acc@1 14.84 ( 4.54) Acc@5 29.30 ( 12.75) +Epoch: [0][4712/5004] Time 0.244 ( 0.242) Data 0.023 ( 0.027) Loss 4.5904e+00 (5.8029e+00) Acc@1 14.84 ( 4.54) Acc@5 28.91 ( 12.75) +Epoch: [0][4713/5004] Time 0.250 ( 0.242) Data 0.022 ( 0.027) Loss 4.6694e+00 (5.8027e+00) Acc@1 11.72 ( 4.55) Acc@5 27.73 ( 12.75) +Epoch: [0][4714/5004] Time 0.234 ( 0.242) Data 0.021 ( 0.027) Loss 4.5762e+00 (5.8024e+00) Acc@1 13.67 ( 4.55) Acc@5 31.64 ( 12.76) +Epoch: [0][4715/5004] Time 0.244 ( 0.242) Data 0.027 ( 0.027) Loss 4.6069e+00 (5.8022e+00) Acc@1 14.06 ( 4.55) Acc@5 28.52 ( 12.76) +Epoch: [0][4716/5004] Time 0.237 ( 0.242) Data 0.023 ( 0.027) Loss 4.4011e+00 (5.8019e+00) Acc@1 16.41 ( 4.55) Acc@5 33.98 ( 12.77) +Epoch: [0][4717/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 4.4635e+00 (5.8016e+00) Acc@1 15.23 ( 4.56) Acc@5 34.77 ( 12.77) +Epoch: [0][4718/5004] Time 0.241 ( 0.242) Data 0.028 ( 0.027) Loss 4.7182e+00 (5.8013e+00) Acc@1 13.28 ( 4.56) Acc@5 30.47 ( 12.77) +Epoch: [0][4719/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.7779e+00 (5.8011e+00) Acc@1 14.84 ( 4.56) Acc@5 28.52 ( 12.78) +Epoch: [0][4720/5004] Time 0.237 ( 0.242) Data 0.027 ( 0.027) Loss 4.5998e+00 (5.8009e+00) Acc@1 10.94 ( 4.56) Acc@5 28.12 ( 12.78) +Epoch: [0][4721/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.8518e+00 (5.8007e+00) Acc@1 8.59 ( 4.56) Acc@5 26.56 ( 12.78) +Epoch: [0][4722/5004] Time 0.238 ( 0.242) Data 0.027 ( 0.027) Loss 4.6066e+00 (5.8004e+00) Acc@1 14.06 ( 4.56) Acc@5 31.64 ( 12.79) +Epoch: [0][4723/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.6736e+00 (5.8002e+00) Acc@1 10.16 ( 4.56) Acc@5 28.12 ( 12.79) +Epoch: [0][4724/5004] Time 0.239 ( 0.242) Data 0.026 ( 0.027) Loss 4.7091e+00 (5.8000e+00) Acc@1 10.94 ( 4.57) Acc@5 32.03 ( 12.79) +Epoch: [0][4725/5004] Time 0.236 ( 0.242) Data 0.026 ( 0.027) Loss 4.7494e+00 (5.7997e+00) Acc@1 10.94 ( 4.57) Acc@5 28.52 ( 12.80) +Epoch: [0][4726/5004] Time 0.239 ( 0.242) Data 0.028 ( 0.027) Loss 4.7879e+00 (5.7995e+00) Acc@1 10.55 ( 4.57) Acc@5 27.34 ( 12.80) +Epoch: [0][4727/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.6470e+00 (5.7993e+00) Acc@1 12.11 ( 4.57) Acc@5 28.91 ( 12.80) +Epoch: [0][4728/5004] Time 0.245 ( 0.242) Data 0.026 ( 0.027) Loss 4.6169e+00 (5.7990e+00) Acc@1 12.50 ( 4.57) Acc@5 30.86 ( 12.81) +Epoch: [0][4729/5004] Time 0.243 ( 0.242) Data 0.024 ( 0.027) Loss 4.5448e+00 (5.7988e+00) Acc@1 11.33 ( 4.57) Acc@5 31.25 ( 12.81) +Epoch: [0][4730/5004] Time 0.245 ( 0.242) Data 0.025 ( 0.027) Loss 4.9068e+00 (5.7986e+00) Acc@1 9.77 ( 4.57) Acc@5 25.39 ( 12.81) +Epoch: [0][4731/5004] Time 0.234 ( 0.242) Data 0.022 ( 0.027) Loss 4.8506e+00 (5.7984e+00) Acc@1 8.20 ( 4.58) Acc@5 23.05 ( 12.82) +Epoch: [0][4732/5004] Time 0.237 ( 0.242) Data 0.026 ( 0.027) Loss 4.6110e+00 (5.7981e+00) Acc@1 14.06 ( 4.58) Acc@5 31.25 ( 12.82) +Epoch: [0][4733/5004] Time 0.241 ( 0.242) Data 0.027 ( 0.027) Loss 4.7534e+00 (5.7979e+00) Acc@1 13.67 ( 4.58) Acc@5 29.69 ( 12.82) +Epoch: [0][4734/5004] Time 0.238 ( 0.242) Data 0.026 ( 0.027) Loss 4.8506e+00 (5.7977e+00) Acc@1 8.98 ( 4.58) Acc@5 26.17 ( 12.83) +Epoch: [0][4735/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.5530e+00 (5.7974e+00) Acc@1 14.45 ( 4.58) Acc@5 32.03 ( 12.83) +Epoch: [0][4736/5004] Time 0.243 ( 0.242) Data 0.028 ( 0.027) Loss 4.6197e+00 (5.7972e+00) Acc@1 11.72 ( 4.58) Acc@5 28.52 ( 12.83) +Epoch: [0][4737/5004] Time 0.242 ( 0.242) Data 0.026 ( 0.027) Loss 4.5474e+00 (5.7969e+00) Acc@1 9.77 ( 4.58) Acc@5 30.86 ( 12.84) +Epoch: [0][4738/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 4.6254e+00 (5.7967e+00) Acc@1 13.28 ( 4.59) Acc@5 29.30 ( 12.84) +Epoch: [0][4739/5004] Time 0.245 ( 0.242) Data 0.031 ( 0.027) Loss 4.4978e+00 (5.7964e+00) Acc@1 12.89 ( 4.59) Acc@5 35.16 ( 12.85) +Epoch: [0][4740/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.7968e+00 (5.7962e+00) Acc@1 7.42 ( 4.59) Acc@5 28.12 ( 12.85) +Epoch: [0][4741/5004] Time 0.242 ( 0.242) Data 0.027 ( 0.027) Loss 4.5368e+00 (5.7959e+00) Acc@1 9.77 ( 4.59) Acc@5 32.81 ( 12.85) +Epoch: [0][4742/5004] Time 0.240 ( 0.242) Data 0.027 ( 0.027) Loss 4.6949e+00 (5.7957e+00) Acc@1 14.45 ( 4.59) Acc@5 30.47 ( 12.86) +Epoch: [0][4743/5004] Time 0.237 ( 0.242) Data 0.025 ( 0.027) Loss 4.5748e+00 (5.7954e+00) Acc@1 14.45 ( 4.59) Acc@5 33.20 ( 12.86) +Epoch: [0][4744/5004] Time 0.242 ( 0.242) Data 0.028 ( 0.027) Loss 4.5211e+00 (5.7952e+00) Acc@1 12.50 ( 4.60) Acc@5 30.47 ( 12.87) +Epoch: [0][4745/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.5851e+00 (5.7949e+00) Acc@1 12.50 ( 4.60) Acc@5 34.77 ( 12.87) +Epoch: [0][4746/5004] Time 0.244 ( 0.242) Data 0.028 ( 0.027) Loss 4.4701e+00 (5.7946e+00) Acc@1 18.75 ( 4.60) Acc@5 37.50 ( 12.88) +Epoch: [0][4747/5004] Time 0.235 ( 0.242) Data 0.022 ( 0.027) Loss 4.6483e+00 (5.7944e+00) Acc@1 13.28 ( 4.60) Acc@5 32.03 ( 12.88) +Epoch: [0][4748/5004] Time 0.263 ( 0.242) Data 0.050 ( 0.027) Loss 4.5629e+00 (5.7941e+00) Acc@1 13.28 ( 4.60) Acc@5 33.20 ( 12.88) +Epoch: [0][4749/5004] Time 0.236 ( 0.242) Data 0.025 ( 0.027) Loss 4.8159e+00 (5.7939e+00) Acc@1 14.45 ( 4.61) Acc@5 32.81 ( 12.89) +Epoch: [0][4750/5004] Time 0.239 ( 0.242) Data 0.027 ( 0.027) Loss 4.6783e+00 (5.7937e+00) Acc@1 11.72 ( 4.61) Acc@5 30.47 ( 12.89) +Epoch: [0][4751/5004] Time 0.241 ( 0.242) Data 0.026 ( 0.027) Loss 4.6726e+00 (5.7935e+00) Acc@1 12.89 ( 4.61) Acc@5 25.00 ( 12.89) +Epoch: [0][4752/5004] Time 0.238 ( 0.242) Data 0.025 ( 0.027) Loss 4.5729e+00 (5.7932e+00) Acc@1 14.06 ( 4.61) Acc@5 30.08 ( 12.90) +Epoch: [0][4753/5004] Time 0.237 ( 0.242) Data 0.028 ( 0.027) Loss 4.5145e+00 (5.7929e+00) Acc@1 15.62 ( 4.61) Acc@5 32.03 ( 12.90) +Epoch: [0][4754/5004] Time 0.241 ( 0.242) Data 0.029 ( 0.027) Loss 4.4904e+00 (5.7927e+00) Acc@1 17.19 ( 4.62) Acc@5 32.81 ( 12.91) +Epoch: [0][4755/5004] Time 0.240 ( 0.242) Data 0.028 ( 0.027) Loss 4.7165e+00 (5.7924e+00) Acc@1 13.28 ( 4.62) Acc@5 27.34 ( 12.91) +Epoch: [0][4756/5004] Time 0.243 ( 0.242) Data 0.026 ( 0.027) Loss 4.9451e+00 (5.7923e+00) Acc@1 8.20 ( 4.62) Acc@5 24.22 ( 12.91) +Epoch: [0][4757/5004] Time 0.247 ( 0.242) Data 0.023 ( 0.027) Loss 4.8064e+00 (5.7920e+00) Acc@1 10.16 ( 4.62) Acc@5 28.91 ( 12.92) +Epoch: [0][4758/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.6810e+00 (5.7918e+00) Acc@1 14.06 ( 4.62) Acc@5 27.34 ( 12.92) +Epoch: [0][4759/5004] Time 0.244 ( 0.242) Data 0.025 ( 0.027) Loss 4.5679e+00 (5.7916e+00) Acc@1 10.55 ( 4.62) Acc@5 29.69 ( 12.92) +Epoch: [0][4760/5004] Time 0.281 ( 0.242) Data 0.021 ( 0.027) Loss 4.8969e+00 (5.7914e+00) Acc@1 8.98 ( 4.62) Acc@5 30.08 ( 12.93) +Epoch: [0][4761/5004] Time 0.255 ( 0.242) Data 0.011 ( 0.027) Loss 4.5524e+00 (5.7911e+00) Acc@1 10.94 ( 4.63) Acc@5 30.47 ( 12.93) +Epoch: [0][4762/5004] Time 0.248 ( 0.242) Data 0.014 ( 0.027) Loss 4.6866e+00 (5.7909e+00) Acc@1 11.72 ( 4.63) Acc@5 25.39 ( 12.93) +Epoch: [0][4763/5004] Time 0.242 ( 0.242) Data 0.012 ( 0.027) Loss 4.5822e+00 (5.7906e+00) Acc@1 14.84 ( 4.63) Acc@5 31.25 ( 12.94) +Epoch: [0][4764/5004] Time 0.241 ( 0.242) Data 0.020 ( 0.027) Loss 4.3487e+00 (5.7903e+00) Acc@1 17.97 ( 4.63) Acc@5 36.33 ( 12.94) +Epoch: [0][4765/5004] Time 0.239 ( 0.242) Data 0.019 ( 0.027) Loss 4.6049e+00 (5.7901e+00) Acc@1 14.84 ( 4.63) Acc@5 32.03 ( 12.94) +Epoch: [0][4766/5004] Time 0.246 ( 0.242) Data 0.021 ( 0.027) Loss 4.7398e+00 (5.7898e+00) Acc@1 10.55 ( 4.64) Acc@5 29.69 ( 12.95) +Epoch: [0][4767/5004] Time 0.241 ( 0.242) Data 0.017 ( 0.027) Loss 4.8197e+00 (5.7896e+00) Acc@1 10.94 ( 4.64) Acc@5 29.69 ( 12.95) +Epoch: [0][4768/5004] Time 0.247 ( 0.242) Data 0.017 ( 0.027) Loss 4.4371e+00 (5.7894e+00) Acc@1 15.23 ( 4.64) Acc@5 39.45 ( 12.96) +Epoch: [0][4769/5004] Time 0.244 ( 0.242) Data 0.014 ( 0.027) Loss 4.5410e+00 (5.7891e+00) Acc@1 13.28 ( 4.64) Acc@5 36.72 ( 12.96) +Epoch: [0][4770/5004] Time 0.244 ( 0.242) Data 0.017 ( 0.027) Loss 4.5339e+00 (5.7888e+00) Acc@1 13.67 ( 4.64) Acc@5 31.64 ( 12.97) +Epoch: [0][4771/5004] Time 0.241 ( 0.242) Data 0.018 ( 0.027) Loss 4.7093e+00 (5.7886e+00) Acc@1 10.94 ( 4.64) Acc@5 27.34 ( 12.97) +Epoch: [0][4772/5004] Time 0.246 ( 0.242) Data 0.019 ( 0.027) Loss 4.4355e+00 (5.7883e+00) Acc@1 11.33 ( 4.65) Acc@5 37.89 ( 12.97) +Epoch: [0][4773/5004] Time 0.239 ( 0.242) Data 0.017 ( 0.027) Loss 4.5648e+00 (5.7881e+00) Acc@1 13.28 ( 4.65) Acc@5 32.03 ( 12.98) +Epoch: [0][4774/5004] Time 0.243 ( 0.242) Data 0.019 ( 0.027) Loss 4.7759e+00 (5.7879e+00) Acc@1 13.28 ( 4.65) Acc@5 28.52 ( 12.98) +Epoch: [0][4775/5004] Time 0.243 ( 0.242) Data 0.019 ( 0.027) Loss 4.7626e+00 (5.7876e+00) Acc@1 10.94 ( 4.65) Acc@5 28.52 ( 12.98) +Epoch: [0][4776/5004] Time 0.241 ( 0.242) Data 0.018 ( 0.027) Loss 4.4855e+00 (5.7874e+00) Acc@1 16.41 ( 4.65) Acc@5 34.38 ( 12.99) +Epoch: [0][4777/5004] Time 0.243 ( 0.242) Data 0.019 ( 0.027) Loss 4.6731e+00 (5.7871e+00) Acc@1 12.89 ( 4.65) Acc@5 29.69 ( 12.99) +Epoch: [0][4778/5004] Time 0.235 ( 0.242) Data 0.016 ( 0.027) Loss 4.6207e+00 (5.7869e+00) Acc@1 16.02 ( 4.66) Acc@5 34.38 ( 13.00) +Epoch: [0][4779/5004] Time 0.242 ( 0.242) Data 0.022 ( 0.027) Loss 4.7113e+00 (5.7867e+00) Acc@1 11.33 ( 4.66) Acc@5 28.12 ( 13.00) +Epoch: [0][4780/5004] Time 0.237 ( 0.242) Data 0.021 ( 0.027) Loss 4.6095e+00 (5.7864e+00) Acc@1 14.06 ( 4.66) Acc@5 29.69 ( 13.00) +Epoch: [0][4781/5004] Time 0.239 ( 0.242) Data 0.023 ( 0.027) Loss 4.7878e+00 (5.7862e+00) Acc@1 14.84 ( 4.66) Acc@5 30.08 ( 13.01) +Epoch: [0][4782/5004] Time 0.238 ( 0.242) Data 0.023 ( 0.027) Loss 4.5264e+00 (5.7860e+00) Acc@1 10.55 ( 4.66) Acc@5 33.20 ( 13.01) +Epoch: [0][4783/5004] Time 0.242 ( 0.242) Data 0.023 ( 0.027) Loss 4.6610e+00 (5.7857e+00) Acc@1 15.23 ( 4.67) Acc@5 31.64 ( 13.02) +Epoch: [0][4784/5004] Time 0.243 ( 0.242) Data 0.022 ( 0.027) Loss 4.7308e+00 (5.7855e+00) Acc@1 13.28 ( 4.67) Acc@5 25.00 ( 13.02) +Epoch: [0][4785/5004] Time 0.246 ( 0.242) Data 0.022 ( 0.027) Loss 4.6948e+00 (5.7853e+00) Acc@1 14.06 ( 4.67) Acc@5 34.38 ( 13.02) +Epoch: [0][4786/5004] Time 0.245 ( 0.242) Data 0.019 ( 0.027) Loss 4.5016e+00 (5.7850e+00) Acc@1 16.41 ( 4.67) Acc@5 37.11 ( 13.03) +Epoch: [0][4787/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 4.6564e+00 (5.7848e+00) Acc@1 14.06 ( 4.67) Acc@5 32.03 ( 13.03) +Epoch: [0][4788/5004] Time 0.239 ( 0.242) Data 0.017 ( 0.027) Loss 4.5723e+00 (5.7845e+00) Acc@1 14.84 ( 4.68) Acc@5 31.25 ( 13.04) +Epoch: [0][4789/5004] Time 0.245 ( 0.242) Data 0.018 ( 0.027) Loss 4.7626e+00 (5.7843e+00) Acc@1 10.16 ( 4.68) Acc@5 25.78 ( 13.04) +Epoch: [0][4790/5004] Time 0.250 ( 0.242) Data 0.015 ( 0.027) Loss 4.6500e+00 (5.7841e+00) Acc@1 10.94 ( 4.68) Acc@5 28.52 ( 13.04) +Epoch: [0][4791/5004] Time 0.250 ( 0.242) Data 0.012 ( 0.027) Loss 4.6446e+00 (5.7838e+00) Acc@1 12.89 ( 4.68) Acc@5 30.08 ( 13.04) +Epoch: [0][4792/5004] Time 0.255 ( 0.242) Data 0.015 ( 0.027) Loss 4.6717e+00 (5.7836e+00) Acc@1 14.06 ( 4.68) Acc@5 33.98 ( 13.05) +Epoch: [0][4793/5004] Time 0.251 ( 0.242) Data 0.012 ( 0.027) Loss 4.8052e+00 (5.7834e+00) Acc@1 10.55 ( 4.68) Acc@5 28.52 ( 13.05) +Epoch: [0][4794/5004] Time 0.246 ( 0.242) Data 0.014 ( 0.027) Loss 4.7691e+00 (5.7832e+00) Acc@1 10.94 ( 4.68) Acc@5 28.91 ( 13.06) +Epoch: [0][4795/5004] Time 0.245 ( 0.242) Data 0.015 ( 0.027) Loss 4.8222e+00 (5.7830e+00) Acc@1 10.94 ( 4.69) Acc@5 26.95 ( 13.06) +Epoch: [0][4796/5004] Time 0.242 ( 0.242) Data 0.016 ( 0.027) Loss 4.4712e+00 (5.7827e+00) Acc@1 11.72 ( 4.69) Acc@5 37.11 ( 13.06) +Epoch: [0][4797/5004] Time 0.246 ( 0.242) Data 0.015 ( 0.027) Loss 4.6917e+00 (5.7825e+00) Acc@1 12.11 ( 4.69) Acc@5 32.03 ( 13.07) +Epoch: [0][4798/5004] Time 0.250 ( 0.242) Data 0.013 ( 0.027) Loss 4.5093e+00 (5.7822e+00) Acc@1 14.84 ( 4.69) Acc@5 32.81 ( 13.07) +Epoch: [0][4799/5004] Time 0.250 ( 0.242) Data 0.013 ( 0.027) Loss 4.6869e+00 (5.7820e+00) Acc@1 9.38 ( 4.69) Acc@5 24.61 ( 13.07) +Epoch: [0][4800/5004] Time 0.252 ( 0.242) Data 0.014 ( 0.027) Loss 4.4076e+00 (5.7817e+00) Acc@1 15.23 ( 4.69) Acc@5 37.11 ( 13.08) +Epoch: [0][4801/5004] Time 0.254 ( 0.242) Data 0.014 ( 0.027) Loss 4.9126e+00 (5.7815e+00) Acc@1 10.94 ( 4.70) Acc@5 25.78 ( 13.08) +Epoch: [0][4802/5004] Time 0.251 ( 0.242) Data 0.013 ( 0.027) Loss 4.4704e+00 (5.7812e+00) Acc@1 10.94 ( 4.70) Acc@5 31.64 ( 13.09) +Epoch: [0][4803/5004] Time 0.247 ( 0.242) Data 0.014 ( 0.027) Loss 4.6121e+00 (5.7810e+00) Acc@1 14.06 ( 4.70) Acc@5 30.08 ( 13.09) +Epoch: [0][4804/5004] Time 0.241 ( 0.242) Data 0.013 ( 0.027) Loss 4.6575e+00 (5.7808e+00) Acc@1 13.28 ( 4.70) Acc@5 31.25 ( 13.09) +Epoch: [0][4805/5004] Time 0.245 ( 0.242) Data 0.016 ( 0.027) Loss 4.5546e+00 (5.7805e+00) Acc@1 13.67 ( 4.70) Acc@5 29.69 ( 13.10) +Epoch: [0][4806/5004] Time 0.246 ( 0.242) Data 0.015 ( 0.027) Loss 4.7320e+00 (5.7803e+00) Acc@1 12.89 ( 4.70) Acc@5 32.03 ( 13.10) +Epoch: [0][4807/5004] Time 0.243 ( 0.242) Data 0.014 ( 0.027) Loss 4.5531e+00 (5.7800e+00) Acc@1 9.38 ( 4.71) Acc@5 31.64 ( 13.10) +Epoch: [0][4808/5004] Time 0.252 ( 0.242) Data 0.015 ( 0.027) Loss 4.4344e+00 (5.7798e+00) Acc@1 15.62 ( 4.71) Acc@5 32.42 ( 13.11) +Epoch: [0][4809/5004] Time 0.253 ( 0.242) Data 0.011 ( 0.027) Loss 4.3269e+00 (5.7795e+00) Acc@1 17.97 ( 4.71) Acc@5 33.20 ( 13.11) +Epoch: [0][4810/5004] Time 0.254 ( 0.242) Data 0.013 ( 0.027) Loss 4.5659e+00 (5.7792e+00) Acc@1 16.02 ( 4.71) Acc@5 32.42 ( 13.12) +Epoch: [0][4811/5004] Time 0.253 ( 0.242) Data 0.012 ( 0.027) Loss 4.4466e+00 (5.7789e+00) Acc@1 17.58 ( 4.72) Acc@5 37.11 ( 13.12) +Epoch: [0][4812/5004] Time 0.258 ( 0.242) Data 0.012 ( 0.027) Loss 4.7130e+00 (5.7787e+00) Acc@1 9.38 ( 4.72) Acc@5 28.91 ( 13.12) +Epoch: [0][4813/5004] Time 0.260 ( 0.242) Data 0.011 ( 0.027) Loss 4.3553e+00 (5.7784e+00) Acc@1 15.62 ( 4.72) Acc@5 34.38 ( 13.13) +Epoch: [0][4814/5004] Time 0.259 ( 0.242) Data 0.008 ( 0.027) Loss 4.4090e+00 (5.7781e+00) Acc@1 18.36 ( 4.72) Acc@5 35.16 ( 13.13) +Epoch: [0][4815/5004] Time 0.256 ( 0.242) Data 0.010 ( 0.027) Loss 4.6086e+00 (5.7779e+00) Acc@1 14.06 ( 4.72) Acc@5 28.91 ( 13.14) +Epoch: [0][4816/5004] Time 0.255 ( 0.242) Data 0.010 ( 0.027) Loss 4.8338e+00 (5.7777e+00) Acc@1 12.11 ( 4.72) Acc@5 28.52 ( 13.14) +Epoch: [0][4817/5004] Time 0.244 ( 0.242) Data 0.015 ( 0.027) Loss 4.5407e+00 (5.7774e+00) Acc@1 10.55 ( 4.73) Acc@5 33.59 ( 13.14) +Epoch: [0][4818/5004] Time 0.244 ( 0.242) Data 0.018 ( 0.027) Loss 4.5816e+00 (5.7772e+00) Acc@1 12.50 ( 4.73) Acc@5 30.86 ( 13.15) +Epoch: [0][4819/5004] Time 0.243 ( 0.242) Data 0.017 ( 0.027) Loss 4.6388e+00 (5.7769e+00) Acc@1 14.06 ( 4.73) Acc@5 31.25 ( 13.15) +Epoch: [0][4820/5004] Time 0.244 ( 0.242) Data 0.017 ( 0.027) Loss 4.5388e+00 (5.7767e+00) Acc@1 14.45 ( 4.73) Acc@5 34.77 ( 13.16) +Epoch: [0][4821/5004] Time 0.247 ( 0.242) Data 0.016 ( 0.027) Loss 4.5858e+00 (5.7764e+00) Acc@1 12.50 ( 4.73) Acc@5 32.03 ( 13.16) +Epoch: [0][4822/5004] Time 0.255 ( 0.242) Data 0.015 ( 0.027) Loss 4.6169e+00 (5.7762e+00) Acc@1 15.23 ( 4.74) Acc@5 33.98 ( 13.16) +Epoch: [0][4823/5004] Time 0.249 ( 0.242) Data 0.012 ( 0.027) Loss 4.6365e+00 (5.7760e+00) Acc@1 11.33 ( 4.74) Acc@5 32.81 ( 13.17) +Epoch: [0][4824/5004] Time 0.285 ( 0.243) Data 0.015 ( 0.027) Loss 4.4171e+00 (5.7757e+00) Acc@1 15.23 ( 4.74) Acc@5 33.59 ( 13.17) +Epoch: [0][4825/5004] Time 0.270 ( 0.243) Data 0.014 ( 0.027) Loss 4.6697e+00 (5.7755e+00) Acc@1 13.28 ( 4.74) Acc@5 29.30 ( 13.18) +Epoch: [0][4826/5004] Time 0.248 ( 0.243) Data 0.012 ( 0.027) Loss 4.6705e+00 (5.7752e+00) Acc@1 9.77 ( 4.74) Acc@5 31.25 ( 13.18) +Epoch: [0][4827/5004] Time 0.249 ( 0.243) Data 0.014 ( 0.027) Loss 4.6242e+00 (5.7750e+00) Acc@1 13.67 ( 4.74) Acc@5 30.08 ( 13.18) +Epoch: [0][4828/5004] Time 0.247 ( 0.243) Data 0.015 ( 0.027) Loss 4.7404e+00 (5.7748e+00) Acc@1 11.72 ( 4.75) Acc@5 27.34 ( 13.19) +Epoch: [0][4829/5004] Time 0.262 ( 0.243) Data 0.014 ( 0.027) Loss 4.4498e+00 (5.7745e+00) Acc@1 12.50 ( 4.75) Acc@5 30.47 ( 13.19) +Epoch: [0][4830/5004] Time 0.259 ( 0.243) Data 0.010 ( 0.027) Loss 4.5445e+00 (5.7742e+00) Acc@1 13.28 ( 4.75) Acc@5 32.42 ( 13.19) +Epoch: [0][4831/5004] Time 0.242 ( 0.243) Data 0.013 ( 0.027) Loss 4.7426e+00 (5.7740e+00) Acc@1 12.11 ( 4.75) Acc@5 27.34 ( 13.20) +Epoch: [0][4832/5004] Time 0.241 ( 0.243) Data 0.017 ( 0.027) Loss 4.4984e+00 (5.7738e+00) Acc@1 12.89 ( 4.75) Acc@5 33.20 ( 13.20) +Epoch: [0][4833/5004] Time 0.249 ( 0.243) Data 0.015 ( 0.027) Loss 4.5299e+00 (5.7735e+00) Acc@1 11.72 ( 4.75) Acc@5 34.38 ( 13.21) +Epoch: [0][4834/5004] Time 0.242 ( 0.243) Data 0.012 ( 0.027) Loss 4.5691e+00 (5.7733e+00) Acc@1 11.72 ( 4.75) Acc@5 32.42 ( 13.21) +Epoch: [0][4835/5004] Time 0.249 ( 0.243) Data 0.016 ( 0.027) Loss 4.6108e+00 (5.7730e+00) Acc@1 13.28 ( 4.76) Acc@5 30.47 ( 13.21) +Epoch: [0][4836/5004] Time 0.253 ( 0.243) Data 0.014 ( 0.027) Loss 4.5647e+00 (5.7728e+00) Acc@1 15.23 ( 4.76) Acc@5 33.59 ( 13.22) +Epoch: [0][4837/5004] Time 0.250 ( 0.243) Data 0.013 ( 0.027) Loss 4.5791e+00 (5.7725e+00) Acc@1 14.84 ( 4.76) Acc@5 30.47 ( 13.22) +Epoch: [0][4838/5004] Time 0.261 ( 0.243) Data 0.014 ( 0.027) Loss 4.6123e+00 (5.7723e+00) Acc@1 11.72 ( 4.76) Acc@5 30.86 ( 13.22) +Epoch: [0][4839/5004] Time 0.261 ( 0.243) Data 0.008 ( 0.027) Loss 4.5320e+00 (5.7720e+00) Acc@1 12.11 ( 4.76) Acc@5 28.52 ( 13.23) +Epoch: [0][4840/5004] Time 0.260 ( 0.243) Data 0.010 ( 0.027) Loss 4.7110e+00 (5.7718e+00) Acc@1 12.11 ( 4.76) Acc@5 30.08 ( 13.23) +Epoch: [0][4841/5004] Time 0.257 ( 0.243) Data 0.009 ( 0.027) Loss 4.4755e+00 (5.7715e+00) Acc@1 14.06 ( 4.77) Acc@5 33.59 ( 13.23) +Epoch: [0][4842/5004] Time 0.257 ( 0.243) Data 0.011 ( 0.027) Loss 4.6455e+00 (5.7713e+00) Acc@1 13.67 ( 4.77) Acc@5 30.08 ( 13.24) +Epoch: [0][4843/5004] Time 0.256 ( 0.243) Data 0.010 ( 0.027) Loss 4.5337e+00 (5.7710e+00) Acc@1 15.62 ( 4.77) Acc@5 32.42 ( 13.24) +Epoch: [0][4844/5004] Time 0.252 ( 0.243) Data 0.010 ( 0.027) Loss 4.5384e+00 (5.7708e+00) Acc@1 15.62 ( 4.77) Acc@5 31.64 ( 13.25) +Epoch: [0][4845/5004] Time 0.259 ( 0.243) Data 0.012 ( 0.027) Loss 4.3732e+00 (5.7705e+00) Acc@1 14.84 ( 4.78) Acc@5 36.33 ( 13.25) +Epoch: [0][4846/5004] Time 0.260 ( 0.243) Data 0.011 ( 0.027) Loss 4.6405e+00 (5.7703e+00) Acc@1 14.06 ( 4.78) Acc@5 29.30 ( 13.25) +Epoch: [0][4847/5004] Time 0.258 ( 0.243) Data 0.010 ( 0.027) Loss 4.5166e+00 (5.7700e+00) Acc@1 14.45 ( 4.78) Acc@5 33.98 ( 13.26) +Epoch: [0][4848/5004] Time 0.259 ( 0.243) Data 0.010 ( 0.027) Loss 4.6196e+00 (5.7698e+00) Acc@1 10.94 ( 4.78) Acc@5 30.08 ( 13.26) +Epoch: [0][4849/5004] Time 0.258 ( 0.243) Data 0.009 ( 0.027) Loss 4.6249e+00 (5.7695e+00) Acc@1 9.77 ( 4.78) Acc@5 29.30 ( 13.27) +Epoch: [0][4850/5004] Time 0.248 ( 0.243) Data 0.014 ( 0.027) Loss 4.4691e+00 (5.7693e+00) Acc@1 14.06 ( 4.78) Acc@5 35.16 ( 13.27) +Epoch: [0][4851/5004] Time 0.253 ( 0.243) Data 0.011 ( 0.027) Loss 4.4654e+00 (5.7690e+00) Acc@1 12.11 ( 4.78) Acc@5 32.81 ( 13.27) +Epoch: [0][4852/5004] Time 0.262 ( 0.243) Data 0.010 ( 0.027) Loss 4.6854e+00 (5.7688e+00) Acc@1 12.50 ( 4.79) Acc@5 28.12 ( 13.28) +Epoch: [0][4853/5004] Time 0.266 ( 0.243) Data 0.010 ( 0.027) Loss 4.3882e+00 (5.7685e+00) Acc@1 13.67 ( 4.79) Acc@5 35.16 ( 13.28) +Epoch: [0][4854/5004] Time 0.267 ( 0.243) Data 0.009 ( 0.027) Loss 4.5227e+00 (5.7682e+00) Acc@1 14.45 ( 4.79) Acc@5 35.16 ( 13.29) +Epoch: [0][4855/5004] Time 0.273 ( 0.243) Data 0.008 ( 0.027) Loss 4.6148e+00 (5.7680e+00) Acc@1 13.28 ( 4.79) Acc@5 28.52 ( 13.29) +Epoch: [0][4856/5004] Time 0.275 ( 0.243) Data 0.008 ( 0.027) Loss 4.4053e+00 (5.7677e+00) Acc@1 15.62 ( 4.79) Acc@5 32.42 ( 13.29) +Epoch: [0][4857/5004] Time 0.275 ( 0.243) Data 0.007 ( 0.027) Loss 4.5672e+00 (5.7675e+00) Acc@1 14.45 ( 4.80) Acc@5 33.59 ( 13.30) +Epoch: [0][4858/5004] Time 0.258 ( 0.243) Data 0.010 ( 0.027) Loss 4.4880e+00 (5.7672e+00) Acc@1 16.02 ( 4.80) Acc@5 33.20 ( 13.30) +Epoch: [0][4859/5004] Time 0.248 ( 0.243) Data 0.011 ( 0.027) Loss 4.7655e+00 (5.7670e+00) Acc@1 11.72 ( 4.80) Acc@5 31.64 ( 13.30) +Epoch: [0][4860/5004] Time 0.253 ( 0.243) Data 0.012 ( 0.027) Loss 4.5967e+00 (5.7668e+00) Acc@1 14.45 ( 4.80) Acc@5 32.81 ( 13.31) +Epoch: [0][4861/5004] Time 0.256 ( 0.243) Data 0.012 ( 0.027) Loss 4.5829e+00 (5.7665e+00) Acc@1 12.11 ( 4.80) Acc@5 32.03 ( 13.31) +Epoch: [0][4862/5004] Time 0.260 ( 0.243) Data 0.011 ( 0.027) Loss 4.9673e+00 (5.7664e+00) Acc@1 11.72 ( 4.80) Acc@5 23.44 ( 13.31) +Epoch: [0][4863/5004] Time 0.252 ( 0.243) Data 0.010 ( 0.027) Loss 4.6727e+00 (5.7661e+00) Acc@1 15.62 ( 4.81) Acc@5 31.64 ( 13.32) +Epoch: [0][4864/5004] Time 0.246 ( 0.243) Data 0.013 ( 0.027) Loss 4.6186e+00 (5.7659e+00) Acc@1 12.50 ( 4.81) Acc@5 28.91 ( 13.32) +Epoch: [0][4865/5004] Time 0.247 ( 0.243) Data 0.020 ( 0.027) Loss 4.4727e+00 (5.7656e+00) Acc@1 14.06 ( 4.81) Acc@5 37.11 ( 13.33) +Epoch: [0][4866/5004] Time 0.244 ( 0.243) Data 0.018 ( 0.027) Loss 4.5440e+00 (5.7654e+00) Acc@1 15.23 ( 4.81) Acc@5 35.16 ( 13.33) +Epoch: [0][4867/5004] Time 0.249 ( 0.243) Data 0.018 ( 0.027) Loss 4.5577e+00 (5.7651e+00) Acc@1 14.06 ( 4.81) Acc@5 35.55 ( 13.34) +Epoch: [0][4868/5004] Time 0.238 ( 0.243) Data 0.017 ( 0.027) Loss 4.8827e+00 (5.7649e+00) Acc@1 10.16 ( 4.82) Acc@5 26.17 ( 13.34) +Epoch: [0][4869/5004] Time 0.242 ( 0.243) Data 0.020 ( 0.027) Loss 4.6104e+00 (5.7647e+00) Acc@1 12.11 ( 4.82) Acc@5 30.47 ( 13.34) +Epoch: [0][4870/5004] Time 0.242 ( 0.243) Data 0.019 ( 0.027) Loss 4.6816e+00 (5.7645e+00) Acc@1 11.72 ( 4.82) Acc@5 30.08 ( 13.35) +Epoch: [0][4871/5004] Time 0.243 ( 0.243) Data 0.018 ( 0.027) Loss 4.5894e+00 (5.7642e+00) Acc@1 13.67 ( 4.82) Acc@5 33.20 ( 13.35) +Epoch: [0][4872/5004] Time 0.249 ( 0.243) Data 0.019 ( 0.027) Loss 4.7424e+00 (5.7640e+00) Acc@1 12.89 ( 4.82) Acc@5 26.95 ( 13.35) +Epoch: [0][4873/5004] Time 0.239 ( 0.243) Data 0.016 ( 0.027) Loss 4.6217e+00 (5.7638e+00) Acc@1 13.67 ( 4.82) Acc@5 30.86 ( 13.36) +Epoch: [0][4874/5004] Time 0.249 ( 0.243) Data 0.017 ( 0.027) Loss 4.4479e+00 (5.7635e+00) Acc@1 17.19 ( 4.83) Acc@5 38.28 ( 13.36) +Epoch: [0][4875/5004] Time 0.261 ( 0.243) Data 0.013 ( 0.027) Loss 4.6359e+00 (5.7633e+00) Acc@1 16.02 ( 4.83) Acc@5 33.20 ( 13.37) +Epoch: [0][4876/5004] Time 0.268 ( 0.243) Data 0.008 ( 0.027) Loss 4.5989e+00 (5.7631e+00) Acc@1 11.72 ( 4.83) Acc@5 30.47 ( 13.37) +Epoch: [0][4877/5004] Time 0.285 ( 0.243) Data 0.007 ( 0.027) Loss 4.7555e+00 (5.7629e+00) Acc@1 10.16 ( 4.83) Acc@5 30.86 ( 13.37) +Epoch: [0][4878/5004] Time 0.287 ( 0.243) Data 0.007 ( 0.027) Loss 4.6454e+00 (5.7626e+00) Acc@1 13.28 ( 4.83) Acc@5 31.64 ( 13.38) +Epoch: [0][4879/5004] Time 0.284 ( 0.243) Data 0.007 ( 0.027) Loss 4.6968e+00 (5.7624e+00) Acc@1 8.20 ( 4.83) Acc@5 30.08 ( 13.38) +Epoch: [0][4880/5004] Time 0.288 ( 0.243) Data 0.007 ( 0.027) Loss 4.5547e+00 (5.7622e+00) Acc@1 16.80 ( 4.84) Acc@5 34.38 ( 13.38) +Epoch: [0][4881/5004] Time 0.286 ( 0.243) Data 0.007 ( 0.027) Loss 4.5432e+00 (5.7619e+00) Acc@1 12.50 ( 4.84) Acc@5 32.03 ( 13.39) +Epoch: [0][4882/5004] Time 0.280 ( 0.243) Data 0.008 ( 0.027) Loss 4.4506e+00 (5.7616e+00) Acc@1 12.11 ( 4.84) Acc@5 29.69 ( 13.39) +Epoch: [0][4883/5004] Time 0.293 ( 0.243) Data 0.008 ( 0.027) Loss 4.6579e+00 (5.7614e+00) Acc@1 14.06 ( 4.84) Acc@5 33.20 ( 13.39) +Epoch: [0][4884/5004] Time 0.279 ( 0.243) Data 0.007 ( 0.027) Loss 4.3975e+00 (5.7611e+00) Acc@1 14.06 ( 4.84) Acc@5 34.77 ( 13.40) +Epoch: [0][4885/5004] Time 0.280 ( 0.243) Data 0.008 ( 0.027) Loss 4.6904e+00 (5.7609e+00) Acc@1 15.23 ( 4.85) Acc@5 29.69 ( 13.40) +Epoch: [0][4886/5004] Time 0.284 ( 0.243) Data 0.007 ( 0.027) Loss 4.7022e+00 (5.7607e+00) Acc@1 11.33 ( 4.85) Acc@5 32.03 ( 13.41) +Epoch: [0][4887/5004] Time 0.286 ( 0.243) Data 0.007 ( 0.027) Loss 4.4446e+00 (5.7604e+00) Acc@1 12.11 ( 4.85) Acc@5 31.64 ( 13.41) +Epoch: [0][4888/5004] Time 0.287 ( 0.243) Data 0.007 ( 0.027) Loss 4.6475e+00 (5.7602e+00) Acc@1 11.72 ( 4.85) Acc@5 30.08 ( 13.41) +Epoch: [0][4889/5004] Time 0.274 ( 0.243) Data 0.008 ( 0.027) Loss 4.4356e+00 (5.7599e+00) Acc@1 13.67 ( 4.85) Acc@5 32.42 ( 13.42) +Epoch: [0][4890/5004] Time 0.245 ( 0.243) Data 0.012 ( 0.027) Loss 4.6290e+00 (5.7597e+00) Acc@1 14.84 ( 4.85) Acc@5 31.64 ( 13.42) +Epoch: [0][4891/5004] Time 0.241 ( 0.243) Data 0.015 ( 0.027) Loss 4.5330e+00 (5.7595e+00) Acc@1 13.28 ( 4.85) Acc@5 29.30 ( 13.42) +Epoch: [0][4892/5004] Time 0.244 ( 0.243) Data 0.016 ( 0.027) Loss 4.4766e+00 (5.7592e+00) Acc@1 14.06 ( 4.86) Acc@5 36.72 ( 13.43) +Epoch: [0][4893/5004] Time 0.243 ( 0.243) Data 0.016 ( 0.027) Loss 4.5269e+00 (5.7589e+00) Acc@1 14.06 ( 4.86) Acc@5 35.94 ( 13.43) +Epoch: [0][4894/5004] Time 0.252 ( 0.243) Data 0.015 ( 0.027) Loss 4.4815e+00 (5.7587e+00) Acc@1 16.02 ( 4.86) Acc@5 30.47 ( 13.44) +Epoch: [0][4895/5004] Time 0.252 ( 0.243) Data 0.011 ( 0.027) Loss 4.5655e+00 (5.7584e+00) Acc@1 12.50 ( 4.86) Acc@5 28.91 ( 13.44) +Epoch: [0][4896/5004] Time 0.253 ( 0.243) Data 0.013 ( 0.027) Loss 4.4843e+00 (5.7582e+00) Acc@1 12.89 ( 4.86) Acc@5 30.86 ( 13.44) +Epoch: [0][4897/5004] Time 0.251 ( 0.243) Data 0.013 ( 0.027) Loss 4.8117e+00 (5.7580e+00) Acc@1 10.55 ( 4.87) Acc@5 30.86 ( 13.45) +Epoch: [0][4898/5004] Time 0.249 ( 0.243) Data 0.013 ( 0.027) Loss 4.5891e+00 (5.7577e+00) Acc@1 16.41 ( 4.87) Acc@5 30.47 ( 13.45) +Epoch: [0][4899/5004] Time 0.256 ( 0.243) Data 0.015 ( 0.027) Loss 4.3867e+00 (5.7575e+00) Acc@1 12.89 ( 4.87) Acc@5 37.89 ( 13.46) +Epoch: [0][4900/5004] Time 0.259 ( 0.243) Data 0.008 ( 0.027) Loss 4.6257e+00 (5.7572e+00) Acc@1 12.50 ( 4.87) Acc@5 32.81 ( 13.46) +Epoch: [0][4901/5004] Time 0.264 ( 0.243) Data 0.009 ( 0.027) Loss 4.5897e+00 (5.7570e+00) Acc@1 13.67 ( 4.87) Acc@5 32.81 ( 13.46) +Epoch: [0][4902/5004] Time 0.240 ( 0.243) Data 0.013 ( 0.027) Loss 4.6242e+00 (5.7568e+00) Acc@1 13.28 ( 4.87) Acc@5 32.42 ( 13.47) +Epoch: [0][4903/5004] Time 0.244 ( 0.243) Data 0.016 ( 0.027) Loss 4.5667e+00 (5.7565e+00) Acc@1 16.02 ( 4.88) Acc@5 35.94 ( 13.47) +Epoch: [0][4904/5004] Time 0.243 ( 0.243) Data 0.016 ( 0.027) Loss 4.6983e+00 (5.7563e+00) Acc@1 12.11 ( 4.88) Acc@5 26.95 ( 13.48) +Epoch: [0][4905/5004] Time 0.249 ( 0.243) Data 0.014 ( 0.027) Loss 4.4406e+00 (5.7560e+00) Acc@1 14.84 ( 4.88) Acc@5 35.94 ( 13.48) +Epoch: [0][4906/5004] Time 0.254 ( 0.243) Data 0.013 ( 0.027) Loss 4.5575e+00 (5.7558e+00) Acc@1 13.28 ( 4.88) Acc@5 36.72 ( 13.48) +Epoch: [0][4907/5004] Time 0.253 ( 0.243) Data 0.013 ( 0.027) Loss 4.6343e+00 (5.7556e+00) Acc@1 12.11 ( 4.88) Acc@5 31.64 ( 13.49) +Epoch: [0][4908/5004] Time 0.253 ( 0.243) Data 0.013 ( 0.027) Loss 4.5578e+00 (5.7553e+00) Acc@1 11.33 ( 4.88) Acc@5 30.86 ( 13.49) +Epoch: [0][4909/5004] Time 0.248 ( 0.243) Data 0.009 ( 0.027) Loss 4.6144e+00 (5.7551e+00) Acc@1 12.50 ( 4.89) Acc@5 30.47 ( 13.50) +Epoch: [0][4910/5004] Time 0.255 ( 0.243) Data 0.013 ( 0.027) Loss 4.6127e+00 (5.7549e+00) Acc@1 14.06 ( 4.89) Acc@5 29.30 ( 13.50) +Epoch: [0][4911/5004] Time 0.242 ( 0.243) Data 0.015 ( 0.027) Loss 4.7344e+00 (5.7546e+00) Acc@1 10.55 ( 4.89) Acc@5 30.08 ( 13.50) +Epoch: [0][4912/5004] Time 0.242 ( 0.243) Data 0.016 ( 0.027) Loss 4.5696e+00 (5.7544e+00) Acc@1 13.28 ( 4.89) Acc@5 29.69 ( 13.50) +Epoch: [0][4913/5004] Time 0.251 ( 0.243) Data 0.018 ( 0.027) Loss 4.5533e+00 (5.7542e+00) Acc@1 12.50 ( 4.89) Acc@5 32.03 ( 13.51) +Epoch: [0][4914/5004] Time 0.249 ( 0.243) Data 0.010 ( 0.027) Loss 4.5035e+00 (5.7539e+00) Acc@1 13.67 ( 4.89) Acc@5 37.89 ( 13.51) +Epoch: [0][4915/5004] Time 0.246 ( 0.243) Data 0.015 ( 0.027) Loss 4.6079e+00 (5.7537e+00) Acc@1 10.16 ( 4.90) Acc@5 30.47 ( 13.52) +Epoch: [0][4916/5004] Time 0.238 ( 0.243) Data 0.015 ( 0.027) Loss 4.6263e+00 (5.7534e+00) Acc@1 10.55 ( 4.90) Acc@5 31.64 ( 13.52) +Epoch: [0][4917/5004] Time 0.245 ( 0.243) Data 0.018 ( 0.027) Loss 4.4661e+00 (5.7532e+00) Acc@1 8.98 ( 4.90) Acc@5 32.42 ( 13.52) +Epoch: [0][4918/5004] Time 0.240 ( 0.243) Data 0.017 ( 0.027) Loss 4.6097e+00 (5.7530e+00) Acc@1 11.72 ( 4.90) Acc@5 27.34 ( 13.53) +Epoch: [0][4919/5004] Time 0.266 ( 0.243) Data 0.020 ( 0.027) Loss 4.5960e+00 (5.7527e+00) Acc@1 13.67 ( 4.90) Acc@5 33.98 ( 13.53) +Epoch: [0][4920/5004] Time 0.260 ( 0.243) Data 0.013 ( 0.027) Loss 4.5500e+00 (5.7525e+00) Acc@1 12.11 ( 4.90) Acc@5 33.20 ( 13.54) +Epoch: [0][4921/5004] Time 0.261 ( 0.243) Data 0.013 ( 0.027) Loss 4.5563e+00 (5.7522e+00) Acc@1 11.72 ( 4.90) Acc@5 32.03 ( 13.54) +Epoch: [0][4922/5004] Time 0.264 ( 0.243) Data 0.014 ( 0.027) Loss 4.5823e+00 (5.7520e+00) Acc@1 10.94 ( 4.90) Acc@5 35.16 ( 13.54) +Epoch: [0][4923/5004] Time 0.242 ( 0.243) Data 0.012 ( 0.027) Loss 4.5370e+00 (5.7517e+00) Acc@1 14.45 ( 4.91) Acc@5 33.59 ( 13.55) +Epoch: [0][4924/5004] Time 0.255 ( 0.243) Data 0.017 ( 0.027) Loss 4.4510e+00 (5.7515e+00) Acc@1 13.28 ( 4.91) Acc@5 34.38 ( 13.55) +Epoch: [0][4925/5004] Time 0.252 ( 0.243) Data 0.014 ( 0.027) Loss 4.7238e+00 (5.7513e+00) Acc@1 13.28 ( 4.91) Acc@5 28.52 ( 13.56) +Epoch: [0][4926/5004] Time 0.243 ( 0.243) Data 0.013 ( 0.027) Loss 4.4939e+00 (5.7510e+00) Acc@1 14.45 ( 4.91) Acc@5 34.38 ( 13.56) +Epoch: [0][4927/5004] Time 0.244 ( 0.243) Data 0.015 ( 0.027) Loss 4.5541e+00 (5.7508e+00) Acc@1 13.28 ( 4.91) Acc@5 30.08 ( 13.56) +Epoch: [0][4928/5004] Time 0.251 ( 0.243) Data 0.016 ( 0.027) Loss 4.3895e+00 (5.7505e+00) Acc@1 16.80 ( 4.92) Acc@5 34.38 ( 13.57) +Epoch: [0][4929/5004] Time 0.251 ( 0.243) Data 0.013 ( 0.027) Loss 4.3665e+00 (5.7502e+00) Acc@1 14.45 ( 4.92) Acc@5 34.77 ( 13.57) +Epoch: [0][4930/5004] Time 0.231 ( 0.243) Data 0.013 ( 0.027) Loss 4.3743e+00 (5.7499e+00) Acc@1 17.19 ( 4.92) Acc@5 35.55 ( 13.58) +Epoch: [0][4931/5004] Time 0.245 ( 0.243) Data 0.028 ( 0.027) Loss 4.4109e+00 (5.7497e+00) Acc@1 15.62 ( 4.92) Acc@5 38.28 ( 13.58) +Epoch: [0][4932/5004] Time 0.246 ( 0.243) Data 0.028 ( 0.027) Loss 4.6802e+00 (5.7494e+00) Acc@1 13.28 ( 4.92) Acc@5 32.03 ( 13.58) +Epoch: [0][4933/5004] Time 0.253 ( 0.243) Data 0.028 ( 0.027) Loss 4.6507e+00 (5.7492e+00) Acc@1 13.67 ( 4.93) Acc@5 29.30 ( 13.59) +Epoch: [0][4934/5004] Time 0.244 ( 0.243) Data 0.025 ( 0.027) Loss 4.8022e+00 (5.7490e+00) Acc@1 10.94 ( 4.93) Acc@5 25.39 ( 13.59) +Epoch: [0][4935/5004] Time 0.243 ( 0.243) Data 0.027 ( 0.027) Loss 4.3392e+00 (5.7487e+00) Acc@1 15.23 ( 4.93) Acc@5 37.50 ( 13.59) +Epoch: [0][4936/5004] Time 0.242 ( 0.243) Data 0.030 ( 0.027) Loss 4.6373e+00 (5.7485e+00) Acc@1 14.06 ( 4.93) Acc@5 35.16 ( 13.60) +Epoch: [0][4937/5004] Time 0.246 ( 0.243) Data 0.029 ( 0.027) Loss 4.6260e+00 (5.7483e+00) Acc@1 12.50 ( 4.93) Acc@5 32.03 ( 13.60) +Epoch: [0][4938/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 4.3373e+00 (5.7480e+00) Acc@1 14.45 ( 4.93) Acc@5 32.81 ( 13.61) +Epoch: [0][4939/5004] Time 0.242 ( 0.243) Data 0.028 ( 0.027) Loss 4.6592e+00 (5.7478e+00) Acc@1 14.84 ( 4.94) Acc@5 30.47 ( 13.61) +Epoch: [0][4940/5004] Time 0.248 ( 0.243) Data 0.029 ( 0.027) Loss 4.4453e+00 (5.7475e+00) Acc@1 14.84 ( 4.94) Acc@5 33.20 ( 13.61) +Epoch: [0][4941/5004] Time 0.243 ( 0.243) Data 0.028 ( 0.027) Loss 4.4258e+00 (5.7473e+00) Acc@1 17.58 ( 4.94) Acc@5 37.89 ( 13.62) +Epoch: [0][4942/5004] Time 0.251 ( 0.243) Data 0.029 ( 0.027) Loss 4.4990e+00 (5.7470e+00) Acc@1 16.02 ( 4.94) Acc@5 35.94 ( 13.62) +Epoch: [0][4943/5004] Time 0.249 ( 0.243) Data 0.024 ( 0.027) Loss 4.4506e+00 (5.7467e+00) Acc@1 15.23 ( 4.95) Acc@5 32.03 ( 13.63) +Epoch: [0][4944/5004] Time 0.257 ( 0.243) Data 0.027 ( 0.027) Loss 4.5634e+00 (5.7465e+00) Acc@1 12.50 ( 4.95) Acc@5 34.77 ( 13.63) +Epoch: [0][4945/5004] Time 0.249 ( 0.243) Data 0.025 ( 0.027) Loss 4.3528e+00 (5.7462e+00) Acc@1 14.45 ( 4.95) Acc@5 39.06 ( 13.64) +Epoch: [0][4946/5004] Time 0.244 ( 0.243) Data 0.028 ( 0.027) Loss 4.5430e+00 (5.7460e+00) Acc@1 16.02 ( 4.95) Acc@5 35.16 ( 13.64) +Epoch: [0][4947/5004] Time 0.239 ( 0.243) Data 0.028 ( 0.027) Loss 4.6044e+00 (5.7457e+00) Acc@1 11.72 ( 4.95) Acc@5 34.77 ( 13.65) +Epoch: [0][4948/5004] Time 0.244 ( 0.243) Data 0.030 ( 0.027) Loss 4.5335e+00 (5.7455e+00) Acc@1 15.62 ( 4.95) Acc@5 35.55 ( 13.65) +Epoch: [0][4949/5004] Time 0.250 ( 0.243) Data 0.029 ( 0.027) Loss 4.6772e+00 (5.7453e+00) Acc@1 11.72 ( 4.96) Acc@5 26.17 ( 13.65) +Epoch: [0][4950/5004] Time 0.241 ( 0.243) Data 0.024 ( 0.027) Loss 4.7081e+00 (5.7451e+00) Acc@1 11.33 ( 4.96) Acc@5 30.86 ( 13.66) +Epoch: [0][4951/5004] Time 0.247 ( 0.243) Data 0.027 ( 0.027) Loss 4.5440e+00 (5.7448e+00) Acc@1 15.23 ( 4.96) Acc@5 32.42 ( 13.66) +Epoch: [0][4952/5004] Time 0.269 ( 0.243) Data 0.027 ( 0.027) Loss 4.5197e+00 (5.7446e+00) Acc@1 13.28 ( 4.96) Acc@5 33.59 ( 13.66) +Epoch: [0][4953/5004] Time 0.276 ( 0.243) Data 0.008 ( 0.027) Loss 4.6776e+00 (5.7444e+00) Acc@1 13.67 ( 4.96) Acc@5 31.25 ( 13.67) +Epoch: [0][4954/5004] Time 0.273 ( 0.243) Data 0.009 ( 0.027) Loss 4.4708e+00 (5.7441e+00) Acc@1 13.28 ( 4.96) Acc@5 34.77 ( 13.67) +Epoch: [0][4955/5004] Time 0.295 ( 0.243) Data 0.008 ( 0.027) Loss 4.4678e+00 (5.7439e+00) Acc@1 13.67 ( 4.97) Acc@5 33.59 ( 13.68) +Epoch: [0][4956/5004] Time 0.298 ( 0.243) Data 0.009 ( 0.027) Loss 4.3981e+00 (5.7436e+00) Acc@1 15.23 ( 4.97) Acc@5 35.55 ( 13.68) +Epoch: [0][4957/5004] Time 0.286 ( 0.243) Data 0.009 ( 0.027) Loss 4.5114e+00 (5.7433e+00) Acc@1 14.84 ( 4.97) Acc@5 32.81 ( 13.68) +Epoch: [0][4958/5004] Time 0.283 ( 0.243) Data 0.009 ( 0.027) Loss 4.4686e+00 (5.7431e+00) Acc@1 14.84 ( 4.97) Acc@5 32.81 ( 13.69) +Epoch: [0][4959/5004] Time 0.272 ( 0.243) Data 0.008 ( 0.027) Loss 4.4492e+00 (5.7428e+00) Acc@1 12.11 ( 4.97) Acc@5 28.52 ( 13.69) +Epoch: [0][4960/5004] Time 0.267 ( 0.243) Data 0.009 ( 0.027) Loss 4.5289e+00 (5.7426e+00) Acc@1 13.28 ( 4.98) Acc@5 31.25 ( 13.69) +Epoch: [0][4961/5004] Time 0.264 ( 0.243) Data 0.010 ( 0.027) Loss 4.5884e+00 (5.7423e+00) Acc@1 15.23 ( 4.98) Acc@5 32.42 ( 13.70) +Epoch: [0][4962/5004] Time 0.247 ( 0.243) Data 0.014 ( 0.027) Loss 4.5294e+00 (5.7421e+00) Acc@1 14.06 ( 4.98) Acc@5 31.64 ( 13.70) +Epoch: [0][4963/5004] Time 0.254 ( 0.243) Data 0.017 ( 0.027) Loss 4.4891e+00 (5.7418e+00) Acc@1 15.62 ( 4.98) Acc@5 32.03 ( 13.71) +Epoch: [0][4964/5004] Time 0.255 ( 0.243) Data 0.013 ( 0.027) Loss 4.4317e+00 (5.7416e+00) Acc@1 18.75 ( 4.98) Acc@5 37.50 ( 13.71) +Epoch: [0][4965/5004] Time 0.252 ( 0.243) Data 0.013 ( 0.027) Loss 4.5477e+00 (5.7413e+00) Acc@1 17.19 ( 4.99) Acc@5 33.59 ( 13.71) +Epoch: [0][4966/5004] Time 0.256 ( 0.243) Data 0.015 ( 0.027) Loss 4.4628e+00 (5.7411e+00) Acc@1 15.23 ( 4.99) Acc@5 33.98 ( 13.72) +Epoch: [0][4967/5004] Time 0.246 ( 0.243) Data 0.012 ( 0.027) Loss 4.5768e+00 (5.7409e+00) Acc@1 15.62 ( 4.99) Acc@5 34.38 ( 13.72) +Epoch: [0][4968/5004] Time 0.254 ( 0.243) Data 0.018 ( 0.027) Loss 4.5854e+00 (5.7406e+00) Acc@1 12.11 ( 4.99) Acc@5 28.91 ( 13.73) +Epoch: [0][4969/5004] Time 0.247 ( 0.243) Data 0.014 ( 0.027) Loss 4.6123e+00 (5.7404e+00) Acc@1 15.62 ( 4.99) Acc@5 32.42 ( 13.73) +Epoch: [0][4970/5004] Time 0.254 ( 0.243) Data 0.021 ( 0.027) Loss 4.5571e+00 (5.7402e+00) Acc@1 14.06 ( 5.00) Acc@5 32.81 ( 13.73) +Epoch: [0][4971/5004] Time 0.254 ( 0.243) Data 0.014 ( 0.027) Loss 4.3591e+00 (5.7399e+00) Acc@1 15.62 ( 5.00) Acc@5 33.98 ( 13.74) +Epoch: [0][4972/5004] Time 0.264 ( 0.243) Data 0.014 ( 0.027) Loss 4.5048e+00 (5.7396e+00) Acc@1 11.72 ( 5.00) Acc@5 31.64 ( 13.74) +Epoch: [0][4973/5004] Time 0.253 ( 0.243) Data 0.012 ( 0.027) Loss 4.5768e+00 (5.7394e+00) Acc@1 13.28 ( 5.00) Acc@5 32.81 ( 13.74) +Epoch: [0][4974/5004] Time 0.254 ( 0.243) Data 0.012 ( 0.027) Loss 4.3737e+00 (5.7391e+00) Acc@1 14.84 ( 5.00) Acc@5 35.55 ( 13.75) +Epoch: [0][4975/5004] Time 0.257 ( 0.243) Data 0.015 ( 0.027) Loss 4.3508e+00 (5.7388e+00) Acc@1 15.62 ( 5.01) Acc@5 36.33 ( 13.75) +Epoch: [0][4976/5004] Time 0.247 ( 0.243) Data 0.015 ( 0.026) Loss 4.5052e+00 (5.7386e+00) Acc@1 12.11 ( 5.01) Acc@5 32.81 ( 13.76) +Epoch: [0][4977/5004] Time 0.252 ( 0.243) Data 0.015 ( 0.026) Loss 4.5838e+00 (5.7384e+00) Acc@1 12.50 ( 5.01) Acc@5 30.47 ( 13.76) +Epoch: [0][4978/5004] Time 0.236 ( 0.243) Data 0.018 ( 0.026) Loss 4.4569e+00 (5.7381e+00) Acc@1 14.06 ( 5.01) Acc@5 38.28 ( 13.77) +Epoch: [0][4979/5004] Time 0.241 ( 0.243) Data 0.023 ( 0.026) Loss 4.5200e+00 (5.7379e+00) Acc@1 16.41 ( 5.01) Acc@5 33.20 ( 13.77) +Epoch: [0][4980/5004] Time 0.252 ( 0.243) Data 0.024 ( 0.026) Loss 4.3250e+00 (5.7376e+00) Acc@1 15.23 ( 5.01) Acc@5 35.94 ( 13.77) +Epoch: [0][4981/5004] Time 0.250 ( 0.243) Data 0.018 ( 0.026) Loss 4.5707e+00 (5.7373e+00) Acc@1 14.84 ( 5.02) Acc@5 34.77 ( 13.78) +Epoch: [0][4982/5004] Time 0.261 ( 0.243) Data 0.022 ( 0.026) Loss 4.4293e+00 (5.7371e+00) Acc@1 16.41 ( 5.02) Acc@5 35.94 ( 13.78) +Epoch: [0][4983/5004] Time 0.252 ( 0.243) Data 0.017 ( 0.026) Loss 4.7000e+00 (5.7369e+00) Acc@1 12.50 ( 5.02) Acc@5 32.81 ( 13.79) +Epoch: [0][4984/5004] Time 0.265 ( 0.243) Data 0.019 ( 0.026) Loss 4.5700e+00 (5.7366e+00) Acc@1 12.50 ( 5.02) Acc@5 30.86 ( 13.79) +Epoch: [0][4985/5004] Time 0.252 ( 0.243) Data 0.015 ( 0.026) Loss 4.7652e+00 (5.7364e+00) Acc@1 10.16 ( 5.02) Acc@5 29.30 ( 13.79) +Epoch: [0][4986/5004] Time 0.261 ( 0.243) Data 0.017 ( 0.026) Loss 4.7401e+00 (5.7362e+00) Acc@1 11.72 ( 5.02) Acc@5 32.42 ( 13.80) +Epoch: [0][4987/5004] Time 0.252 ( 0.243) Data 0.016 ( 0.026) Loss 4.4364e+00 (5.7360e+00) Acc@1 16.80 ( 5.03) Acc@5 32.42 ( 13.80) +Epoch: [0][4988/5004] Time 0.251 ( 0.243) Data 0.017 ( 0.026) Loss 4.8072e+00 (5.7358e+00) Acc@1 8.98 ( 5.03) Acc@5 26.56 ( 13.80) +Epoch: [0][4989/5004] Time 0.257 ( 0.243) Data 0.021 ( 0.026) Loss 4.7605e+00 (5.7356e+00) Acc@1 13.28 ( 5.03) Acc@5 28.91 ( 13.81) +Epoch: [0][4990/5004] Time 0.253 ( 0.243) Data 0.019 ( 0.026) Loss 4.5413e+00 (5.7354e+00) Acc@1 12.50 ( 5.03) Acc@5 32.81 ( 13.81) +Epoch: [0][4991/5004] Time 0.261 ( 0.243) Data 0.020 ( 0.026) Loss 4.6063e+00 (5.7351e+00) Acc@1 13.28 ( 5.03) Acc@5 33.98 ( 13.81) +Epoch: [0][4992/5004] Time 0.252 ( 0.243) Data 0.017 ( 0.026) Loss 4.4528e+00 (5.7349e+00) Acc@1 16.80 ( 5.03) Acc@5 33.20 ( 13.82) +Epoch: [0][4993/5004] Time 0.258 ( 0.243) Data 0.018 ( 0.026) Loss 4.4926e+00 (5.7346e+00) Acc@1 18.36 ( 5.04) Acc@5 32.03 ( 13.82) +Epoch: [0][4994/5004] Time 0.266 ( 0.243) Data 0.018 ( 0.026) Loss 4.7293e+00 (5.7344e+00) Acc@1 14.45 ( 5.04) Acc@5 31.64 ( 13.82) +Epoch: [0][4995/5004] Time 0.252 ( 0.243) Data 0.014 ( 0.026) Loss 4.5468e+00 (5.7342e+00) Acc@1 17.58 ( 5.04) Acc@5 35.55 ( 13.83) +Epoch: [0][4996/5004] Time 0.258 ( 0.243) Data 0.019 ( 0.026) Loss 4.5155e+00 (5.7339e+00) Acc@1 16.02 ( 5.04) Acc@5 33.98 ( 13.83) +Epoch: [0][4997/5004] Time 0.248 ( 0.243) Data 0.018 ( 0.026) Loss 4.5619e+00 (5.7337e+00) Acc@1 12.11 ( 5.05) Acc@5 32.42 ( 13.84) +Epoch: [0][4998/5004] Time 0.265 ( 0.243) Data 0.020 ( 0.026) Loss 4.6329e+00 (5.7335e+00) Acc@1 11.33 ( 5.05) Acc@5 26.95 ( 13.84) +Epoch: [0][4999/5004] Time 0.264 ( 0.243) Data 0.013 ( 0.026) Loss 4.5627e+00 (5.7333e+00) Acc@1 12.89 ( 5.05) Acc@5 30.08 ( 13.84) +Epoch: [0][5000/5004] Time 0.271 ( 0.243) Data 0.010 ( 0.026) Loss 4.5127e+00 (5.7330e+00) Acc@1 16.02 ( 5.05) Acc@5 33.20 ( 13.85) +Epoch: [0][5001/5004] Time 0.261 ( 0.243) Data 0.009 ( 0.026) Loss 4.3150e+00 (5.7327e+00) Acc@1 15.23 ( 5.05) Acc@5 35.94 ( 13.85) +Epoch: [0][5002/5004] Time 0.265 ( 0.243) Data 0.012 ( 0.026) Loss 4.6050e+00 (5.7325e+00) Acc@1 14.06 ( 5.05) Acc@5 32.42 ( 13.85) +Epoch: [0][5003/5004] Time 0.269 ( 0.243) Data 0.013 ( 0.026) Loss 4.7062e+00 (5.7323e+00) Acc@1 12.50 ( 5.06) Acc@5 29.30 ( 13.86) +[npu id: 0 ] batch_size: 256 Time: 0.243 * FPS@all 1053.555 diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_ResNet101_ID1595_for_PyTorch_bs256_1p_perf_loss.txt" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_ResNet101_ID1595_for_PyTorch_bs256_1p_perf_loss.txt" new file mode 100644 index 0000000000000000000000000000000000000000..1e2c531173c76c10bdc83c2e6fc9150398657178 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/output/0/train_ResNet101_ID1595_for_PyTorch_bs256_1p_perf_loss.txt" @@ -0,0 +1,10008 @@ +7.1284e+00 +8.6593e+00 +9.5272e+00 +8.3551e+00 +8.6900e+00 +8.8442e+00 +7.5124e+00 +8.7513e+00 +8.4683e+00 +8.1676e+00 +8.2323e+00 +7.7600e+00 +7.6141e+00 +8.0500e+00 +7.8809e+00 +7.6010e+00 +7.5687e+00 +7.7687e+00 +9.0109e+00 +7.4484e+00 +7.3605e+00 +7.1803e+00 +7.7433e+00 +8.3131e+00 +7.5259e+00 +7.1664e+00 +7.1321e+00 +7.1734e+00 +7.0932e+00 +7.2980e+00 +7.0408e+00 +7.0054e+00 +6.9824e+00 +7.0612e+00 +6.9541e+00 +6.9516e+00 +6.9389e+00 +6.9487e+00 +6.9494e+00 +6.9794e+00 +6.9615e+00 +6.9375e+00 +7.0985e+00 +6.9116e+00 +6.9217e+00 +6.9310e+00 +6.9175e+00 +6.9402e+00 +7.0500e+00 +6.9396e+00 +6.9335e+00 +6.9301e+00 +6.9106e+00 +6.9183e+00 +6.9287e+00 +6.9055e+00 +6.8933e+00 +6.9284e+00 +6.8942e+00 +6.9559e+00 +6.9157e+00 +6.9127e+00 +6.9173e+00 +6.9168e+00 +6.9022e+00 +6.9269e+00 +6.9046e+00 +6.8840e+00 +6.9088e+00 +6.9110e+00 +6.9031e+00 +6.9139e+00 +6.8853e+00 +6.8804e+00 +6.9051e+00 +6.9058e+00 +6.8905e+00 +6.9131e+00 +6.9044e+00 +6.9107e+00 +6.9145e+00 +6.9048e+00 +6.9143e+00 +6.9050e+00 +6.9378e+00 +6.9118e+00 +6.9211e+00 +6.9301e+00 +6.9074e+00 +6.9421e+00 +6.8935e+00 +6.9175e+00 +6.9175e+00 +6.8978e+00 +6.9228e+00 +6.9092e+00 +6.8961e+00 +6.9005e+00 +6.9057e+00 +6.9490e+00 +6.9313e+00 +6.9129e+00 +6.8933e+00 +6.9098e+00 +6.9323e+00 +6.9283e+00 +6.9174e+00 +6.8973e+00 +6.9061e+00 +6.9083e+00 +6.8965e+00 +6.8907e+00 +6.9153e+00 +6.9036e+00 +6.9938e+00 +6.8924e+00 +6.9054e+00 +6.8820e+00 +6.9104e+00 +6.9092e+00 +6.9232e+00 +6.9078e+00 +6.8891e+00 +6.9134e+00 +6.9144e+00 +6.9167e+00 +6.8809e+00 +6.9052e+00 +6.8908e+00 +6.8974e+00 +6.8855e+00 +6.9503e+00 +6.9034e+00 +6.9069e+00 +6.9067e+00 +6.9081e+00 +6.9073e+00 +6.9141e+00 +6.9162e+00 +6.8952e+00 +6.8825e+00 +6.9196e+00 +6.8937e+00 +7.0251e+00 +6.9050e+00 +6.9091e+00 +6.9004e+00 +6.9079e+00 +6.9192e+00 +6.9033e+00 +6.9119e+00 +6.9053e+00 +6.9230e+00 +6.9133e+00 +6.8999e+00 +6.9164e+00 +6.9078e+00 +6.9015e+00 +6.9090e+00 +6.8973e+00 +6.9102e+00 +6.9004e+00 +6.9164e+00 +6.9124e+00 +6.9005e+00 +6.9069e+00 +6.8998e+00 +6.8850e+00 +6.8924e+00 +6.9052e+00 +6.8916e+00 +6.8904e+00 +6.8918e+00 +6.9082e+00 +6.9023e+00 +6.8979e+00 +6.9041e+00 +6.9039e+00 +6.8999e+00 +6.8799e+00 +6.9307e+00 +6.8876e+00 +6.8743e+00 +6.9040e+00 +7.3134e+00 +6.8843e+00 +6.9121e+00 +6.9121e+00 +6.9151e+00 +6.8938e+00 +6.9116e+00 +6.9060e+00 +6.9082e+00 +6.8949e+00 +6.8953e+00 +6.8974e+00 +6.9128e+00 +6.8846e+00 +6.8858e+00 +6.8917e+00 +6.8916e+00 +6.9135e+00 +6.9005e+00 +6.8896e+00 +6.9163e+00 +6.9111e+00 +6.9013e+00 +6.9095e+00 +6.9100e+00 +6.8864e+00 +6.9078e+00 +6.9239e+00 +6.9143e+00 +6.9012e+00 +6.8996e+00 +6.9172e+00 +6.9065e+00 +6.9088e+00 +6.9145e+00 +6.9150e+00 +6.8884e+00 +6.9496e+00 +6.9361e+00 +6.9008e+00 +6.9106e+00 +6.9065e+00 +6.8867e+00 +6.9070e+00 +6.8886e+00 +6.9297e+00 +6.9617e+00 +6.8992e+00 +6.9185e+00 +6.8868e+00 +6.8905e+00 +6.9059e+00 +6.9074e+00 +6.8900e+00 +6.9064e+00 +6.9071e+00 +6.8967e+00 +6.9032e+00 +6.9005e+00 +6.9124e+00 +6.9149e+00 +6.9009e+00 +6.9049e+00 +6.9059e+00 +6.9288e+00 +6.9214e+00 +6.9135e+00 +6.8989e+00 +6.8909e+00 +6.9014e+00 +6.8934e+00 +6.8826e+00 +6.9038e+00 +6.9026e+00 +6.9051e+00 +6.8915e+00 +6.9054e+00 +6.9099e+00 +6.9032e+00 +6.8919e+00 +6.9052e+00 +6.9029e+00 +6.8913e+00 +6.8942e+00 +6.9011e+00 +6.9158e+00 +6.9049e+00 +6.8827e+00 +6.9004e+00 +6.8811e+00 +6.9067e+00 +6.9173e+00 +6.8925e+00 +6.8792e+00 +6.9413e+00 +6.8975e+00 +6.9278e+00 +6.9107e+00 +6.9130e+00 +6.8811e+00 +6.9064e+00 +6.8960e+00 +6.9006e+00 +6.8880e+00 +6.8972e+00 +6.8995e+00 +6.9087e+00 +6.8989e+00 +6.8962e+00 +6.8905e+00 +6.9034e+00 +6.9125e+00 +6.8823e+00 +6.9008e+00 +6.9099e+00 +6.8990e+00 +6.8890e+00 +6.8940e+00 +6.8889e+00 +6.8959e+00 +6.9122e+00 +6.9076e+00 +6.8916e+00 +6.9075e+00 +6.8926e+00 +7.0136e+00 +6.9202e+00 +6.9073e+00 +6.9152e+00 +6.9190e+00 +6.9089e+00 +6.9034e+00 +6.8940e+00 +6.8943e+00 +6.8911e+00 +6.9223e+00 +6.9046e+00 +6.9048e+00 +6.8966e+00 +6.8996e+00 +6.8993e+00 +6.8912e+00 +6.8963e+00 +6.9135e+00 +6.9024e+00 +6.9000e+00 +6.8922e+00 +6.9175e+00 +6.8858e+00 +6.8918e+00 +6.9063e+00 +6.8935e+00 +6.8846e+00 +6.9041e+00 +6.8648e+00 +6.8938e+00 +6.9089e+00 +6.8731e+00 +6.8951e+00 +6.8855e+00 +6.9134e+00 +6.9158e+00 +6.9029e+00 +6.8796e+00 +6.8855e+00 +6.9056e+00 +6.9020e+00 +6.9171e+00 +6.9071e+00 +6.9143e+00 +6.8884e+00 +6.8881e+00 +6.9047e+00 +6.9063e+00 +7.0665e+00 +6.9054e+00 +6.8948e+00 +6.8917e+00 +6.8730e+00 +6.9019e+00 +6.9112e+00 +6.9001e+00 +6.9232e+00 +6.9152e+00 +6.8935e+00 +6.9028e+00 +6.9044e+00 +6.9095e+00 +6.8977e+00 +6.9209e+00 +6.9060e+00 +6.8983e+00 +6.8913e+00 +6.9077e+00 +6.9116e+00 +6.9077e+00 +6.8884e+00 +6.9055e+00 +6.8999e+00 +6.9082e+00 +6.8846e+00 +6.8873e+00 +6.9113e+00 +6.9103e+00 +6.8935e+00 +6.8667e+00 +6.8886e+00 +6.9096e+00 +6.8905e+00 +6.9037e+00 +6.9149e+00 +6.8776e+00 +6.9101e+00 +6.9060e+00 +6.9044e+00 +6.8701e+00 +6.9192e+00 +6.8919e+00 +6.9173e+00 +6.8854e+00 +6.8961e+00 +6.9001e+00 +6.8946e+00 +6.9008e+00 +6.8877e+00 +6.8953e+00 +6.8991e+00 +6.8855e+00 +6.8985e+00 +6.8710e+00 +6.9023e+00 +6.8946e+00 +6.8726e+00 +6.9001e+00 +6.8887e+00 +6.8648e+00 +6.8971e+00 +6.8828e+00 +6.9037e+00 +6.9040e+00 +6.9091e+00 +6.9081e+00 +6.8907e+00 +6.8716e+00 +6.9182e+00 +6.8789e+00 +6.9008e+00 +6.8950e+00 +6.9087e+00 +6.9083e+00 +6.8922e+00 +6.9170e+00 +6.8902e+00 +6.9156e+00 +6.8958e+00 +6.8722e+00 +6.9149e+00 +6.9120e+00 +6.8758e+00 +6.9059e+00 +6.9051e+00 +6.8971e+00 +6.8935e+00 +6.9058e+00 +6.8900e+00 +6.9089e+00 +6.8848e+00 +6.8798e+00 +6.9024e+00 +6.9064e+00 +6.8978e+00 +6.8765e+00 +6.8964e+00 +6.9170e+00 +6.8768e+00 +6.8816e+00 +6.8797e+00 +6.8945e+00 +6.8931e+00 +6.8881e+00 +6.8872e+00 +6.8815e+00 +6.8844e+00 +6.8788e+00 +6.8992e+00 +6.8835e+00 +6.9141e+00 +6.8760e+00 +6.9079e+00 +6.8847e+00 +6.8989e+00 +6.9004e+00 +6.8949e+00 +6.8881e+00 +6.9007e+00 +6.8887e+00 +6.8712e+00 +6.8910e+00 +6.8832e+00 +6.8820e+00 +6.8932e+00 +6.8861e+00 +6.8915e+00 +6.8807e+00 +6.8816e+00 +6.8919e+00 +6.8833e+00 +6.8723e+00 +6.8955e+00 +6.8735e+00 +6.8850e+00 +6.8765e+00 +6.8449e+00 +6.8828e+00 +6.8763e+00 +6.8728e+00 +6.8993e+00 +6.8828e+00 +6.8667e+00 +6.8970e+00 +6.8821e+00 +6.8662e+00 +6.9289e+00 +6.8855e+00 +6.8896e+00 +6.8722e+00 +6.8849e+00 +6.8962e+00 +6.8895e+00 +6.8656e+00 +6.8842e+00 +6.8817e+00 +6.9088e+00 +6.8629e+00 +6.8683e+00 +6.8759e+00 +6.8833e+00 +6.8898e+00 +6.8765e+00 +6.8789e+00 +6.8913e+00 +6.8554e+00 +6.8808e+00 +6.8839e+00 +6.8565e+00 +6.8894e+00 +6.8599e+00 +6.8950e+00 +6.8481e+00 +6.8349e+00 +6.8978e+00 +6.9046e+00 +6.8670e+00 +6.8644e+00 +6.8619e+00 +6.8928e+00 +6.8695e+00 +6.8840e+00 +6.9025e+00 +6.8495e+00 +6.8654e+00 +6.8781e+00 +6.8466e+00 +6.8708e+00 +6.9052e+00 +6.8516e+00 +6.8219e+00 +6.8561e+00 +6.8770e+00 +6.8457e+00 +6.8610e+00 +6.8360e+00 +6.8726e+00 +6.8903e+00 +6.8750e+00 +6.8594e+00 +6.8458e+00 +6.8906e+00 +6.8777e+00 +6.8588e+00 +6.8642e+00 +6.8462e+00 +6.8409e+00 +6.8841e+00 +6.8533e+00 +6.8413e+00 +6.8459e+00 +6.8355e+00 +6.8458e+00 +6.8769e+00 +6.8525e+00 +6.8585e+00 +6.8511e+00 +6.8796e+00 +6.8624e+00 +6.8602e+00 +6.8486e+00 +6.8382e+00 +6.8569e+00 +6.8210e+00 +6.8327e+00 +6.8207e+00 +6.8411e+00 +6.8434e+00 +6.8462e+00 +6.8057e+00 +6.8846e+00 +6.8258e+00 +6.8551e+00 +6.8733e+00 +6.8327e+00 +6.8706e+00 +6.8228e+00 +6.8477e+00 +6.8566e+00 +6.8388e+00 +6.9730e+00 +6.8482e+00 +6.8209e+00 +6.8197e+00 +6.8438e+00 +6.8413e+00 +6.8738e+00 +6.8130e+00 +6.8095e+00 +6.8157e+00 +6.8178e+00 +6.8308e+00 +6.8123e+00 +6.8292e+00 +6.8363e+00 +6.8402e+00 +6.8062e+00 +6.7752e+00 +6.8784e+00 +6.8100e+00 +6.8751e+00 +6.8228e+00 +6.7739e+00 +6.8646e+00 +6.8263e+00 +6.8552e+00 +6.8643e+00 +6.8539e+00 +6.8271e+00 +6.8123e+00 +6.7688e+00 +6.8407e+00 +6.7822e+00 +6.8404e+00 +6.8420e+00 +6.8305e+00 +6.8317e+00 +6.8067e+00 +6.8522e+00 +6.8420e+00 +6.8416e+00 +6.7960e+00 +6.7582e+00 +6.8175e+00 +6.7842e+00 +6.8666e+00 +6.8177e+00 +6.8347e+00 +6.7411e+00 +6.7987e+00 +6.8064e+00 +6.8511e+00 +6.7996e+00 +6.8324e+00 +6.8182e+00 +6.7676e+00 +6.8215e+00 +6.8605e+00 +6.8124e+00 +6.8259e+00 +6.7842e+00 +6.8012e+00 +6.7588e+00 +6.7698e+00 +6.8143e+00 +6.8021e+00 +6.7903e+00 +6.7716e+00 +6.7858e+00 +6.7707e+00 +6.8189e+00 +6.7474e+00 +6.7969e+00 +6.8350e+00 +6.7845e+00 +6.7967e+00 +6.7227e+00 +6.7978e+00 +6.7940e+00 +6.8097e+00 +6.7249e+00 +6.8328e+00 +6.8061e+00 +6.7944e+00 +6.7538e+00 +6.7928e+00 +6.8062e+00 +6.7960e+00 +6.7772e+00 +6.8267e+00 +6.7962e+00 +6.7935e+00 +6.7547e+00 +6.7938e+00 +6.7997e+00 +6.7578e+00 +6.8340e+00 +6.7596e+00 +6.7900e+00 +6.7942e+00 +6.8207e+00 +6.7811e+00 +6.7903e+00 +6.8257e+00 +6.7848e+00 +6.8274e+00 +6.8091e+00 +6.7929e+00 +6.7519e+00 +6.7715e+00 +6.7552e+00 +6.7935e+00 +6.7709e+00 +6.7507e+00 +6.8318e+00 +6.8196e+00 +6.7874e+00 +6.7798e+00 +6.7509e+00 +6.7111e+00 +6.7982e+00 +6.7758e+00 +6.7513e+00 +6.8487e+00 +6.7830e+00 +6.7463e+00 +6.7603e+00 +6.7135e+00 +6.7802e+00 +6.7733e+00 +6.7914e+00 +6.7794e+00 +6.8379e+00 +6.7470e+00 +6.7484e+00 +6.8033e+00 +6.7671e+00 +6.7491e+00 +6.7796e+00 +6.7394e+00 +6.7562e+00 +6.7607e+00 +6.8022e+00 +6.7848e+00 +6.7940e+00 +6.7476e+00 +6.7598e+00 +6.7342e+00 +6.7313e+00 +6.7544e+00 +6.7663e+00 +6.7498e+00 +6.7318e+00 +6.7261e+00 +6.7644e+00 +6.7217e+00 +6.7608e+00 +6.7668e+00 +6.6999e+00 +6.7377e+00 +6.7207e+00 +6.7721e+00 +6.7394e+00 +6.7596e+00 +6.7983e+00 +6.7662e+00 +6.7960e+00 +6.7648e+00 +6.6788e+00 +6.7563e+00 +6.7550e+00 +6.7234e+00 +6.7232e+00 +6.7600e+00 +6.7357e+00 +6.7328e+00 +6.7314e+00 +6.6561e+00 +6.6965e+00 +6.7689e+00 +6.7023e+00 +6.7325e+00 +6.7458e+00 +6.8207e+00 +6.6930e+00 +6.7238e+00 +6.7600e+00 +6.7355e+00 +6.7659e+00 +6.7434e+00 +6.7409e+00 +6.7395e+00 +6.7572e+00 +6.7169e+00 +6.7659e+00 +6.7652e+00 +6.7069e+00 +6.7473e+00 +6.6947e+00 +6.7111e+00 +6.7774e+00 +6.7340e+00 +6.7137e+00 +6.7419e+00 +6.7497e+00 +6.7197e+00 +6.7421e+00 +6.7418e+00 +6.7555e+00 +6.6898e+00 +6.7155e+00 +6.7102e+00 +6.6651e+00 +6.6914e+00 +6.8272e+00 +6.6330e+00 +6.7128e+00 +6.7701e+00 +6.6802e+00 +6.7129e+00 +6.6999e+00 +6.6856e+00 +6.7094e+00 +6.6900e+00 +6.6879e+00 +6.6856e+00 +6.6618e+00 +6.7441e+00 +6.6826e+00 +6.7311e+00 +6.7218e+00 +6.7127e+00 +6.7441e+00 +6.6563e+00 +6.6703e+00 +6.7149e+00 +6.6870e+00 +6.6788e+00 +6.7434e+00 +6.6562e+00 +6.6764e+00 +6.6457e+00 +6.6862e+00 +6.6416e+00 +6.7771e+00 +6.7240e+00 +6.6886e+00 +6.6923e+00 +6.6383e+00 +6.6398e+00 +6.6543e+00 +6.6729e+00 +6.6319e+00 +6.7144e+00 +6.6691e+00 +6.7167e+00 +6.6680e+00 +6.7065e+00 +6.7136e+00 +6.7470e+00 +6.6364e+00 +6.6422e+00 +6.7149e+00 +6.6896e+00 +6.7000e+00 +6.6969e+00 +6.6869e+00 +6.7326e+00 +6.6978e+00 +6.6793e+00 +6.5643e+00 +6.6531e+00 +6.6791e+00 +6.6698e+00 +6.6887e+00 +6.6896e+00 +6.6358e+00 +6.7604e+00 +6.6488e+00 +6.6979e+00 +6.6550e+00 +6.7443e+00 +6.6944e+00 +6.7200e+00 +6.7008e+00 +6.5638e+00 +6.6463e+00 +6.6758e+00 +6.6639e+00 +6.6646e+00 +6.6675e+00 +6.6438e+00 +6.6732e+00 +6.6758e+00 +6.6820e+00 +6.7055e+00 +6.7264e+00 +6.6462e+00 +6.6903e+00 +6.6924e+00 +6.6891e+00 +6.6558e+00 +6.6783e+00 +6.6434e+00 +6.6480e+00 +6.6923e+00 +6.5919e+00 +6.6339e+00 +6.6126e+00 +6.6787e+00 +6.6766e+00 +6.6787e+00 +6.7137e+00 +6.6569e+00 +6.7052e+00 +6.6411e+00 +6.6620e+00 +6.6799e+00 +6.6059e+00 +6.6981e+00 +6.6304e+00 +6.6259e+00 +6.6601e+00 +6.6727e+00 +6.7490e+00 +6.6613e+00 +6.7060e+00 +6.6796e+00 +6.6344e+00 +6.6731e+00 +6.6377e+00 +6.6461e+00 +6.6613e+00 +6.6293e+00 +6.5619e+00 +6.6555e+00 +6.7021e+00 +6.6675e+00 +6.6884e+00 +6.6423e+00 +6.6171e+00 +6.6313e+00 +6.5663e+00 +6.6424e+00 +6.6452e+00 +6.6069e+00 +6.5656e+00 +6.6396e+00 +6.7760e+00 +6.7070e+00 +6.6485e+00 +6.5912e+00 +6.6044e+00 +6.6439e+00 +6.6593e+00 +6.5980e+00 +6.5807e+00 +6.6284e+00 +6.6066e+00 +6.6054e+00 +6.5819e+00 +6.6604e+00 +6.5904e+00 +6.6498e+00 +6.5395e+00 +6.5845e+00 +6.6115e+00 +6.6425e+00 +6.7343e+00 +6.6102e+00 +6.6308e+00 +6.6767e+00 +6.5974e+00 +6.6209e+00 +6.6264e+00 +6.6618e+00 +6.6920e+00 +6.6049e+00 +6.6440e+00 +6.5973e+00 +6.6402e+00 +6.6373e+00 +6.6421e+00 +6.5987e+00 +6.6493e+00 +6.6595e+00 +6.6754e+00 +6.6464e+00 +6.5872e+00 +6.6700e+00 +6.6166e+00 +6.5495e+00 +6.6031e+00 +6.6210e+00 +6.5051e+00 +6.6197e+00 +6.5641e+00 +6.6606e+00 +6.6242e+00 +6.6478e+00 +6.6333e+00 +6.5575e+00 +6.5881e+00 +6.5473e+00 +6.5767e+00 +6.6105e+00 +6.6374e+00 +6.5697e+00 +6.6380e+00 +6.5745e+00 +6.5510e+00 +6.6642e+00 +6.6845e+00 +6.5341e+00 +6.6511e+00 +6.5104e+00 +6.7300e+00 +6.5924e+00 +6.7619e+00 +6.6147e+00 +6.5624e+00 +6.5996e+00 +6.6462e+00 +6.5859e+00 +6.5855e+00 +6.5473e+00 +6.5644e+00 +6.5261e+00 +6.6228e+00 +6.5947e+00 +6.6140e+00 +6.5863e+00 +6.5518e+00 +6.6367e+00 +6.6277e+00 +6.5804e+00 +6.5894e+00 +6.6114e+00 +6.6319e+00 +6.5901e+00 +6.6157e+00 +6.5204e+00 +6.5613e+00 +6.5164e+00 +6.6514e+00 +6.5814e+00 +6.5507e+00 +6.5464e+00 +6.5455e+00 +6.6037e+00 +6.5907e+00 +6.6052e+00 +6.5734e+00 +6.5543e+00 +6.5199e+00 +6.5062e+00 +6.5316e+00 +6.6779e+00 +6.5029e+00 +6.5954e+00 +6.5419e+00 +6.5168e+00 +6.6493e+00 +6.4756e+00 +6.5601e+00 +6.6356e+00 +6.6806e+00 +6.5703e+00 +6.5498e+00 +6.5219e+00 +6.6475e+00 +6.6552e+00 +6.5810e+00 +6.5474e+00 +6.5969e+00 +6.5889e+00 +6.5994e+00 +6.5196e+00 +6.5625e+00 +6.5061e+00 +6.6160e+00 +6.6218e+00 +6.5248e+00 +6.5025e+00 +6.6667e+00 +6.6407e+00 +6.5809e+00 +6.5705e+00 +6.5472e+00 +6.6507e+00 +6.5088e+00 +6.5922e+00 +6.4746e+00 +6.5978e+00 +6.5915e+00 +6.4656e+00 +6.5648e+00 +6.6436e+00 +6.5309e+00 +6.5474e+00 +6.5610e+00 +6.4982e+00 +6.5853e+00 +6.5581e+00 +6.5549e+00 +6.5306e+00 +6.5493e+00 +6.5638e+00 +6.5415e+00 +6.5323e+00 +6.5494e+00 +6.5054e+00 +6.5223e+00 +6.6440e+00 +6.4709e+00 +6.6017e+00 +6.5013e+00 +6.4601e+00 +6.4961e+00 +6.4736e+00 +6.5305e+00 +6.4868e+00 +6.4555e+00 +6.5168e+00 +6.4468e+00 +6.5879e+00 +6.4508e+00 +6.5128e+00 +6.5561e+00 +6.6104e+00 +6.5616e+00 +6.5288e+00 +6.5285e+00 +6.4903e+00 +6.5250e+00 +6.6541e+00 +6.5366e+00 +6.5135e+00 +6.4438e+00 +6.4447e+00 +6.6344e+00 +6.5512e+00 +6.5292e+00 +6.5443e+00 +6.5545e+00 +6.5945e+00 +6.4738e+00 +6.4725e+00 +6.5390e+00 +6.4270e+00 +6.4562e+00 +6.4135e+00 +6.4431e+00 +6.4681e+00 +6.4868e+00 +6.4783e+00 +6.4897e+00 +6.5253e+00 +6.6011e+00 +6.4578e+00 +6.4633e+00 +6.4100e+00 +6.5483e+00 +6.5265e+00 +6.5666e+00 +6.5296e+00 +6.5031e+00 +6.6110e+00 +6.4237e+00 +6.4419e+00 +6.5598e+00 +6.5698e+00 +6.4571e+00 +6.4365e+00 +6.4593e+00 +6.5082e+00 +6.5324e+00 +6.5855e+00 +6.4060e+00 +6.4459e+00 +6.4859e+00 +6.6005e+00 +6.4756e+00 +6.4454e+00 +6.5951e+00 +6.5359e+00 +6.5574e+00 +6.4302e+00 +6.4992e+00 +6.4677e+00 +6.5888e+00 +6.5119e+00 +6.5359e+00 +6.5434e+00 +6.5234e+00 +6.5142e+00 +6.4809e+00 +6.4906e+00 +6.5789e+00 +6.3823e+00 +6.5776e+00 +6.5054e+00 +6.5691e+00 +6.4427e+00 +6.5158e+00 +6.5275e+00 +6.4744e+00 +6.5385e+00 +6.4491e+00 +6.4146e+00 +6.5301e+00 +6.5043e+00 +6.4290e+00 +6.4379e+00 +6.5327e+00 +6.4306e+00 +6.5953e+00 +6.5162e+00 +6.4772e+00 +6.5291e+00 +6.4888e+00 +6.3933e+00 +6.4377e+00 +6.5765e+00 +6.4773e+00 +6.4497e+00 +6.4928e+00 +6.3957e+00 +6.4891e+00 +6.4502e+00 +6.5640e+00 +6.3804e+00 +6.5117e+00 +6.4300e+00 +6.4365e+00 +6.5048e+00 +6.5424e+00 +6.4618e+00 +6.3403e+00 +6.4037e+00 +6.4161e+00 +6.3947e+00 +6.4388e+00 +6.4944e+00 +6.4316e+00 +6.4433e+00 +6.4282e+00 +6.5178e+00 +6.5146e+00 +6.4876e+00 +6.4250e+00 +6.4470e+00 +6.4201e+00 +6.4905e+00 +6.3618e+00 +6.4406e+00 +6.4198e+00 +6.4886e+00 +6.3112e+00 +6.5404e+00 +6.5018e+00 +6.4281e+00 +6.4048e+00 +6.5059e+00 +6.3292e+00 +6.3653e+00 +6.3779e+00 +6.5100e+00 +6.4875e+00 +6.4479e+00 +6.3697e+00 +6.4246e+00 +6.5503e+00 +6.3958e+00 +6.4417e+00 +6.4559e+00 +6.5690e+00 +6.5855e+00 +6.5444e+00 +6.3557e+00 +6.3755e+00 +6.3811e+00 +6.4712e+00 +6.5466e+00 +6.4431e+00 +6.4809e+00 +6.5216e+00 +6.4891e+00 +6.3798e+00 +6.5055e+00 +6.4041e+00 +6.4691e+00 +6.5379e+00 +6.4660e+00 +6.4280e+00 +6.4608e+00 +6.4110e+00 +6.5028e+00 +6.4340e+00 +6.4096e+00 +6.3859e+00 +6.3549e+00 +6.3428e+00 +6.3967e+00 +6.4403e+00 +6.4673e+00 +6.2918e+00 +6.5052e+00 +6.3467e+00 +6.4065e+00 +6.4357e+00 +6.3781e+00 +6.3506e+00 +6.4241e+00 +6.4375e+00 +6.3504e+00 +6.4617e+00 +6.4214e+00 +6.3391e+00 +6.4163e+00 +6.3841e+00 +6.3572e+00 +6.3798e+00 +6.3804e+00 +6.3625e+00 +6.4310e+00 +6.4898e+00 +6.4075e+00 +6.5419e+00 +6.3940e+00 +6.3722e+00 +6.5138e+00 +6.5274e+00 +6.4615e+00 +6.3853e+00 +6.5334e+00 +6.4043e+00 +6.3497e+00 +6.3474e+00 +6.4821e+00 +6.4784e+00 +6.3568e+00 +6.3914e+00 +6.5115e+00 +6.3340e+00 +6.3611e+00 +6.3682e+00 +6.3658e+00 +6.4214e+00 +6.2681e+00 +6.3793e+00 +6.3695e+00 +6.2861e+00 +6.4391e+00 +6.3437e+00 +6.3736e+00 +6.3678e+00 +6.4270e+00 +6.5202e+00 +6.4663e+00 +6.4155e+00 +6.3921e+00 +6.3030e+00 +6.3896e+00 +6.4997e+00 +6.3610e+00 +6.4195e+00 +6.4650e+00 +6.4012e+00 +6.3806e+00 +6.3803e+00 +6.4176e+00 +6.3044e+00 +6.3093e+00 +6.3978e+00 +6.3523e+00 +6.3853e+00 +6.3014e+00 +6.5711e+00 +6.3389e+00 +6.3254e+00 +6.2977e+00 +6.3900e+00 +6.3432e+00 +6.3229e+00 +6.3834e+00 +6.2609e+00 +6.3489e+00 +6.5541e+00 +6.3816e+00 +6.3931e+00 +6.3263e+00 +6.3166e+00 +6.3621e+00 +6.2188e+00 +6.4002e+00 +6.3129e+00 +6.3375e+00 +6.3984e+00 +6.3931e+00 +6.2205e+00 +6.4339e+00 +6.3401e+00 +6.3700e+00 +6.3224e+00 +6.3305e+00 +6.4470e+00 +6.3360e+00 +6.1795e+00 +6.2694e+00 +6.2787e+00 +6.2532e+00 +6.4125e+00 +6.3096e+00 +6.2590e+00 +6.3638e+00 +6.2412e+00 +6.2491e+00 +6.3082e+00 +6.2790e+00 +6.3492e+00 +6.4170e+00 +6.3644e+00 +6.3260e+00 +6.2833e+00 +6.2706e+00 +6.4572e+00 +6.3763e+00 +6.2526e+00 +6.2076e+00 +6.3113e+00 +6.2884e+00 +6.3492e+00 +6.2837e+00 +6.4013e+00 +6.3221e+00 +6.3740e+00 +6.3742e+00 +6.2466e+00 +6.3644e+00 +6.2651e+00 +6.2780e+00 +6.2412e+00 +6.3895e+00 +6.2770e+00 +6.3611e+00 +6.3003e+00 +6.1737e+00 +6.2777e+00 +6.2934e+00 +6.3127e+00 +6.2478e+00 +6.2638e+00 +6.2570e+00 +6.3286e+00 +6.2761e+00 +6.2900e+00 +6.2390e+00 +6.3252e+00 +6.2377e+00 +6.3278e+00 +6.2638e+00 +6.3727e+00 +6.2691e+00 +6.2055e+00 +6.2526e+00 +6.3752e+00 +6.1857e+00 +6.3265e+00 +6.3754e+00 +6.3165e+00 +6.2717e+00 +6.2634e+00 +6.3670e+00 +6.2475e+00 +6.2395e+00 +6.2867e+00 +6.3297e+00 +6.1355e+00 +6.1980e+00 +6.3071e+00 +6.1472e+00 +6.3563e+00 +6.2142e+00 +6.2932e+00 +6.2359e+00 +6.3353e+00 +6.2622e+00 +6.4513e+00 +6.2995e+00 +6.2314e+00 +6.2915e+00 +6.2190e+00 +6.3534e+00 +6.3487e+00 +6.3157e+00 +6.1931e+00 +6.4112e+00 +6.2980e+00 +6.1800e+00 +6.2490e+00 +6.1101e+00 +6.2451e+00 +6.2390e+00 +6.2240e+00 +6.1914e+00 +6.2158e+00 +6.2695e+00 +6.2473e+00 +6.3158e+00 +6.2713e+00 +6.2241e+00 +6.3024e+00 +6.3270e+00 +6.3048e+00 +6.3105e+00 +6.2362e+00 +6.1931e+00 +6.2352e+00 +6.2094e+00 +6.3642e+00 +6.2692e+00 +6.2933e+00 +6.3833e+00 +6.1545e+00 +6.3310e+00 +6.2399e+00 +6.2470e+00 +6.2505e+00 +6.2150e+00 +6.2503e+00 +6.3077e+00 +6.3023e+00 +6.2406e+00 +6.2438e+00 +6.2934e+00 +6.3063e+00 +6.2277e+00 +6.2253e+00 +6.2888e+00 +6.1503e+00 +6.1702e+00 +6.2719e+00 +6.3179e+00 +6.2715e+00 +6.3820e+00 +6.3044e+00 +6.2277e+00 +6.1795e+00 +6.3450e+00 +6.1779e+00 +6.1738e+00 +6.1556e+00 +6.2513e+00 +6.2816e+00 +6.2324e+00 +6.2892e+00 +6.2318e+00 +6.1499e+00 +6.1558e+00 +6.3091e+00 +6.1107e+00 +6.3404e+00 +6.2402e+00 +6.2289e+00 +6.3021e+00 +6.2117e+00 +6.1836e+00 +6.2755e+00 +6.2979e+00 +6.2580e+00 +6.0091e+00 +6.1477e+00 +6.2548e+00 +6.2265e+00 +6.1972e+00 +6.2239e+00 +6.2418e+00 +6.1506e+00 +6.2323e+00 +6.1737e+00 +6.1320e+00 +6.2560e+00 +6.1821e+00 +6.1980e+00 +6.3082e+00 +6.1652e+00 +6.1305e+00 +6.2058e+00 +6.2434e+00 +6.2432e+00 +6.1922e+00 +6.2959e+00 +6.3707e+00 +6.2363e+00 +6.1636e+00 +6.1462e+00 +6.2544e+00 +6.3015e+00 +6.3610e+00 +6.2046e+00 +6.3110e+00 +6.1909e+00 +6.1586e+00 +6.2207e+00 +6.2503e+00 +6.0979e+00 +6.3842e+00 +6.3328e+00 +6.2704e+00 +6.2203e+00 +6.2013e+00 +6.2946e+00 +6.1973e+00 +6.1691e+00 +6.3083e+00 +6.2538e+00 +6.1893e+00 +6.3059e+00 +6.3325e+00 +6.1155e+00 +6.3222e+00 +6.2158e+00 +6.2599e+00 +6.2362e+00 +6.2405e+00 +6.2532e+00 +6.2763e+00 +6.1422e+00 +6.2447e+00 +6.2154e+00 +6.1191e+00 +6.1192e+00 +6.1314e+00 +6.2342e+00 +6.2519e+00 +6.1882e+00 +6.2924e+00 +6.1657e+00 +6.1998e+00 +6.1405e+00 +6.2610e+00 +6.1499e+00 +6.3120e+00 +6.2073e+00 +6.1608e+00 +6.1852e+00 +6.3017e+00 +6.1838e+00 +6.2170e+00 +6.2075e+00 +6.1706e+00 +6.1297e+00 +6.2389e+00 +6.1402e+00 +6.2667e+00 +6.2832e+00 +6.1954e+00 +6.1516e+00 +6.2377e+00 +6.1120e+00 +6.3711e+00 +6.0187e+00 +6.2844e+00 +6.1311e+00 +6.1943e+00 +6.1019e+00 +6.2087e+00 +6.0433e+00 +6.1208e+00 +6.1447e+00 +6.2045e+00 +6.1229e+00 +6.1547e+00 +6.2099e+00 +6.2601e+00 +6.0653e+00 +6.1612e+00 +6.1563e+00 +6.1880e+00 +6.2453e+00 +6.0937e+00 +6.2553e+00 +6.1586e+00 +6.2422e+00 +6.2275e+00 +6.2906e+00 +6.2221e+00 +6.0901e+00 +6.1900e+00 +6.1244e+00 +6.1125e+00 +6.1855e+00 +6.1510e+00 +6.1798e+00 +6.1608e+00 +6.0458e+00 +6.1492e+00 +6.0680e+00 +6.2087e+00 +6.1310e+00 +6.1316e+00 +6.1747e+00 +6.1172e+00 +6.1110e+00 +6.1383e+00 +6.1165e+00 +6.0949e+00 +6.2561e+00 +6.2271e+00 +6.1370e+00 +6.1528e+00 +6.1146e+00 +6.1604e+00 +6.1704e+00 +6.1208e+00 +6.2547e+00 +6.1287e+00 +6.1600e+00 +6.1823e+00 +6.1246e+00 +6.1511e+00 +6.0582e+00 +6.1691e+00 +6.2556e+00 +6.0511e+00 +6.0548e+00 +6.1456e+00 +6.1391e+00 +6.1972e+00 +6.1704e+00 +6.1348e+00 +6.1420e+00 +6.1865e+00 +6.0599e+00 +6.1069e+00 +6.1867e+00 +6.1279e+00 +6.0872e+00 +6.1161e+00 +6.1532e+00 +6.1203e+00 +6.0742e+00 +6.0750e+00 +6.2615e+00 +6.0949e+00 +6.2251e+00 +6.2348e+00 +6.2127e+00 +6.0923e+00 +6.1035e+00 +6.2271e+00 +6.1105e+00 +6.0466e+00 +6.1138e+00 +6.2065e+00 +6.1114e+00 +6.1120e+00 +6.2484e+00 +6.1748e+00 +6.2653e+00 +6.1549e+00 +6.2230e+00 +6.1842e+00 +6.0838e+00 +6.0433e+00 +6.0443e+00 +6.1498e+00 +6.0596e+00 +6.1914e+00 +6.0309e+00 +6.0861e+00 +5.9340e+00 +6.0812e+00 +6.1495e+00 +6.1003e+00 +6.0937e+00 +5.9172e+00 +5.9841e+00 +6.1055e+00 +6.0576e+00 +6.1577e+00 +6.0781e+00 +6.2285e+00 +6.0485e+00 +6.1462e+00 +6.0954e+00 +6.1748e+00 +6.2707e+00 +6.1001e+00 +6.1933e+00 +6.2395e+00 +6.0913e+00 +6.1195e+00 +6.0370e+00 +6.0369e+00 +6.1822e+00 +6.2212e+00 +6.0950e+00 +6.0732e+00 +6.1707e+00 +6.1881e+00 +6.1594e+00 +5.8065e+00 +6.0659e+00 +5.9919e+00 +6.0433e+00 +6.1407e+00 +6.2211e+00 +5.9636e+00 +5.9459e+00 +6.0432e+00 +6.1375e+00 +6.0789e+00 +6.1382e+00 +6.0653e+00 +6.0367e+00 +6.0638e+00 +6.1218e+00 +6.0586e+00 +6.1248e+00 +6.0495e+00 +6.0315e+00 +6.0527e+00 +6.0548e+00 +5.9845e+00 +6.0269e+00 +6.1214e+00 +5.9683e+00 +6.0032e+00 +6.0998e+00 +6.0621e+00 +5.9694e+00 +6.1650e+00 +6.2593e+00 +5.9943e+00 +5.9903e+00 +6.0900e+00 +6.0092e+00 +6.0758e+00 +5.9855e+00 +6.1232e+00 +6.1651e+00 +6.0622e+00 +5.9588e+00 +5.9450e+00 +5.9684e+00 +5.9261e+00 +6.1173e+00 +6.0845e+00 +6.0911e+00 +5.9977e+00 +6.0402e+00 +6.0924e+00 +6.0855e+00 +6.0890e+00 +5.9302e+00 +6.2334e+00 +6.1144e+00 +5.9035e+00 +6.2051e+00 +6.0656e+00 +5.9300e+00 +5.9045e+00 +5.9920e+00 +6.0314e+00 +5.9396e+00 +6.1314e+00 +6.1426e+00 +6.1165e+00 +6.0661e+00 +5.9897e+00 +6.0113e+00 +5.9804e+00 +5.9925e+00 +6.0146e+00 +6.1596e+00 +6.0826e+00 +5.8912e+00 +6.0025e+00 +6.1222e+00 +5.9999e+00 +6.0775e+00 +6.1352e+00 +6.0019e+00 +6.0047e+00 +6.1633e+00 +5.9517e+00 +5.9941e+00 +5.9421e+00 +5.9198e+00 +6.0120e+00 +5.9919e+00 +6.0123e+00 +6.0338e+00 +5.9574e+00 +6.0715e+00 +5.9572e+00 +6.0069e+00 +5.9899e+00 +6.1474e+00 +6.2308e+00 +6.0127e+00 +6.0737e+00 +6.1558e+00 +6.0268e+00 +6.1370e+00 +5.9557e+00 +5.9012e+00 +6.0767e+00 +6.0052e+00 +6.0097e+00 +6.0374e+00 +6.1072e+00 +5.9392e+00 +6.1855e+00 +6.0241e+00 +5.9896e+00 +6.1185e+00 +5.9917e+00 +6.0658e+00 +6.0110e+00 +6.0169e+00 +6.0112e+00 +6.0556e+00 +5.8792e+00 +6.0188e+00 +6.1237e+00 +6.0402e+00 +5.9867e+00 +5.9492e+00 +6.1214e+00 +5.9829e+00 +5.9468e+00 +5.8616e+00 +5.8081e+00 +6.0418e+00 +5.9114e+00 +6.0987e+00 +5.8739e+00 +5.9725e+00 +6.1321e+00 +5.9141e+00 +5.9960e+00 +5.9443e+00 +6.0335e+00 +6.1037e+00 +5.9687e+00 +5.9866e+00 +5.9921e+00 +6.0327e+00 +5.9912e+00 +5.9756e+00 +6.0451e+00 +6.0157e+00 +5.9688e+00 +5.8886e+00 +5.8466e+00 +5.8956e+00 +5.9688e+00 +5.9942e+00 +6.0276e+00 +5.9884e+00 +5.7954e+00 +5.9892e+00 +6.0576e+00 +6.0374e+00 +6.1042e+00 +6.0168e+00 +6.1416e+00 +6.0121e+00 +6.0888e+00 +6.1364e+00 +5.9949e+00 +6.0629e+00 +6.1133e+00 +5.9585e+00 +6.1257e+00 +5.9141e+00 +5.9143e+00 +6.0018e+00 +5.9938e+00 +6.0544e+00 +5.9936e+00 +6.0161e+00 +5.9068e+00 +6.0421e+00 +5.9807e+00 +5.9405e+00 +5.8365e+00 +5.8715e+00 +6.0791e+00 +5.9537e+00 +5.8042e+00 +6.0225e+00 +5.9325e+00 +5.9694e+00 +5.9379e+00 +6.1620e+00 +6.0152e+00 +5.9895e+00 +5.8409e+00 +5.9589e+00 +5.8399e+00 +5.8988e+00 +5.9288e+00 +6.0114e+00 +5.9575e+00 +5.9549e+00 +5.9477e+00 +5.8826e+00 +6.0914e+00 +5.8012e+00 +5.9086e+00 +5.9897e+00 +5.8610e+00 +5.9041e+00 +5.8540e+00 +5.9422e+00 +6.0304e+00 +5.8840e+00 +5.9754e+00 +5.8764e+00 +5.9434e+00 +5.8338e+00 +5.8620e+00 +6.0048e+00 +5.8864e+00 +6.0824e+00 +5.9145e+00 +5.8193e+00 +6.0788e+00 +5.8428e+00 +5.8613e+00 +5.7906e+00 +5.8872e+00 +5.8682e+00 +5.9745e+00 +5.7857e+00 +5.9021e+00 +5.8503e+00 +5.8827e+00 +6.0456e+00 +5.7930e+00 +6.0142e+00 +6.0560e+00 +5.8860e+00 +5.9062e+00 +5.7776e+00 +6.0026e+00 +5.8630e+00 +5.8193e+00 +5.9056e+00 +5.9643e+00 +5.8846e+00 +5.8601e+00 +5.9434e+00 +5.9664e+00 +5.9856e+00 +5.8161e+00 +5.8699e+00 +5.9174e+00 +5.9008e+00 +6.0884e+00 +5.8733e+00 +5.9692e+00 +5.8624e+00 +5.9450e+00 +5.8981e+00 +6.0162e+00 +5.9350e+00 +5.9278e+00 +5.9670e+00 +5.9824e+00 +5.8647e+00 +5.9682e+00 +5.9358e+00 +5.8024e+00 +6.0844e+00 +5.9816e+00 +5.8619e+00 +6.0808e+00 +6.0119e+00 +5.9539e+00 +5.8887e+00 +5.8032e+00 +5.8994e+00 +5.9913e+00 +5.7999e+00 +5.9834e+00 +5.9327e+00 +5.9495e+00 +5.8878e+00 +6.0339e+00 +6.0302e+00 +5.9281e+00 +5.9763e+00 +5.8048e+00 +6.0138e+00 +5.9200e+00 +5.8339e+00 +5.8638e+00 +5.8095e+00 +5.8449e+00 +5.9644e+00 +5.7913e+00 +5.8011e+00 +5.9184e+00 +5.8091e+00 +5.8889e+00 +5.8140e+00 +5.7781e+00 +5.8968e+00 +5.8197e+00 +5.9279e+00 +5.8592e+00 +5.8295e+00 +5.7980e+00 +5.6988e+00 +5.8664e+00 +5.9330e+00 +6.0490e+00 +5.7167e+00 +5.8518e+00 +6.0362e+00 +5.7891e+00 +5.7855e+00 +5.8951e+00 +5.9346e+00 +5.9133e+00 +5.8255e+00 +5.9455e+00 +5.8678e+00 +6.0361e+00 +5.6729e+00 +5.9632e+00 +5.8744e+00 +5.8039e+00 +6.1014e+00 +5.9379e+00 +5.8855e+00 +5.8670e+00 +5.8268e+00 +5.8919e+00 +5.8918e+00 +5.9585e+00 +6.0008e+00 +6.0698e+00 +5.9662e+00 +5.9095e+00 +5.8971e+00 +5.7985e+00 +5.8820e+00 +5.8930e+00 +5.9247e+00 +5.9281e+00 +5.9409e+00 +5.8453e+00 +5.9049e+00 +5.7563e+00 +5.7883e+00 +5.9086e+00 +6.0362e+00 +5.9312e+00 +5.8872e+00 +5.7634e+00 +5.8251e+00 +5.8679e+00 +5.9161e+00 +5.9183e+00 +5.7592e+00 +5.8421e+00 +5.8326e+00 +5.9787e+00 +6.0362e+00 +5.9595e+00 +5.8831e+00 +5.9568e+00 +5.9892e+00 +5.8595e+00 +5.9504e+00 +5.9089e+00 +5.8373e+00 +5.8971e+00 +5.8542e+00 +5.8316e+00 +5.8221e+00 +5.8195e+00 +6.0695e+00 +5.9728e+00 +5.8639e+00 +5.8431e+00 +5.9416e+00 +5.8024e+00 +5.8913e+00 +5.8488e+00 +5.9110e+00 +5.8074e+00 +5.7967e+00 +5.6602e+00 +5.8477e+00 +5.8152e+00 +5.8749e+00 +5.8151e+00 +5.8646e+00 +5.8609e+00 +5.8023e+00 +5.7522e+00 +5.6834e+00 +5.8786e+00 +5.7914e+00 +5.9762e+00 +5.8877e+00 +5.9374e+00 +5.8876e+00 +5.8752e+00 +5.9519e+00 +5.9109e+00 +5.9505e+00 +5.8879e+00 +5.8594e+00 +5.8694e+00 +5.8475e+00 +5.7873e+00 +5.7836e+00 +5.7481e+00 +5.6289e+00 +5.8971e+00 +5.7366e+00 +5.7377e+00 +5.5516e+00 +5.8798e+00 +5.8011e+00 +5.9569e+00 +5.7557e+00 +5.8123e+00 +5.7836e+00 +5.9352e+00 +5.7749e+00 +5.8955e+00 +5.8109e+00 +5.7214e+00 +5.7767e+00 +5.8281e+00 +5.7322e+00 +5.9186e+00 +5.8811e+00 +5.7061e+00 +5.8876e+00 +5.7820e+00 +5.8479e+00 +5.8339e+00 +5.8795e+00 +5.7583e+00 +5.8102e+00 +5.7982e+00 +5.7103e+00 +5.7080e+00 +5.9405e+00 +5.7672e+00 +5.7154e+00 +5.7353e+00 +5.9803e+00 +5.7328e+00 +5.9542e+00 +5.7586e+00 +5.8726e+00 +5.8167e+00 +5.8700e+00 +5.7448e+00 +5.8537e+00 +5.8186e+00 +5.7740e+00 +5.6877e+00 +5.8320e+00 +5.9345e+00 +5.7928e+00 +5.8356e+00 +5.7444e+00 +5.8790e+00 +5.9467e+00 +5.8602e+00 +5.6681e+00 +5.6842e+00 +5.6730e+00 +5.8115e+00 +5.6809e+00 +5.8397e+00 +5.7063e+00 +5.7830e+00 +5.8422e+00 +5.6356e+00 +5.7182e+00 +5.7925e+00 +5.7765e+00 +5.8168e+00 +5.8697e+00 +5.7969e+00 +5.7744e+00 +5.7220e+00 +5.8251e+00 +5.7214e+00 +5.7628e+00 +5.6990e+00 +5.9394e+00 +5.7466e+00 +5.8545e+00 +5.7716e+00 +5.9270e+00 +5.8033e+00 +5.7611e+00 +5.8547e+00 +5.8473e+00 +5.8194e+00 +5.8866e+00 +5.7877e+00 +5.8022e+00 +5.8525e+00 +5.9062e+00 +5.8226e+00 +5.7480e+00 +5.7339e+00 +5.7679e+00 +5.7813e+00 +5.6454e+00 +5.9081e+00 +5.8419e+00 +5.8306e+00 +5.6953e+00 +5.8237e+00 +5.7322e+00 +5.8549e+00 +5.8175e+00 +5.7747e+00 +5.7112e+00 +5.6554e+00 +5.7736e+00 +5.9161e+00 +5.7442e+00 +5.8682e+00 +5.6368e+00 +5.6190e+00 +5.8432e+00 +5.6145e+00 +5.6722e+00 +5.8362e+00 +5.6734e+00 +5.7668e+00 +5.7404e+00 +5.8578e+00 +5.8260e+00 +5.7593e+00 +5.6559e+00 +5.6654e+00 +5.7191e+00 +5.5765e+00 +5.8470e+00 +5.6849e+00 +5.7346e+00 +5.6279e+00 +5.7687e+00 +5.8686e+00 +5.6768e+00 +5.8109e+00 +5.7149e+00 +5.6717e+00 +5.8093e+00 +5.7417e+00 +5.9887e+00 +5.7669e+00 +5.7300e+00 +5.8640e+00 +5.7658e+00 +5.9303e+00 +5.9165e+00 +5.7229e+00 +5.5696e+00 +5.7818e+00 +5.5873e+00 +5.7112e+00 +5.6107e+00 +5.9027e+00 +5.7982e+00 +5.8966e+00 +5.8789e+00 +5.6537e+00 +5.7866e+00 +5.7875e+00 +5.7833e+00 +5.7224e+00 +5.7960e+00 +5.6809e+00 +5.6610e+00 +5.6848e+00 +5.4916e+00 +5.8598e+00 +5.6660e+00 +5.6889e+00 +5.7352e+00 +5.6614e+00 +5.7704e+00 +5.8702e+00 +5.7488e+00 +5.8080e+00 +5.7534e+00 +5.6712e+00 +5.6623e+00 +5.6661e+00 +5.7583e+00 +5.6571e+00 +5.5408e+00 +5.7324e+00 +5.8428e+00 +5.7963e+00 +5.7108e+00 +5.8415e+00 +5.8575e+00 +5.7555e+00 +5.8408e+00 +5.7737e+00 +5.7271e+00 +5.7704e+00 +5.7522e+00 +5.7147e+00 +5.7009e+00 +5.8046e+00 +5.6721e+00 +5.7000e+00 +5.7326e+00 +5.6179e+00 +5.7015e+00 +5.6379e+00 +5.7351e+00 +5.6324e+00 +5.6208e+00 +5.6391e+00 +5.6547e+00 +5.7248e+00 +5.6013e+00 +5.8119e+00 +5.7953e+00 +5.7688e+00 +5.7161e+00 +5.6105e+00 +5.7362e+00 +5.7480e+00 +5.6802e+00 +5.6911e+00 +5.6380e+00 +5.5802e+00 +5.7112e+00 +5.5101e+00 +5.6625e+00 +5.4723e+00 +5.7478e+00 +5.8014e+00 +5.8564e+00 +5.7715e+00 +5.7377e+00 +5.8873e+00 +5.7294e+00 +5.7086e+00 +5.5912e+00 +5.5802e+00 +5.6710e+00 +5.7036e+00 +5.5364e+00 +5.7077e+00 +5.7537e+00 +5.6396e+00 +5.7370e+00 +5.6188e+00 +5.7263e+00 +5.6227e+00 +5.5957e+00 +5.6438e+00 +5.5680e+00 +5.7263e+00 +5.7532e+00 +5.5513e+00 +5.7482e+00 +5.7415e+00 +5.5947e+00 +5.7218e+00 +5.7164e+00 +5.5793e+00 +5.6363e+00 +5.7699e+00 +5.7461e+00 +5.8458e+00 +5.6628e+00 +5.4944e+00 +5.6208e+00 +5.7045e+00 +5.7516e+00 +5.5241e+00 +5.7907e+00 +5.6990e+00 +5.4271e+00 +5.6516e+00 +5.5812e+00 +5.6165e+00 +5.8023e+00 +5.6450e+00 +5.5793e+00 +5.5731e+00 +5.6767e+00 +5.6407e+00 +5.5821e+00 +5.9506e+00 +5.5767e+00 +5.4659e+00 +5.6190e+00 +5.6685e+00 +5.6642e+00 +5.6944e+00 +5.5965e+00 +5.6002e+00 +5.6646e+00 +5.7039e+00 +5.7781e+00 +5.5814e+00 +5.6087e+00 +5.6295e+00 +5.7009e+00 +5.6387e+00 +5.4810e+00 +5.5667e+00 +5.5793e+00 +5.6519e+00 +5.6839e+00 +5.5718e+00 +5.5450e+00 +5.5872e+00 +5.6402e+00 +5.5815e+00 +5.4138e+00 +5.5982e+00 +5.6555e+00 +5.4861e+00 +5.6619e+00 +5.6179e+00 +5.4754e+00 +5.6467e+00 +5.7469e+00 +5.6236e+00 +5.6221e+00 +5.4767e+00 +5.4763e+00 +5.5149e+00 +5.6314e+00 +5.6109e+00 +5.7464e+00 +5.5769e+00 +5.6348e+00 +5.6738e+00 +5.6209e+00 +5.6809e+00 +5.5252e+00 +5.7629e+00 +5.6656e+00 +5.6626e+00 +5.6098e+00 +5.6514e+00 +5.6496e+00 +5.5320e+00 +5.7541e+00 +5.6402e+00 +5.4814e+00 +5.5759e+00 +5.5292e+00 +5.7214e+00 +5.6209e+00 +5.6770e+00 +5.8087e+00 +5.7043e+00 +5.6896e+00 +5.8109e+00 +5.7212e+00 +5.5977e+00 +5.5067e+00 +5.5789e+00 +5.4021e+00 +5.4917e+00 +5.5326e+00 +5.6026e+00 +5.5076e+00 +5.3627e+00 +5.4157e+00 +5.5322e+00 +5.4933e+00 +5.7870e+00 +5.5421e+00 +5.5379e+00 +5.4681e+00 +5.6624e+00 +5.5409e+00 +5.6333e+00 +5.5780e+00 +5.4301e+00 +5.6246e+00 +5.7060e+00 +5.6888e+00 +5.6844e+00 +5.7482e+00 +5.7045e+00 +5.5713e+00 +5.5047e+00 +5.5366e+00 +5.5611e+00 +5.5764e+00 +5.6121e+00 +5.4857e+00 +5.3908e+00 +5.5464e+00 +5.6996e+00 +5.5246e+00 +5.5423e+00 +5.4692e+00 +5.5765e+00 +5.7091e+00 +5.6296e+00 +5.5420e+00 +5.4733e+00 +5.5778e+00 +5.6948e+00 +5.4892e+00 +5.6200e+00 +5.4041e+00 +5.5881e+00 +5.4618e+00 +5.5187e+00 +5.5043e+00 +5.4989e+00 +5.4519e+00 +5.5346e+00 +5.5494e+00 +5.3751e+00 +5.5735e+00 +5.5896e+00 +5.6385e+00 +5.4820e+00 +5.7612e+00 +5.4444e+00 +5.5449e+00 +5.6478e+00 +5.5188e+00 +5.4425e+00 +5.7404e+00 +5.5389e+00 +5.6001e+00 +5.6984e+00 +5.5366e+00 +5.5431e+00 +5.4298e+00 +5.5158e+00 +5.6845e+00 +5.6816e+00 +5.6418e+00 +5.5253e+00 +5.6050e+00 +5.5862e+00 +5.5705e+00 +5.6061e+00 +5.5167e+00 +5.8128e+00 +5.4409e+00 +5.7127e+00 +5.4060e+00 +5.5275e+00 +5.4829e+00 +5.4720e+00 +5.6083e+00 +5.5894e+00 +5.6123e+00 +5.6190e+00 +5.5182e+00 +5.6375e+00 +5.8143e+00 +5.5764e+00 +5.7318e+00 +5.5502e+00 +5.6694e+00 +5.7690e+00 +5.7304e+00 +5.6667e+00 +5.5439e+00 +5.3422e+00 +5.5405e+00 +5.4955e+00 +5.4818e+00 +5.5071e+00 +5.6807e+00 +5.5701e+00 +5.5699e+00 +5.4725e+00 +5.6065e+00 +5.6271e+00 +5.6482e+00 +5.4829e+00 +5.4110e+00 +5.4644e+00 +5.5126e+00 +5.5120e+00 +5.5408e+00 +5.7053e+00 +5.5243e+00 +5.5293e+00 +5.6164e+00 +5.5472e+00 +5.5133e+00 +5.5592e+00 +5.5166e+00 +5.4530e+00 +5.4844e+00 +5.5095e+00 +5.4880e+00 +5.5076e+00 +5.5062e+00 +5.4397e+00 +5.5843e+00 +5.5366e+00 +5.4960e+00 +5.5619e+00 +5.5510e+00 +5.2300e+00 +5.4360e+00 +5.4144e+00 +5.6379e+00 +5.4937e+00 +5.4999e+00 +5.6881e+00 +5.4238e+00 +5.5799e+00 +5.5692e+00 +5.5608e+00 +5.4211e+00 +5.6344e+00 +5.6397e+00 +5.3938e+00 +5.4130e+00 +5.4991e+00 +5.5721e+00 +5.5447e+00 +5.4605e+00 +5.6474e+00 +5.5223e+00 +5.4501e+00 +5.4746e+00 +5.6476e+00 +5.5029e+00 +5.5109e+00 +5.5150e+00 +5.6181e+00 +5.5420e+00 +5.4154e+00 +5.4307e+00 +5.4150e+00 +5.5497e+00 +5.4709e+00 +5.3756e+00 +5.5434e+00 +5.6508e+00 +5.6226e+00 +5.6177e+00 +5.5283e+00 +5.5611e+00 +5.6421e+00 +5.5173e+00 +5.5629e+00 +5.3512e+00 +5.4446e+00 +5.6021e+00 +5.5749e+00 +5.5260e+00 +5.6156e+00 +5.5842e+00 +5.5411e+00 +5.3671e+00 +5.5530e+00 +5.4305e+00 +5.4829e+00 +5.5394e+00 +5.5694e+00 +5.5532e+00 +5.4671e+00 +5.7900e+00 +5.5179e+00 +5.3545e+00 +5.5847e+00 +5.4458e+00 +5.4857e+00 +5.5886e+00 +5.5443e+00 +5.5259e+00 +5.3363e+00 +5.4068e+00 +5.5196e+00 +5.3645e+00 +5.4029e+00 +5.3594e+00 +5.5000e+00 +5.4159e+00 +5.3969e+00 +5.4478e+00 +5.5034e+00 +5.4595e+00 +5.3213e+00 +5.4445e+00 +5.5040e+00 +5.1955e+00 +5.3897e+00 +5.6003e+00 +5.3884e+00 +5.6413e+00 +5.5729e+00 +5.4203e+00 +5.3905e+00 +5.5983e+00 +5.5902e+00 +5.5005e+00 +5.5453e+00 +5.5852e+00 +5.3651e+00 +5.2997e+00 +5.3870e+00 +5.4461e+00 +5.3513e+00 +5.4330e+00 +5.4855e+00 +5.5043e+00 +5.4354e+00 +5.5261e+00 +5.6217e+00 +5.4648e+00 +5.4722e+00 +5.5891e+00 +5.4522e+00 +5.4833e+00 +5.5560e+00 +5.5456e+00 +5.4709e+00 +5.4660e+00 +5.4564e+00 +5.2912e+00 +5.6210e+00 +5.5201e+00 +5.7217e+00 +5.5895e+00 +5.4528e+00 +5.6624e+00 +5.5503e+00 +5.5822e+00 +5.3537e+00 +5.5319e+00 +5.4063e+00 +5.3493e+00 +5.4879e+00 +5.5127e+00 +5.3385e+00 +5.4472e+00 +5.5861e+00 +5.4788e+00 +5.4935e+00 +5.5278e+00 +5.4913e+00 +5.3615e+00 +5.5630e+00 +5.4878e+00 +5.3506e+00 +5.3701e+00 +5.3887e+00 +5.3971e+00 +5.4881e+00 +5.5177e+00 +5.2957e+00 +5.4828e+00 +5.4084e+00 +5.4352e+00 +5.4042e+00 +5.3254e+00 +5.4713e+00 +5.3663e+00 +5.5400e+00 +5.3939e+00 +5.4908e+00 +5.4202e+00 +5.3408e+00 +5.3400e+00 +5.3907e+00 +5.3519e+00 +5.3613e+00 +5.4650e+00 +5.5757e+00 +5.3454e+00 +5.3719e+00 +5.5288e+00 +5.5250e+00 +5.3922e+00 +5.3985e+00 +5.7236e+00 +5.2940e+00 +5.5180e+00 +5.4061e+00 +5.4278e+00 +5.5769e+00 +5.4313e+00 +5.3502e+00 +5.4663e+00 +5.4264e+00 +5.3804e+00 +5.4622e+00 +5.2964e+00 +5.3137e+00 +5.4008e+00 +5.4299e+00 +5.3693e+00 +5.4160e+00 +5.3446e+00 +5.3282e+00 +5.4229e+00 +5.3748e+00 +5.3991e+00 +5.2430e+00 +5.2679e+00 +5.4037e+00 +5.5488e+00 +5.4912e+00 +5.2646e+00 +5.3080e+00 +5.3856e+00 +5.4552e+00 +5.3989e+00 +5.5097e+00 +5.5043e+00 +5.4710e+00 +5.2499e+00 +5.3945e+00 +5.4260e+00 +5.2636e+00 +5.4050e+00 +5.2780e+00 +5.4545e+00 +5.2939e+00 +5.4338e+00 +5.3662e+00 +5.3914e+00 +5.5127e+00 +5.3989e+00 +5.4034e+00 +5.3608e+00 +5.4795e+00 +5.4331e+00 +5.3470e+00 +5.3208e+00 +5.4101e+00 +5.4228e+00 +5.5065e+00 +5.4883e+00 +5.3340e+00 +5.3206e+00 +5.4163e+00 +5.4716e+00 +5.6193e+00 +5.2621e+00 +5.4024e+00 +5.3712e+00 +5.3353e+00 +5.5602e+00 +5.4046e+00 +5.4133e+00 +5.4720e+00 +5.3278e+00 +5.2897e+00 +5.4048e+00 +5.4188e+00 +5.6094e+00 +5.2076e+00 +5.2628e+00 +5.4837e+00 +5.2911e+00 +5.3177e+00 +5.1802e+00 +5.3232e+00 +5.3511e+00 +5.2323e+00 +5.3964e+00 +5.3551e+00 +5.4209e+00 +5.4102e+00 +5.4260e+00 +5.3026e+00 +5.3540e+00 +5.2809e+00 +5.2714e+00 +5.3237e+00 +5.4204e+00 +5.2262e+00 +5.2698e+00 +5.4529e+00 +5.2379e+00 +5.5157e+00 +5.4178e+00 +5.2853e+00 +5.4097e+00 +5.3940e+00 +5.3662e+00 +5.4162e+00 +5.3764e+00 +5.5505e+00 +5.4857e+00 +5.3703e+00 +5.2707e+00 +5.3883e+00 +5.4378e+00 +5.4900e+00 +5.2901e+00 +5.3477e+00 +5.3785e+00 +5.3469e+00 +5.5609e+00 +5.3755e+00 +5.4281e+00 +5.3540e+00 +5.4375e+00 +5.4063e+00 +5.3263e+00 +5.2232e+00 +5.3213e+00 +5.2392e+00 +5.4342e+00 +5.4526e+00 +5.3844e+00 +5.2067e+00 +5.3480e+00 +5.2924e+00 +5.2671e+00 +5.3618e+00 +5.4111e+00 +5.2376e+00 +5.2681e+00 +5.4208e+00 +5.3527e+00 +5.4202e+00 +5.2807e+00 +5.5875e+00 +5.3934e+00 +5.2516e+00 +5.3143e+00 +5.4688e+00 +5.4616e+00 +5.3243e+00 +5.4356e+00 +5.3772e+00 +5.2772e+00 +5.3617e+00 +5.3188e+00 +5.2169e+00 +5.5780e+00 +5.4543e+00 +5.2350e+00 +5.4442e+00 +5.3877e+00 +5.2340e+00 +5.4465e+00 +5.1853e+00 +5.4095e+00 +5.3860e+00 +5.2640e+00 +5.3330e+00 +5.3579e+00 +5.3815e+00 +5.4502e+00 +5.3002e+00 +5.4184e+00 +5.3110e+00 +5.3716e+00 +5.4439e+00 +5.3353e+00 +5.2374e+00 +5.3908e+00 +5.3059e+00 +5.2275e+00 +5.2064e+00 +5.3105e+00 +5.3734e+00 +5.3029e+00 +5.1956e+00 +5.4250e+00 +5.4084e+00 +5.3162e+00 +5.1575e+00 +5.4050e+00 +5.2803e+00 +5.4374e+00 +5.3819e+00 +5.1674e+00 +5.3698e+00 +5.3868e+00 +5.2644e+00 +5.3592e+00 +5.4195e+00 +5.2441e+00 +5.2496e+00 +5.3562e+00 +5.1501e+00 +5.2969e+00 +5.2271e+00 +5.2978e+00 +5.3450e+00 +5.7157e+00 +5.2185e+00 +5.3085e+00 +5.2713e+00 +5.4389e+00 +5.3996e+00 +5.3144e+00 +5.2632e+00 +5.3343e+00 +5.3250e+00 +5.3577e+00 +5.3739e+00 +5.2091e+00 +5.2693e+00 +5.3516e+00 +5.3207e+00 +5.4037e+00 +5.2016e+00 +5.2613e+00 +5.4281e+00 +5.2416e+00 +5.2449e+00 +5.2453e+00 +5.3289e+00 +5.1866e+00 +5.2891e+00 +5.3540e+00 +5.4794e+00 +5.1856e+00 +5.3564e+00 +5.5364e+00 +5.2314e+00 +5.3093e+00 +5.2633e+00 +5.2325e+00 +5.1324e+00 +5.1913e+00 +5.4492e+00 +5.3431e+00 +5.3389e+00 +5.4463e+00 +5.4397e+00 +5.4118e+00 +5.3233e+00 +5.2830e+00 +5.2119e+00 +5.2833e+00 +5.1654e+00 +5.1072e+00 +5.3968e+00 +5.2560e+00 +5.1880e+00 +5.2710e+00 +5.2774e+00 +5.1745e+00 +5.4196e+00 +5.1803e+00 +5.4254e+00 +5.2471e+00 +5.2218e+00 +5.1938e+00 +5.2783e+00 +5.2202e+00 +5.4397e+00 +5.3047e+00 +5.2389e+00 +5.3022e+00 +5.4241e+00 +5.3449e+00 +5.1631e+00 +5.1113e+00 +5.1579e+00 +5.3244e+00 +5.2779e+00 +5.0636e+00 +5.1918e+00 +5.1429e+00 +5.1764e+00 +5.2186e+00 +5.0388e+00 +5.3882e+00 +5.3151e+00 +5.3881e+00 +5.2746e+00 +5.2081e+00 +5.2942e+00 +5.1979e+00 +5.2670e+00 +5.3643e+00 +5.3583e+00 +5.3860e+00 +5.1949e+00 +5.3686e+00 +5.4515e+00 +5.1244e+00 +5.4234e+00 +5.2519e+00 +5.2743e+00 +5.0673e+00 +5.2246e+00 +5.2527e+00 +5.3532e+00 +5.2981e+00 +5.3718e+00 +5.3687e+00 +5.2702e+00 +5.3553e+00 +5.4427e+00 +5.1159e+00 +5.4590e+00 +5.2143e+00 +5.2417e+00 +5.3780e+00 +5.2368e+00 +5.3280e+00 +5.2181e+00 +5.1903e+00 +5.3402e+00 +5.3408e+00 +5.2688e+00 +5.5336e+00 +5.3098e+00 +5.3599e+00 +5.3050e+00 +5.1977e+00 +5.2304e+00 +5.3147e+00 +5.2724e+00 +5.1592e+00 +5.2717e+00 +5.2973e+00 +5.3092e+00 +5.1036e+00 +5.1150e+00 +5.1121e+00 +5.3515e+00 +5.1430e+00 +5.1968e+00 +5.2892e+00 +5.1811e+00 +5.2268e+00 +5.2563e+00 +5.2647e+00 +5.4898e+00 +5.3881e+00 +5.3122e+00 +5.2313e+00 +5.0335e+00 +5.1506e+00 +5.2188e+00 +5.2608e+00 +5.2546e+00 +5.2532e+00 +5.3182e+00 +5.3049e+00 +5.2289e+00 +5.1550e+00 +5.2890e+00 +5.3095e+00 +5.1766e+00 +5.3264e+00 +5.1534e+00 +5.2337e+00 +5.2976e+00 +5.1505e+00 +5.2715e+00 +5.3642e+00 +5.2867e+00 +5.2536e+00 +5.2498e+00 +5.1784e+00 +5.2254e+00 +5.1879e+00 +5.3855e+00 +5.2426e+00 +5.2017e+00 +5.1316e+00 +5.2794e+00 +5.2517e+00 +5.4223e+00 +5.2327e+00 +5.4211e+00 +5.1692e+00 +5.3621e+00 +5.1408e+00 +5.3775e+00 +5.3708e+00 +5.2152e+00 +5.2261e+00 +5.1836e+00 +5.2684e+00 +5.1620e+00 +5.1312e+00 +5.1477e+00 +5.1893e+00 +5.1049e+00 +5.1826e+00 +5.1057e+00 +5.2461e+00 +5.2087e+00 +5.1260e+00 +5.1644e+00 +5.2802e+00 +5.1672e+00 +5.0806e+00 +5.2014e+00 +5.2962e+00 +5.0462e+00 +5.0174e+00 +5.3311e+00 +5.1525e+00 +5.2538e+00 +5.3946e+00 +5.1940e+00 +5.1160e+00 +5.2953e+00 +5.3710e+00 +5.2212e+00 +5.2767e+00 +5.2039e+00 +5.3114e+00 +4.9402e+00 +5.0742e+00 +5.2774e+00 +5.4668e+00 +4.9199e+00 +5.0854e+00 +5.1059e+00 +5.1247e+00 +5.3543e+00 +5.1731e+00 +5.2543e+00 +5.2259e+00 +5.2601e+00 +5.1054e+00 +5.2202e+00 +5.2116e+00 +5.3449e+00 +5.1109e+00 +5.1751e+00 +5.2317e+00 +5.2145e+00 +5.1664e+00 +5.1751e+00 +5.0659e+00 +5.2115e+00 +5.1774e+00 +5.3628e+00 +5.3434e+00 +5.2857e+00 +5.1885e+00 +5.1027e+00 +5.4400e+00 +5.2231e+00 +5.1827e+00 +5.2219e+00 +5.1517e+00 +5.0581e+00 +5.1117e+00 +5.4010e+00 +5.1922e+00 +5.3058e+00 +5.2347e+00 +5.2640e+00 +5.2083e+00 +5.2605e+00 +5.1308e+00 +5.1635e+00 +5.2303e+00 +5.1370e+00 +5.2376e+00 +5.0763e+00 +5.1912e+00 +5.0964e+00 +5.0866e+00 +5.0196e+00 +5.2437e+00 +5.1181e+00 +5.1725e+00 +5.1077e+00 +5.1901e+00 +5.2250e+00 +5.1456e+00 +5.0884e+00 +5.0610e+00 +5.1603e+00 +5.1046e+00 +5.2850e+00 +5.0392e+00 +5.2057e+00 +5.3909e+00 +5.1630e+00 +5.3578e+00 +5.0994e+00 +5.2576e+00 +5.1564e+00 +5.2837e+00 +5.0499e+00 +5.1259e+00 +5.3186e+00 +5.1551e+00 +5.2289e+00 +5.3278e+00 +5.1628e+00 +5.3254e+00 +5.3343e+00 +5.1085e+00 +5.3296e+00 +5.2131e+00 +5.1543e+00 +5.1571e+00 +5.2698e+00 +5.0696e+00 +5.4698e+00 +5.0696e+00 +5.2288e+00 +5.3288e+00 +5.1847e+00 +5.2376e+00 +5.0674e+00 +5.3215e+00 +5.1094e+00 +5.0744e+00 +5.0267e+00 +5.1679e+00 +5.0828e+00 +5.0764e+00 +5.1355e+00 +5.1431e+00 +5.1497e+00 +5.0386e+00 +5.0577e+00 +5.0471e+00 +5.0764e+00 +5.0295e+00 +5.1989e+00 +5.3488e+00 +5.3270e+00 +5.1003e+00 +5.0801e+00 +5.0469e+00 +5.1190e+00 +5.0296e+00 +5.1177e+00 +4.9235e+00 +5.1060e+00 +5.0978e+00 +5.1309e+00 +5.4068e+00 +5.1553e+00 +4.9329e+00 +5.1362e+00 +5.1539e+00 +5.1986e+00 +5.2630e+00 +5.2755e+00 +5.2487e+00 +4.9718e+00 +5.0844e+00 +5.1962e+00 +5.2524e+00 +5.0956e+00 +5.0667e+00 +4.9123e+00 +5.1216e+00 +5.0830e+00 +4.9868e+00 +4.9403e+00 +5.2500e+00 +5.3101e+00 +5.2926e+00 +5.0975e+00 +4.9314e+00 +5.0674e+00 +5.3445e+00 +5.2835e+00 +5.1838e+00 +5.2196e+00 +5.0954e+00 +5.1376e+00 +5.1707e+00 +5.0177e+00 +5.1527e+00 +5.2179e+00 +5.2892e+00 +5.1961e+00 +5.1069e+00 +5.2900e+00 +5.2465e+00 +5.1499e+00 +5.0728e+00 +5.1198e+00 +4.9859e+00 +5.0052e+00 +5.0911e+00 +5.0821e+00 +5.0229e+00 +5.1811e+00 +5.1126e+00 +5.0753e+00 +5.0947e+00 +5.3039e+00 +5.0886e+00 +5.0403e+00 +5.2160e+00 +5.3323e+00 +5.2256e+00 +5.2800e+00 +5.1513e+00 +5.0390e+00 +4.8641e+00 +5.3697e+00 +5.3946e+00 +5.1636e+00 +5.2333e+00 +5.3166e+00 +5.1667e+00 +5.1770e+00 +5.1636e+00 +5.1613e+00 +4.8699e+00 +5.2663e+00 +5.2415e+00 +5.1654e+00 +4.9860e+00 +5.0866e+00 +5.3185e+00 +5.1043e+00 +5.2106e+00 +5.3020e+00 +5.0520e+00 +5.1418e+00 +5.0643e+00 +5.0377e+00 +5.1685e+00 +5.0064e+00 +5.2743e+00 +5.0362e+00 +4.9698e+00 +5.0827e+00 +5.2030e+00 +5.0390e+00 +5.2339e+00 +5.0626e+00 +5.0179e+00 +5.2876e+00 +4.9086e+00 +5.2908e+00 +5.0262e+00 +5.0951e+00 +5.0374e+00 +5.0954e+00 +4.9922e+00 +5.1020e+00 +5.1216e+00 +5.1243e+00 +5.0228e+00 +5.0714e+00 +5.1532e+00 +5.1527e+00 +5.0160e+00 +5.0444e+00 +5.0810e+00 +5.0247e+00 +5.0672e+00 +5.0462e+00 +4.9697e+00 +5.1117e+00 +5.2727e+00 +5.2671e+00 +5.2339e+00 +5.0357e+00 +4.8402e+00 +5.1875e+00 +4.9931e+00 +4.9485e+00 +5.0595e+00 +5.2473e+00 +5.2083e+00 +5.0455e+00 +4.9723e+00 +5.2088e+00 +5.1079e+00 +5.0853e+00 +5.1091e+00 +5.1235e+00 +5.0474e+00 +4.9216e+00 +4.9270e+00 +5.0217e+00 +5.3215e+00 +5.0448e+00 +5.1239e+00 +5.2086e+00 +5.1453e+00 +5.0060e+00 +5.0729e+00 +4.9880e+00 +5.1555e+00 +4.9685e+00 +5.0676e+00 +4.9754e+00 +5.2235e+00 +5.1029e+00 +5.1928e+00 +5.1366e+00 +5.1290e+00 +5.1121e+00 +5.0526e+00 +4.9092e+00 +5.2482e+00 +4.9227e+00 +5.1689e+00 +5.1138e+00 +5.4111e+00 +4.8641e+00 +4.8740e+00 +4.9615e+00 +5.1069e+00 +5.1756e+00 +5.0054e+00 +5.1588e+00 +5.1266e+00 +5.1406e+00 +5.0914e+00 +5.1125e+00 +5.1643e+00 +4.9962e+00 +5.0219e+00 +5.2010e+00 +4.9035e+00 +5.0281e+00 +4.9218e+00 +5.0347e+00 +5.0676e+00 +5.0282e+00 +5.1231e+00 +5.0325e+00 +5.0718e+00 +5.1992e+00 +4.9860e+00 +5.0584e+00 +5.0970e+00 +5.0528e+00 +4.8951e+00 +5.1683e+00 +4.9855e+00 +5.1353e+00 +5.0491e+00 +4.9556e+00 +5.2134e+00 +5.0379e+00 +5.3351e+00 +5.0832e+00 +5.0696e+00 +4.9841e+00 +5.0278e+00 +5.0903e+00 +5.0986e+00 +5.1105e+00 +5.0757e+00 +5.1256e+00 +5.0173e+00 +5.3236e+00 +5.1451e+00 +4.9696e+00 +5.0073e+00 +5.0640e+00 +4.9770e+00 +5.0972e+00 +5.2043e+00 +5.1736e+00 +5.0246e+00 +5.0614e+00 +4.9769e+00 +5.0576e+00 +5.3935e+00 +5.2215e+00 +4.9525e+00 +4.9789e+00 +4.7960e+00 +5.1294e+00 +5.1173e+00 +4.8587e+00 +5.1527e+00 +4.9703e+00 +5.0961e+00 +4.8753e+00 +4.8905e+00 +4.9082e+00 +4.9865e+00 +5.0016e+00 +5.0448e+00 +4.9771e+00 +5.1859e+00 +5.0199e+00 +4.9828e+00 +4.9635e+00 +5.0403e+00 +5.1200e+00 +5.1174e+00 +4.9437e+00 +5.1959e+00 +4.9280e+00 +4.9351e+00 +5.1239e+00 +5.0627e+00 +4.9703e+00 +4.9914e+00 +4.9039e+00 +5.0990e+00 +4.9076e+00 +5.0886e+00 +5.0052e+00 +4.8914e+00 +5.0158e+00 +5.0783e+00 +4.9385e+00 +4.9792e+00 +4.9526e+00 +5.0118e+00 +5.1045e+00 +4.9331e+00 +5.0313e+00 +5.0451e+00 +4.9802e+00 +5.1323e+00 +5.0868e+00 +4.9454e+00 +5.1218e+00 +5.0492e+00 +5.0166e+00 +5.0145e+00 +4.9607e+00 +5.0203e+00 +4.9826e+00 +4.7940e+00 +5.1188e+00 +5.0137e+00 +4.9134e+00 +5.0186e+00 +5.0610e+00 +4.8437e+00 +5.1335e+00 +5.0043e+00 +4.9765e+00 +5.1421e+00 +5.0993e+00 +4.9201e+00 +5.0434e+00 +4.9400e+00 +5.0331e+00 +5.0716e+00 +5.1705e+00 +5.1045e+00 +5.0285e+00 +5.1317e+00 +4.9906e+00 +4.9551e+00 +5.1369e+00 +4.9523e+00 +5.2648e+00 +5.1203e+00 +5.0984e+00 +4.9562e+00 +4.8941e+00 +5.0018e+00 +4.9058e+00 +5.1637e+00 +4.9628e+00 +4.9451e+00 +5.1240e+00 +5.1680e+00 +5.0243e+00 +5.1382e+00 +5.1283e+00 +4.9276e+00 +4.8527e+00 +4.9393e+00 +4.8943e+00 +5.1638e+00 +4.9540e+00 +5.0777e+00 +5.0933e+00 +4.9339e+00 +4.9632e+00 +4.8668e+00 +4.6673e+00 +4.8980e+00 +5.2347e+00 +5.2103e+00 +4.8439e+00 +5.1430e+00 +4.8613e+00 +5.1354e+00 +5.1322e+00 +4.9316e+00 +4.9592e+00 +5.0234e+00 +4.9356e+00 +5.1785e+00 +4.9104e+00 +4.9944e+00 +5.0517e+00 +4.9068e+00 +5.1912e+00 +5.0087e+00 +5.2064e+00 +5.0996e+00 +4.8923e+00 +5.1282e+00 +4.8930e+00 +4.8849e+00 +5.0525e+00 +5.1210e+00 +5.0084e+00 +5.0010e+00 +4.9135e+00 +5.0124e+00 +4.9749e+00 +5.0788e+00 +4.9963e+00 +5.0279e+00 +4.9778e+00 +5.0380e+00 +4.9520e+00 +4.8474e+00 +5.1163e+00 +5.0000e+00 +5.0011e+00 +4.9398e+00 +4.9334e+00 +5.2178e+00 +5.0000e+00 +4.9344e+00 +4.8908e+00 +4.8450e+00 +5.0535e+00 +5.0838e+00 +4.9285e+00 +5.1434e+00 +4.9512e+00 +4.9705e+00 +5.0775e+00 +5.0305e+00 +5.1316e+00 +5.1173e+00 +5.1362e+00 +5.1090e+00 +4.9922e+00 +5.0611e+00 +5.0699e+00 +5.1117e+00 +4.7997e+00 +4.8490e+00 +4.9554e+00 +4.7643e+00 +4.9496e+00 +5.1001e+00 +4.8991e+00 +4.6592e+00 +4.8646e+00 +5.0075e+00 +4.8757e+00 +4.9626e+00 +5.0051e+00 +4.9849e+00 +5.0060e+00 +5.0898e+00 +4.9435e+00 +4.8295e+00 +5.1745e+00 +5.1026e+00 +4.9560e+00 +4.7347e+00 +5.1080e+00 +4.9012e+00 +4.8229e+00 +4.8969e+00 +4.9931e+00 +4.9918e+00 +4.9567e+00 +4.9697e+00 +4.8516e+00 +4.8884e+00 +4.9851e+00 +4.8466e+00 +4.9025e+00 +5.0126e+00 +4.8736e+00 +4.8762e+00 +5.1986e+00 +4.8916e+00 +5.0010e+00 +4.8815e+00 +4.9159e+00 +4.6775e+00 +4.8360e+00 +5.0660e+00 +5.0212e+00 +4.9139e+00 +4.8917e+00 +4.8418e+00 +4.8042e+00 +4.7540e+00 +4.7650e+00 +5.1054e+00 +4.8123e+00 +4.9078e+00 +5.2231e+00 +5.0292e+00 +4.9288e+00 +4.9203e+00 +5.0606e+00 +4.8595e+00 +5.0775e+00 +5.0497e+00 +4.8232e+00 +4.9110e+00 +5.0393e+00 +4.8549e+00 +5.0224e+00 +4.8077e+00 +5.1577e+00 +5.1156e+00 +4.9132e+00 +5.0345e+00 +5.0873e+00 +4.8087e+00 +4.9255e+00 +4.9256e+00 +5.0400e+00 +4.9462e+00 +4.9314e+00 +4.8956e+00 +5.0175e+00 +4.8819e+00 +5.0446e+00 +5.0438e+00 +4.8729e+00 +4.9314e+00 +4.9856e+00 +4.9297e+00 +4.8876e+00 +4.6881e+00 +5.0620e+00 +4.7945e+00 +5.0100e+00 +4.9018e+00 +4.9256e+00 +4.9002e+00 +4.8614e+00 +5.1905e+00 +4.8404e+00 +4.8837e+00 +4.6434e+00 +5.0951e+00 +4.9372e+00 +5.1052e+00 +4.9433e+00 +4.9717e+00 +5.0378e+00 +4.7210e+00 +4.9659e+00 +4.8542e+00 +4.8578e+00 +4.7709e+00 +4.9954e+00 +4.8573e+00 +5.0022e+00 +4.9776e+00 +4.9320e+00 +4.7609e+00 +5.0484e+00 +4.9427e+00 +5.0486e+00 +5.0304e+00 +4.8379e+00 +4.7186e+00 +4.9491e+00 +5.0571e+00 +4.8663e+00 +4.9015e+00 +4.8330e+00 +4.7622e+00 +5.1000e+00 +5.2169e+00 +4.7650e+00 +5.1141e+00 +4.8038e+00 +4.8809e+00 +4.7161e+00 +4.9274e+00 +4.9185e+00 +4.7182e+00 +4.8768e+00 +4.7774e+00 +5.0049e+00 +4.8563e+00 +4.6943e+00 +4.9221e+00 +4.9081e+00 +4.9415e+00 +5.1030e+00 +4.7834e+00 +4.8249e+00 +4.8540e+00 +4.9058e+00 +5.0029e+00 +4.8639e+00 +4.8660e+00 +4.8267e+00 +4.6555e+00 +4.8995e+00 +5.1105e+00 +4.9628e+00 +5.0365e+00 +4.9751e+00 +4.9376e+00 +4.7531e+00 +4.7970e+00 +4.9426e+00 +4.9024e+00 +4.8525e+00 +4.8035e+00 +4.7688e+00 +4.7535e+00 +4.9894e+00 +4.9087e+00 +5.1030e+00 +4.8476e+00 +4.7660e+00 +4.7712e+00 +5.0316e+00 +4.9323e+00 +4.8536e+00 +4.8955e+00 +4.8502e+00 +4.7833e+00 +4.8528e+00 +4.7581e+00 +4.7238e+00 +4.8571e+00 +4.8010e+00 +5.0922e+00 +4.9844e+00 +5.0105e+00 +4.8529e+00 +5.1632e+00 +5.0048e+00 +4.9288e+00 +4.9683e+00 +5.0147e+00 +4.8247e+00 +4.6903e+00 +5.0856e+00 +4.8859e+00 +4.9378e+00 +4.7873e+00 +5.0487e+00 +4.6776e+00 +4.8475e+00 +4.8526e+00 +4.8074e+00 +4.8539e+00 +4.8416e+00 +5.0144e+00 +4.8899e+00 +4.7135e+00 +4.7365e+00 +4.9676e+00 +5.0160e+00 +5.0294e+00 +5.0992e+00 +4.9506e+00 +4.6098e+00 +4.8354e+00 +4.8966e+00 +4.7828e+00 +5.1990e+00 +4.9557e+00 +4.8174e+00 +4.7285e+00 +5.0580e+00 +4.9251e+00 +4.8522e+00 +5.0766e+00 +4.8613e+00 +4.8521e+00 +4.7365e+00 +4.9443e+00 +4.7161e+00 +4.7820e+00 +4.7147e+00 +4.8447e+00 +4.7615e+00 +4.6530e+00 +4.8877e+00 +4.8212e+00 +4.7842e+00 +4.8895e+00 +4.8026e+00 +5.0084e+00 +4.7093e+00 +4.8350e+00 +5.0481e+00 +4.8087e+00 +4.9881e+00 +4.6102e+00 +5.1350e+00 +4.9811e+00 +4.8343e+00 +4.7268e+00 +4.8368e+00 +4.9270e+00 +4.8360e+00 +4.7841e+00 +4.7841e+00 +4.8784e+00 +4.7650e+00 +5.0443e+00 +4.9057e+00 +4.8060e+00 +4.8533e+00 +4.9556e+00 +4.7142e+00 +4.9018e+00 +4.7980e+00 +4.8382e+00 +4.8941e+00 +4.8679e+00 +4.9110e+00 +4.8198e+00 +4.9128e+00 +4.8738e+00 +4.9060e+00 +5.0036e+00 +4.7496e+00 +5.0046e+00 +4.7154e+00 +4.7487e+00 +4.8441e+00 +4.7793e+00 +4.8739e+00 +4.7562e+00 +4.9036e+00 +4.8576e+00 +4.6800e+00 +4.8495e+00 +4.9749e+00 +5.0087e+00 +4.8370e+00 +4.8301e+00 +4.8103e+00 +4.7218e+00 +4.8191e+00 +4.9641e+00 +4.8907e+00 +4.7300e+00 +4.8998e+00 +4.8525e+00 +4.8219e+00 +4.9279e+00 +4.6517e+00 +4.9346e+00 +4.9728e+00 +4.9828e+00 +4.7761e+00 +4.9656e+00 +4.7258e+00 +4.7851e+00 +4.7929e+00 +4.9279e+00 +4.7627e+00 +4.7712e+00 +4.6684e+00 +4.8564e+00 +4.6489e+00 +4.7767e+00 +4.8087e+00 +4.9606e+00 +4.8464e+00 +4.7988e+00 +4.8571e+00 +4.8865e+00 +4.9389e+00 +4.9274e+00 +4.6202e+00 +4.9006e+00 +4.9399e+00 +4.6898e+00 +4.8640e+00 +4.7640e+00 +4.6238e+00 +4.5923e+00 +4.9729e+00 +4.8715e+00 +4.6214e+00 +4.7989e+00 +4.8222e+00 +4.9261e+00 +4.7473e+00 +4.7753e+00 +4.8018e+00 +4.5895e+00 +4.7872e+00 +4.7412e+00 +4.8826e+00 +4.8314e+00 +4.9671e+00 +5.0379e+00 +4.6965e+00 +4.8594e+00 +4.7897e+00 +4.7054e+00 +4.7445e+00 +4.7427e+00 +4.7659e+00 +4.8434e+00 +4.7966e+00 +4.8604e+00 +4.9604e+00 +4.6941e+00 +4.9741e+00 +4.8375e+00 +4.6897e+00 +5.0310e+00 +4.8477e+00 +4.8085e+00 +4.7398e+00 +5.1197e+00 +4.6595e+00 +4.7503e+00 +4.8639e+00 +4.8968e+00 +4.7176e+00 +4.8005e+00 +4.8796e+00 +4.8194e+00 +4.7286e+00 +4.8192e+00 +4.9174e+00 +4.7714e+00 +4.8381e+00 +4.5979e+00 +4.8908e+00 +4.9048e+00 +4.7775e+00 +4.7138e+00 +4.7287e+00 +4.7377e+00 +4.8354e+00 +4.7454e+00 +4.7975e+00 +4.8793e+00 +4.8561e+00 +4.8661e+00 +4.9215e+00 +4.7058e+00 +4.7123e+00 +4.8565e+00 +4.7593e+00 +4.6200e+00 +4.7595e+00 +4.9182e+00 +4.7593e+00 +4.7934e+00 +4.7614e+00 +4.5701e+00 +4.9376e+00 +4.7880e+00 +4.7368e+00 +4.7460e+00 +4.8431e+00 +4.8211e+00 +4.6950e+00 +4.7502e+00 +4.9691e+00 +4.8992e+00 +4.9013e+00 +4.6599e+00 +4.5909e+00 +4.4896e+00 +4.5771e+00 +4.7886e+00 +4.6953e+00 +4.7537e+00 +4.7052e+00 +4.6409e+00 +4.5253e+00 +4.8865e+00 +4.6540e+00 +4.9764e+00 +4.6258e+00 +4.8290e+00 +4.7701e+00 +4.7567e+00 +4.7334e+00 +4.8292e+00 +4.8248e+00 +4.8139e+00 +4.7347e+00 +4.8306e+00 +4.7741e+00 +4.9588e+00 +4.9207e+00 +4.9889e+00 +4.7923e+00 +4.8128e+00 +4.7896e+00 +4.7552e+00 +4.7996e+00 +4.7925e+00 +4.9689e+00 +4.6224e+00 +4.9648e+00 +4.8443e+00 +4.8629e+00 +4.7824e+00 +4.7636e+00 +4.7994e+00 +4.8181e+00 +4.6602e+00 +5.0688e+00 +4.5669e+00 +4.6091e+00 +4.6903e+00 +4.8456e+00 +4.9356e+00 +4.6169e+00 +4.9525e+00 +4.9203e+00 +4.8464e+00 +4.7011e+00 +4.8028e+00 +4.7744e+00 +4.9243e+00 +4.7480e+00 +4.7489e+00 +4.6675e+00 +4.7124e+00 +4.6712e+00 +4.9541e+00 +4.6457e+00 +4.8151e+00 +4.5125e+00 +4.5891e+00 +4.4711e+00 +4.8306e+00 +4.7197e+00 +4.8753e+00 +4.8066e+00 +4.9068e+00 +4.8610e+00 +4.7009e+00 +4.7882e+00 +4.8030e+00 +4.6859e+00 +4.6165e+00 +4.9743e+00 +4.8503e+00 +4.7944e+00 +4.7091e+00 +4.6182e+00 +4.7312e+00 +4.7046e+00 +4.7626e+00 +4.7343e+00 +4.9357e+00 +4.6885e+00 +4.9012e+00 +4.8345e+00 +4.8070e+00 +4.7272e+00 +4.7214e+00 +4.9454e+00 +4.6405e+00 +4.6987e+00 +4.6975e+00 +4.7785e+00 +4.5341e+00 +4.8412e+00 +4.7058e+00 +4.8107e+00 +4.4474e+00 +4.7510e+00 +4.7525e+00 +4.8148e+00 +4.7304e+00 +4.6771e+00 +4.8744e+00 +4.8977e+00 +4.7922e+00 +5.0195e+00 +4.5749e+00 +4.6754e+00 +4.7931e+00 +4.8249e+00 +4.6917e+00 +4.7552e+00 +4.7324e+00 +4.7785e+00 +4.8963e+00 +4.7772e+00 +4.7115e+00 +4.8106e+00 +4.7229e+00 +4.6480e+00 +4.8067e+00 +4.5676e+00 +4.7684e+00 +4.7182e+00 +4.7117e+00 +4.8450e+00 +4.6870e+00 +4.7259e+00 +4.7873e+00 +4.7378e+00 +4.8891e+00 +4.7970e+00 +4.7698e+00 +4.8313e+00 +4.5979e+00 +4.6025e+00 +4.8463e+00 +4.6303e+00 +4.6430e+00 +4.6193e+00 +4.8254e+00 +4.6807e+00 +4.7728e+00 +4.5857e+00 +4.6396e+00 +4.5800e+00 +4.8073e+00 +4.5509e+00 +4.9992e+00 +4.7653e+00 +4.7472e+00 +4.6330e+00 +4.6733e+00 +4.6680e+00 +4.7679e+00 +4.7522e+00 +4.5239e+00 +4.8313e+00 +4.5582e+00 +4.6424e+00 +4.4859e+00 +4.6577e+00 +4.9651e+00 +4.6415e+00 +4.8349e+00 +4.8724e+00 +4.6700e+00 +4.6703e+00 +4.6118e+00 +4.6393e+00 +4.7994e+00 +4.6168e+00 +4.6344e+00 +4.5356e+00 +4.8693e+00 +4.7713e+00 +4.8009e+00 +4.7548e+00 +4.7440e+00 +4.6899e+00 +4.8985e+00 +4.9043e+00 +4.8511e+00 +4.7635e+00 +4.8584e+00 +4.6103e+00 +4.7633e+00 +4.7892e+00 +4.7905e+00 +4.7219e+00 +4.7513e+00 +4.7836e+00 +4.6031e+00 +4.6707e+00 +4.7315e+00 +4.9562e+00 +4.6998e+00 +4.7004e+00 +4.6539e+00 +4.6790e+00 +4.5157e+00 +4.4823e+00 +4.5413e+00 +4.8054e+00 +4.7300e+00 +4.7236e+00 +4.6037e+00 +4.5645e+00 +4.6089e+00 +4.6632e+00 +4.8380e+00 +4.8603e+00 +4.7580e+00 +4.7079e+00 +4.6875e+00 +4.7821e+00 +4.7040e+00 +4.6857e+00 +4.6967e+00 +4.5437e+00 +4.5659e+00 +4.8928e+00 +4.4583e+00 +4.6374e+00 +4.8041e+00 +4.7803e+00 +4.8303e+00 +4.7299e+00 +4.9272e+00 +5.0180e+00 +4.8121e+00 +4.7466e+00 +4.6130e+00 +4.8138e+00 +4.7587e+00 +4.7756e+00 +4.7280e+00 +4.8034e+00 +4.7340e+00 +4.6928e+00 +4.8180e+00 +4.7520e+00 +4.4803e+00 +4.7077e+00 +4.7105e+00 +4.7805e+00 +4.8452e+00 +4.4804e+00 +4.6616e+00 +4.7444e+00 +4.8081e+00 +4.6724e+00 +4.6040e+00 +4.7745e+00 +4.7786e+00 +4.5311e+00 +4.6532e+00 +4.9156e+00 +4.5898e+00 +4.6241e+00 +4.7498e+00 +4.8515e+00 +4.5701e+00 +4.7026e+00 +4.7499e+00 +4.6097e+00 +4.7902e+00 +4.8753e+00 +4.5807e+00 +4.6874e+00 +4.5665e+00 +4.5320e+00 +5.0587e+00 +4.6365e+00 +4.7112e+00 +4.4903e+00 +4.4488e+00 +4.7798e+00 +4.6224e+00 +4.4521e+00 +4.6405e+00 +4.6285e+00 +4.7266e+00 +4.8152e+00 +4.8745e+00 +4.5143e+00 +4.6275e+00 +4.7700e+00 +4.5827e+00 +4.9815e+00 +4.7681e+00 +4.7479e+00 +4.5086e+00 +4.5688e+00 +4.5949e+00 +4.7700e+00 +4.7095e+00 +4.8128e+00 +4.7492e+00 +4.4384e+00 +4.6424e+00 +4.6497e+00 +4.5436e+00 +4.7843e+00 +4.5062e+00 +4.6245e+00 +4.8145e+00 +4.8745e+00 +4.6017e+00 +4.6129e+00 +4.4833e+00 +4.7052e+00 +4.5251e+00 +4.6615e+00 +4.2295e+00 +4.5539e+00 +4.7313e+00 +4.5597e+00 +4.8348e+00 +4.8232e+00 +4.5981e+00 +4.4609e+00 +4.7186e+00 +4.6939e+00 +4.5211e+00 +4.5953e+00 +4.6104e+00 +4.6115e+00 +4.8671e+00 +4.8126e+00 +4.6334e+00 +4.6718e+00 +4.6376e+00 +4.8069e+00 +4.6435e+00 +4.4340e+00 +4.5987e+00 +4.6143e+00 +4.6637e+00 +4.5957e+00 +4.6917e+00 +4.5770e+00 +4.8146e+00 +4.8137e+00 +4.5229e+00 +4.7612e+00 +4.6934e+00 +4.7597e+00 +4.7563e+00 +4.5309e+00 +4.8763e+00 +4.7729e+00 +4.5213e+00 +4.5484e+00 +4.7515e+00 +4.8079e+00 +4.4443e+00 +4.7435e+00 +4.5957e+00 +4.6892e+00 +4.7305e+00 +4.7977e+00 +4.5781e+00 +4.8025e+00 +4.7691e+00 +4.5089e+00 +4.7003e+00 +4.6087e+00 +4.5580e+00 +4.4228e+00 +4.7961e+00 +4.5645e+00 +4.8219e+00 +4.7460e+00 +4.6655e+00 +4.7843e+00 +4.6681e+00 +4.5005e+00 +4.6895e+00 +4.6347e+00 +4.8816e+00 +4.6986e+00 +4.5890e+00 +4.6973e+00 +4.8257e+00 +4.7764e+00 +4.4778e+00 +4.5912e+00 +4.7656e+00 +4.7324e+00 +4.5279e+00 +4.8671e+00 +4.5185e+00 +4.7548e+00 +4.5431e+00 +4.7991e+00 +4.7156e+00 +4.6825e+00 +4.6453e+00 +4.6232e+00 +4.7666e+00 +4.6799e+00 +4.6130e+00 +4.6456e+00 +4.8592e+00 +4.6683e+00 +4.7765e+00 +4.5973e+00 +4.7375e+00 +4.8271e+00 +4.7242e+00 +4.5052e+00 +4.4145e+00 +4.8311e+00 +4.5904e+00 +4.6694e+00 +4.5762e+00 +4.6069e+00 +4.4011e+00 +4.4635e+00 +4.7182e+00 +4.7779e+00 +4.5998e+00 +4.8518e+00 +4.6066e+00 +4.6736e+00 +4.7091e+00 +4.7494e+00 +4.7879e+00 +4.6470e+00 +4.6169e+00 +4.5448e+00 +4.9068e+00 +4.8506e+00 +4.6110e+00 +4.7534e+00 +4.8506e+00 +4.5530e+00 +4.6197e+00 +4.5474e+00 +4.6254e+00 +4.4978e+00 +4.7968e+00 +4.5368e+00 +4.6949e+00 +4.5748e+00 +4.5211e+00 +4.5851e+00 +4.4701e+00 +4.6483e+00 +4.5629e+00 +4.8159e+00 +4.6783e+00 +4.6726e+00 +4.5729e+00 +4.5145e+00 +4.4904e+00 +4.7165e+00 +4.9451e+00 +4.8064e+00 +4.6810e+00 +4.5679e+00 +4.8969e+00 +4.5524e+00 +4.6866e+00 +4.5822e+00 +4.3487e+00 +4.6049e+00 +4.7398e+00 +4.8197e+00 +4.4371e+00 +4.5410e+00 +4.5339e+00 +4.7093e+00 +4.4355e+00 +4.5648e+00 +4.7759e+00 +4.7626e+00 +4.4855e+00 +4.6731e+00 +4.6207e+00 +4.7113e+00 +4.6095e+00 +4.7878e+00 +4.5264e+00 +4.6610e+00 +4.7308e+00 +4.6948e+00 +4.5016e+00 +4.6564e+00 +4.5723e+00 +4.7626e+00 +4.6500e+00 +4.6446e+00 +4.6717e+00 +4.8052e+00 +4.7691e+00 +4.8222e+00 +4.4712e+00 +4.6917e+00 +4.5093e+00 +4.6869e+00 +4.4076e+00 +4.9126e+00 +4.4704e+00 +4.6121e+00 +4.6575e+00 +4.5546e+00 +4.7320e+00 +4.5531e+00 +4.4344e+00 +4.3269e+00 +4.5659e+00 +4.4466e+00 +4.7130e+00 +4.3553e+00 +4.4090e+00 +4.6086e+00 +4.8338e+00 +4.5407e+00 +4.5816e+00 +4.6388e+00 +4.5388e+00 +4.5858e+00 +4.6169e+00 +4.6365e+00 +4.4171e+00 +4.6697e+00 +4.6705e+00 +4.6242e+00 +4.7404e+00 +4.4498e+00 +4.5445e+00 +4.7426e+00 +4.4984e+00 +4.5299e+00 +4.5691e+00 +4.6108e+00 +4.5647e+00 +4.5791e+00 +4.6123e+00 +4.5320e+00 +4.7110e+00 +4.4755e+00 +4.6455e+00 +4.5337e+00 +4.5384e+00 +4.3732e+00 +4.6405e+00 +4.5166e+00 +4.6196e+00 +4.6249e+00 +4.4691e+00 +4.4654e+00 +4.6854e+00 +4.3882e+00 +4.5227e+00 +4.6148e+00 +4.4053e+00 +4.5672e+00 +4.4880e+00 +4.7655e+00 +4.5967e+00 +4.5829e+00 +4.9673e+00 +4.6727e+00 +4.6186e+00 +4.4727e+00 +4.5440e+00 +4.5577e+00 +4.8827e+00 +4.6104e+00 +4.6816e+00 +4.5894e+00 +4.7424e+00 +4.6217e+00 +4.4479e+00 +4.6359e+00 +4.5989e+00 +4.7555e+00 +4.6454e+00 +4.6968e+00 +4.5547e+00 +4.5432e+00 +4.4506e+00 +4.6579e+00 +4.3975e+00 +4.6904e+00 +4.7022e+00 +4.4446e+00 +4.6475e+00 +4.4356e+00 +4.6290e+00 +4.5330e+00 +4.4766e+00 +4.5269e+00 +4.4815e+00 +4.5655e+00 +4.4843e+00 +4.8117e+00 +4.5891e+00 +4.3867e+00 +4.6257e+00 +4.5897e+00 +4.6242e+00 +4.5667e+00 +4.6983e+00 +4.4406e+00 +4.5575e+00 +4.6343e+00 +4.5578e+00 +4.6144e+00 +4.6127e+00 +4.7344e+00 +4.5696e+00 +4.5533e+00 +4.5035e+00 +4.6079e+00 +4.6263e+00 +4.4661e+00 +4.6097e+00 +4.5960e+00 +4.5500e+00 +4.5563e+00 +4.5823e+00 +4.5370e+00 +4.4510e+00 +4.7238e+00 +4.4939e+00 +4.5541e+00 +4.3895e+00 +4.3665e+00 +4.3743e+00 +4.4109e+00 +4.6802e+00 +4.6507e+00 +4.8022e+00 +4.3392e+00 +4.6373e+00 +4.6260e+00 +4.3373e+00 +4.6592e+00 +4.4453e+00 +4.4258e+00 +4.4990e+00 +4.4506e+00 +4.5634e+00 +4.3528e+00 +4.5430e+00 +4.6044e+00 +4.5335e+00 +4.6772e+00 +4.7081e+00 +4.5440e+00 +4.5197e+00 +4.6776e+00 +4.4708e+00 +4.4678e+00 +4.3981e+00 +4.5114e+00 +4.4686e+00 +4.4492e+00 +4.5289e+00 +4.5884e+00 +4.5294e+00 +4.4891e+00 +4.4317e+00 +4.5477e+00 +4.4628e+00 +4.5768e+00 +4.5854e+00 +4.6123e+00 +4.5571e+00 +4.3591e+00 +4.5048e+00 +4.5768e+00 +4.3737e+00 +4.3508e+00 +4.5052e+00 +4.5838e+00 +4.4569e+00 +4.5200e+00 +4.3250e+00 +4.5707e+00 +4.4293e+00 +4.7000e+00 +4.5700e+00 +4.7652e+00 +4.7401e+00 +4.4364e+00 +4.8072e+00 +4.7605e+00 +4.5413e+00 +4.6063e+00 +4.4528e+00 +4.4926e+00 +4.7293e+00 +4.5468e+00 +4.5155e+00 +4.5619e+00 +4.6329e+00 +4.5627e+00 +4.5127e+00 +4.3150e+00 +4.6050e+00 +4.7062e+00 +4.5661e+00 +4.6276e+00 +4.3564e+00 +4.5424e+00 +4.6385e+00 +4.7014e+00 +4.3807e+00 +4.5564e+00 +4.5207e+00 +4.5641e+00 +4.5712e+00 +4.7505e+00 +4.6641e+00 +4.3390e+00 +4.6795e+00 +4.5343e+00 +4.5547e+00 +4.4633e+00 +4.5532e+00 +4.4771e+00 +4.6114e+00 +4.4133e+00 +4.5059e+00 +4.5126e+00 +4.4950e+00 +4.3143e+00 +4.4279e+00 +4.6218e+00 +4.5168e+00 +4.5393e+00 +4.4250e+00 +4.4348e+00 +4.6472e+00 +4.4249e+00 +4.4068e+00 +4.5791e+00 +4.5991e+00 +4.4604e+00 +4.6977e+00 +4.5215e+00 +4.5372e+00 +4.2781e+00 +4.3902e+00 +4.4368e+00 +4.2576e+00 +4.3333e+00 +4.7272e+00 +4.3041e+00 +4.6483e+00 +4.6357e+00 +4.5616e+00 +4.6162e+00 +4.5258e+00 +4.3857e+00 +4.4994e+00 +4.3476e+00 +4.6073e+00 +4.5696e+00 +4.4957e+00 +4.4182e+00 +4.4576e+00 +4.4432e+00 +4.6690e+00 +4.3010e+00 +4.4391e+00 +4.5513e+00 +4.5175e+00 +4.5846e+00 +4.5441e+00 +4.5015e+00 +4.5356e+00 +4.5446e+00 +4.5721e+00 +4.6285e+00 +4.5004e+00 +4.2617e+00 +4.6275e+00 +4.7460e+00 +4.4092e+00 +4.3599e+00 +4.6158e+00 +4.6201e+00 +4.4047e+00 +4.4261e+00 +4.3764e+00 +4.5563e+00 +4.6389e+00 +4.2925e+00 +4.3516e+00 +4.5790e+00 +4.3756e+00 +4.5731e+00 +4.4554e+00 +4.3684e+00 +4.4334e+00 +4.7034e+00 +4.5737e+00 +4.3135e+00 +4.5284e+00 +4.3952e+00 +4.5617e+00 +4.2906e+00 +4.3568e+00 +4.4180e+00 +4.4394e+00 +4.4053e+00 +4.5626e+00 +4.5508e+00 +4.3972e+00 +4.5118e+00 +4.6770e+00 +4.4836e+00 +4.3687e+00 +4.4541e+00 +4.4346e+00 +4.6439e+00 +4.4697e+00 +4.3314e+00 +4.4850e+00 +4.5674e+00 +4.7115e+00 +4.5613e+00 +4.4625e+00 +4.4002e+00 +4.4634e+00 +4.3455e+00 +4.4639e+00 +4.3724e+00 +4.3501e+00 +4.4300e+00 +4.3416e+00 +4.5283e+00 +4.4215e+00 +4.6191e+00 +4.3624e+00 +4.6125e+00 +4.4843e+00 +4.3789e+00 +4.3770e+00 +4.6950e+00 +4.4580e+00 +4.6000e+00 +4.4871e+00 +4.5869e+00 +4.8340e+00 +4.5316e+00 +4.3987e+00 +4.5331e+00 +4.2400e+00 +4.4422e+00 +4.4605e+00 +4.5681e+00 +4.4149e+00 +4.4792e+00 +4.4563e+00 +4.4150e+00 +4.6220e+00 +4.5818e+00 +4.4919e+00 +4.4279e+00 +4.3694e+00 +4.4720e+00 +4.6385e+00 +4.5978e+00 +4.5334e+00 +4.4597e+00 +4.3550e+00 +4.3803e+00 +4.4386e+00 +4.5465e+00 +4.5842e+00 +4.5616e+00 +4.5450e+00 +4.3964e+00 +4.4841e+00 +4.2736e+00 +4.6363e+00 +4.5633e+00 +4.5645e+00 +4.5415e+00 +4.4122e+00 +4.4602e+00 +4.5078e+00 +4.6021e+00 +4.2984e+00 +4.5188e+00 +4.6531e+00 +4.4563e+00 +4.5459e+00 +4.5899e+00 +4.4408e+00 +4.7015e+00 +4.3737e+00 +4.4252e+00 +4.6148e+00 +4.5019e+00 +4.5411e+00 +4.4983e+00 +4.3524e+00 +4.5481e+00 +4.3081e+00 +4.6192e+00 +4.5091e+00 +4.2471e+00 +4.5281e+00 +4.3283e+00 +4.1789e+00 +4.6035e+00 +4.5602e+00 +4.2927e+00 +4.3215e+00 +4.6410e+00 +4.5399e+00 +4.3738e+00 +4.5711e+00 +4.5628e+00 +4.5563e+00 +4.4288e+00 +4.5930e+00 +4.3596e+00 +4.2881e+00 +4.3978e+00 +4.4960e+00 +4.4355e+00 +4.4438e+00 +4.4708e+00 +4.6558e+00 +4.4050e+00 +4.3196e+00 +4.2779e+00 +4.2440e+00 +4.5373e+00 +4.7074e+00 +4.6633e+00 +4.3704e+00 +4.4262e+00 +4.4293e+00 +4.6242e+00 +4.5352e+00 +4.3605e+00 +4.3871e+00 +4.5659e+00 +4.4327e+00 +4.5372e+00 +4.3518e+00 +4.3701e+00 +4.4327e+00 +4.6435e+00 +4.5362e+00 +4.4845e+00 +4.3965e+00 +4.5729e+00 +4.7328e+00 +4.3418e+00 +4.2238e+00 +4.3603e+00 +4.2656e+00 +4.3202e+00 +4.5019e+00 +4.5198e+00 +4.4885e+00 +4.4149e+00 +4.3857e+00 +4.3243e+00 +4.3730e+00 +4.2594e+00 +4.4748e+00 +4.5545e+00 +4.4397e+00 +4.3184e+00 +4.4908e+00 +4.2655e+00 +4.4936e+00 +4.2901e+00 +4.4094e+00 +4.3026e+00 +4.5145e+00 +4.5050e+00 +4.4300e+00 +4.4593e+00 +4.3613e+00 +4.4845e+00 +4.5156e+00 +4.3287e+00 +4.3557e+00 +4.5538e+00 +4.4158e+00 +4.5402e+00 +4.3366e+00 +4.4641e+00 +4.3760e+00 +4.4016e+00 +4.4871e+00 +4.6555e+00 +4.5760e+00 +4.5379e+00 +4.5128e+00 +4.3937e+00 +4.4130e+00 +4.5463e+00 +4.5805e+00 +4.6051e+00 +4.3413e+00 +4.6395e+00 +4.3248e+00 +4.3808e+00 +4.2272e+00 +4.4102e+00 +4.5909e+00 +4.3904e+00 +4.6680e+00 +4.3849e+00 +4.6384e+00 +4.3856e+00 +4.3418e+00 +4.4165e+00 +4.2480e+00 +4.3417e+00 +4.6267e+00 +4.2733e+00 +4.4555e+00 +4.4002e+00 +4.4857e+00 +4.2536e+00 +4.3204e+00 +4.2569e+00 +4.2716e+00 +4.4595e+00 +4.5590e+00 +4.4441e+00 +4.4709e+00 +4.4313e+00 +4.5850e+00 +4.3366e+00 +4.4524e+00 +4.6186e+00 +4.1954e+00 +4.3344e+00 +4.4934e+00 +4.2519e+00 +4.4162e+00 +4.2980e+00 +4.3807e+00 +4.5174e+00 +4.2863e+00 +4.2496e+00 +4.3189e+00 +4.3014e+00 +4.1138e+00 +4.3590e+00 +4.5089e+00 +4.4823e+00 +4.5379e+00 +4.4918e+00 +4.3081e+00 +4.3839e+00 +4.4913e+00 +4.4687e+00 +4.5461e+00 +4.3203e+00 +4.4577e+00 +4.3313e+00 +4.4024e+00 +4.5073e+00 +4.5102e+00 +4.4377e+00 +4.2567e+00 +4.2777e+00 +4.1523e+00 +4.3424e+00 +4.4979e+00 +4.5022e+00 +4.4735e+00 +4.3742e+00 +4.5433e+00 +4.2817e+00 +4.2150e+00 +4.5023e+00 +4.1735e+00 +4.1960e+00 +4.5861e+00 +4.2496e+00 +4.5110e+00 +4.5661e+00 +4.6031e+00 +4.4277e+00 +4.1910e+00 +4.4616e+00 +4.2172e+00 +4.5804e+00 +4.2766e+00 +4.2759e+00 +4.3303e+00 +4.3219e+00 +4.3385e+00 +4.3200e+00 +4.4628e+00 +4.6727e+00 +4.4840e+00 +4.1879e+00 +4.1622e+00 +4.2891e+00 +4.4028e+00 +4.2606e+00 +4.4643e+00 +4.3375e+00 +4.5498e+00 +4.4875e+00 +4.3759e+00 +4.5553e+00 +4.0201e+00 +4.4411e+00 +4.3476e+00 +4.3300e+00 +4.4218e+00 +4.4941e+00 +4.4660e+00 +4.3969e+00 +4.7454e+00 +4.3312e+00 +4.3063e+00 +4.4225e+00 +4.2735e+00 +4.1377e+00 +4.3643e+00 +4.6574e+00 +4.7194e+00 +4.2243e+00 +4.4512e+00 +4.5579e+00 +4.3798e+00 +4.4082e+00 +4.1458e+00 +4.5293e+00 +4.3271e+00 +4.5148e+00 +4.1776e+00 +4.4923e+00 +4.3328e+00 +4.3541e+00 +4.3862e+00 +4.3317e+00 +4.2783e+00 +4.1994e+00 +4.6109e+00 +4.4952e+00 +4.5791e+00 +4.2334e+00 +4.2450e+00 +4.5049e+00 +4.2327e+00 +4.3130e+00 +4.4293e+00 +4.2430e+00 +4.3276e+00 +4.4289e+00 +4.0753e+00 +4.3772e+00 +4.2138e+00 +4.3339e+00 +4.4974e+00 +4.4488e+00 +4.3566e+00 +4.5453e+00 +4.4566e+00 +4.5748e+00 +4.4774e+00 +4.3455e+00 +4.6509e+00 +4.4821e+00 +4.4338e+00 +4.3226e+00 +4.5361e+00 +4.5097e+00 +4.1601e+00 +4.3758e+00 +4.5663e+00 +4.2146e+00 +4.5370e+00 +4.2941e+00 +4.5158e+00 +4.4445e+00 +4.1380e+00 +4.1371e+00 +4.2952e+00 +4.5278e+00 +4.2624e+00 +4.3911e+00 +4.0960e+00 +4.1533e+00 +4.4661e+00 +4.4119e+00 +4.4416e+00 +4.4128e+00 +4.4137e+00 +4.2880e+00 +4.3141e+00 +4.4306e+00 +4.4159e+00 +4.2804e+00 +4.2701e+00 +4.2552e+00 +4.5980e+00 +4.3704e+00 +4.3361e+00 +4.3565e+00 +4.3375e+00 +4.3372e+00 +4.2147e+00 +4.4765e+00 +4.2142e+00 +4.2907e+00 +4.3220e+00 +4.5608e+00 +4.5303e+00 +4.4945e+00 +4.4130e+00 +4.3042e+00 +4.4809e+00 +4.2587e+00 +4.4817e+00 +4.5914e+00 +4.2550e+00 +4.4733e+00 +4.3950e+00 +4.2143e+00 +4.1960e+00 +4.4024e+00 +4.4286e+00 +4.3794e+00 +4.4255e+00 +4.1534e+00 +4.4387e+00 +4.4240e+00 +4.3438e+00 +4.2682e+00 +4.4539e+00 +4.2536e+00 +4.4787e+00 +4.3606e+00 +4.2127e+00 +4.2678e+00 +4.1325e+00 +4.6087e+00 +4.3429e+00 +4.3333e+00 +4.2966e+00 +4.2812e+00 +4.0328e+00 +4.2401e+00 +4.5453e+00 +4.3928e+00 +4.2604e+00 +4.3250e+00 +4.1458e+00 +4.4653e+00 +4.3047e+00 +4.1490e+00 +4.5396e+00 +4.3163e+00 +4.2074e+00 +4.4314e+00 +4.4645e+00 +4.2920e+00 +4.3501e+00 +4.2313e+00 +4.1878e+00 +4.5385e+00 +4.3600e+00 +4.2320e+00 +4.2125e+00 +4.5129e+00 +4.3612e+00 +4.3480e+00 +4.3341e+00 +4.3949e+00 +4.4505e+00 +4.3415e+00 +4.3954e+00 +4.2924e+00 +4.2836e+00 +4.1740e+00 +4.4597e+00 +4.4810e+00 +4.4138e+00 +4.1884e+00 +4.2975e+00 +4.3253e+00 +4.3874e+00 +4.3099e+00 +4.1888e+00 +4.5643e+00 +4.3286e+00 +4.2893e+00 +4.3975e+00 +4.3264e+00 +4.3353e+00 +4.2075e+00 +4.0944e+00 +4.4145e+00 +4.4030e+00 +4.4466e+00 +4.2938e+00 +4.3540e+00 +4.3831e+00 +4.2825e+00 +4.2587e+00 +4.1895e+00 +4.2889e+00 +4.2343e+00 +4.3873e+00 +4.3637e+00 +4.3229e+00 +4.5597e+00 +4.5253e+00 +4.5048e+00 +4.6060e+00 +4.2298e+00 +4.1621e+00 +4.1692e+00 +4.1120e+00 +4.2015e+00 +4.4208e+00 +4.1342e+00 +4.2192e+00 +4.2930e+00 +4.3892e+00 +4.6202e+00 +4.4992e+00 +4.2876e+00 +4.5252e+00 +4.1444e+00 +4.4836e+00 +4.2374e+00 +4.2320e+00 +4.0329e+00 +4.1640e+00 +4.1990e+00 +4.4057e+00 +4.3068e+00 +4.2380e+00 +4.2154e+00 +4.0633e+00 +4.1913e+00 +4.2469e+00 +4.2638e+00 +4.4494e+00 +4.3091e+00 +4.0770e+00 +4.4129e+00 +4.3449e+00 +4.3433e+00 +4.3030e+00 +4.3526e+00 +4.1240e+00 +4.1294e+00 +4.5255e+00 +4.1124e+00 +4.3279e+00 +4.3846e+00 +4.3644e+00 +4.3655e+00 +4.3542e+00 +4.2492e+00 +4.3841e+00 +4.3323e+00 +4.0617e+00 +4.1817e+00 +4.3451e+00 +4.6248e+00 +4.5433e+00 +4.3738e+00 +4.3851e+00 +4.4722e+00 +4.2071e+00 +4.6144e+00 +4.4504e+00 +4.2666e+00 +4.4527e+00 +4.3161e+00 +4.1441e+00 +4.5235e+00 +4.2816e+00 +4.4383e+00 +4.4292e+00 +4.2944e+00 +4.1916e+00 +4.2761e+00 +4.2643e+00 +4.0966e+00 +4.1644e+00 +4.3586e+00 +4.2618e+00 +4.4506e+00 +4.1592e+00 +4.1093e+00 +4.3023e+00 +4.3480e+00 +4.4878e+00 +4.4576e+00 +4.3096e+00 +4.1135e+00 +4.2420e+00 +4.1311e+00 +4.2879e+00 +4.4220e+00 +4.1810e+00 +4.0615e+00 +4.1520e+00 +4.3006e+00 +4.2312e+00 +4.3806e+00 +4.6018e+00 +4.2768e+00 +4.0906e+00 +4.3175e+00 +4.3434e+00 +4.4431e+00 +4.2695e+00 +4.2609e+00 +4.2597e+00 +4.3128e+00 +4.3246e+00 +4.2098e+00 +4.4346e+00 +4.3970e+00 +4.3880e+00 +4.1356e+00 +4.5507e+00 +4.5470e+00 +4.1993e+00 +4.4562e+00 +4.1509e+00 +4.3308e+00 +4.3808e+00 +4.2225e+00 +4.1811e+00 +4.1692e+00 +4.1747e+00 +4.3870e+00 +4.1528e+00 +4.2451e+00 +4.3091e+00 +4.3504e+00 +4.2365e+00 +4.3315e+00 +4.2316e+00 +4.4625e+00 +4.4986e+00 +4.1049e+00 +4.3917e+00 +4.4717e+00 +4.7119e+00 +4.6653e+00 +4.1655e+00 +4.3396e+00 +4.2068e+00 +4.2674e+00 +4.2970e+00 +4.4649e+00 +4.2745e+00 +4.4962e+00 +4.0988e+00 +4.1278e+00 +4.2790e+00 +4.5253e+00 +4.2696e+00 +4.1460e+00 +4.5128e+00 +4.2776e+00 +4.4426e+00 +4.2466e+00 +4.2657e+00 +4.4832e+00 +4.2989e+00 +4.3483e+00 +4.5656e+00 +4.1383e+00 +4.3886e+00 +4.0840e+00 +4.3666e+00 +4.1707e+00 +4.2968e+00 +4.2586e+00 +4.4268e+00 +4.2663e+00 +4.1615e+00 +4.3376e+00 +4.4652e+00 +4.2928e+00 +4.3198e+00 +4.4345e+00 +4.0961e+00 +4.4994e+00 +4.3128e+00 +4.2891e+00 +4.3797e+00 +4.2376e+00 +4.3377e+00 +4.3164e+00 +4.4751e+00 +4.2097e+00 +4.4779e+00 +4.2913e+00 +4.2635e+00 +4.2335e+00 +4.5141e+00 +4.1537e+00 +4.1887e+00 +4.2586e+00 +4.3912e+00 +4.2675e+00 +4.1209e+00 +4.3236e+00 +4.1724e+00 +4.2643e+00 +4.1097e+00 +4.3447e+00 +4.3364e+00 +4.3775e+00 +4.3429e+00 +4.2409e+00 +4.3602e+00 +4.0884e+00 +4.4677e+00 +4.2760e+00 +4.2706e+00 +4.3228e+00 +4.1977e+00 +4.2750e+00 +4.4374e+00 +4.2353e+00 +4.1536e+00 +4.1336e+00 +4.2706e+00 +4.4353e+00 +4.2862e+00 +4.3342e+00 +4.0858e+00 +4.2231e+00 +4.1904e+00 +3.9867e+00 +4.1522e+00 +4.3076e+00 +4.2759e+00 +4.0977e+00 +4.0079e+00 +4.0108e+00 +4.1455e+00 +4.4695e+00 +4.1655e+00 +4.3172e+00 +4.2494e+00 +4.1309e+00 +4.2213e+00 +4.2439e+00 +4.3599e+00 +4.2390e+00 +4.1840e+00 +4.3388e+00 +4.0962e+00 +4.2923e+00 +4.1128e+00 +4.1471e+00 +4.2083e+00 +4.3614e+00 +4.3693e+00 +4.3198e+00 +4.2453e+00 +4.4022e+00 +4.6139e+00 +4.2427e+00 +4.0715e+00 +4.1223e+00 +4.3781e+00 +4.1270e+00 +4.4982e+00 +4.1045e+00 +4.1293e+00 +4.4212e+00 +4.3774e+00 +4.2521e+00 +4.3435e+00 +3.9954e+00 +4.2855e+00 +4.4175e+00 +3.9806e+00 +4.3288e+00 +4.4560e+00 +4.3388e+00 +4.3195e+00 +4.3246e+00 +4.2345e+00 +4.2404e+00 +4.1927e+00 +4.2418e+00 +4.3734e+00 +4.2171e+00 +4.2243e+00 +4.3520e+00 +4.1665e+00 +4.2968e+00 +4.2278e+00 +3.9845e+00 +4.2327e+00 +4.4164e+00 +4.3095e+00 +4.2468e+00 +3.9676e+00 +4.4553e+00 +4.1349e+00 +4.3911e+00 +4.3576e+00 +4.2385e+00 +4.3172e+00 +4.4020e+00 +4.2507e+00 +4.1729e+00 +4.4559e+00 +4.2408e+00 +4.1221e+00 +4.2731e+00 +4.3223e+00 +4.3959e+00 +4.0199e+00 +4.0414e+00 +4.1356e+00 +4.1847e+00 +4.1982e+00 +3.8842e+00 +4.4274e+00 +4.1739e+00 +4.2782e+00 +4.1514e+00 +4.1369e+00 +4.1322e+00 +4.0964e+00 +4.1800e+00 +4.1539e+00 +4.4251e+00 +4.1519e+00 +4.2545e+00 +4.2055e+00 +4.2987e+00 +4.3199e+00 +4.2234e+00 +4.3630e+00 +4.3104e+00 +4.3276e+00 +4.1507e+00 +3.9960e+00 +4.1681e+00 +4.0607e+00 +4.1974e+00 +4.0850e+00 +4.3945e+00 +4.1555e+00 +4.3325e+00 +4.0700e+00 +4.3412e+00 +4.3603e+00 +4.3398e+00 +4.1734e+00 +4.2371e+00 +4.2846e+00 +4.2564e+00 +4.3674e+00 +4.1585e+00 +4.2027e+00 +4.3543e+00 +4.0948e+00 +4.2386e+00 +4.1976e+00 +4.2460e+00 +4.1689e+00 +4.3871e+00 +4.0845e+00 +4.1229e+00 +4.1914e+00 +4.1645e+00 +4.1509e+00 +4.0829e+00 +4.0409e+00 +4.3351e+00 +4.3363e+00 +4.2749e+00 +4.1748e+00 +4.4778e+00 +4.2335e+00 +4.0365e+00 +4.3541e+00 +4.2741e+00 +4.2382e+00 +4.3871e+00 +4.4823e+00 +4.0346e+00 +4.0269e+00 +4.2087e+00 +4.1425e+00 +4.0871e+00 +4.3484e+00 +4.1787e+00 +4.5055e+00 +4.2364e+00 +4.0589e+00 +4.0521e+00 +4.2735e+00 +4.1495e+00 +4.2672e+00 +4.0210e+00 +4.2945e+00 +4.2694e+00 +4.4842e+00 +4.2381e+00 +4.2245e+00 +4.2140e+00 +4.3582e+00 +4.1472e+00 +4.2118e+00 +4.3395e+00 +4.1416e+00 +4.1918e+00 +4.0708e+00 +4.0937e+00 +4.0232e+00 +4.2071e+00 +4.2641e+00 +4.4512e+00 +4.3492e+00 +4.0721e+00 +4.2491e+00 +4.1219e+00 +4.1426e+00 +4.0164e+00 +4.2181e+00 +4.1316e+00 +3.8811e+00 +4.1981e+00 +4.1499e+00 +4.3786e+00 +4.0654e+00 +4.1665e+00 +4.2157e+00 +4.1768e+00 +4.4939e+00 +4.2851e+00 +4.3112e+00 +4.1580e+00 +4.2700e+00 +4.4740e+00 +4.1782e+00 +4.1383e+00 +4.2672e+00 +4.3014e+00 +4.0150e+00 +4.2046e+00 +4.3078e+00 +4.3191e+00 +4.3266e+00 +4.2693e+00 +4.1384e+00 +4.2416e+00 +4.1401e+00 +4.1196e+00 +4.5223e+00 +4.1415e+00 +4.1953e+00 +4.2432e+00 +4.2444e+00 +4.5095e+00 +3.8083e+00 +3.9376e+00 +4.1581e+00 +4.1851e+00 +4.0979e+00 +4.1107e+00 +3.9796e+00 +4.1411e+00 +4.1783e+00 +4.1964e+00 +4.1025e+00 +4.1727e+00 +4.1422e+00 +4.1306e+00 +4.1417e+00 +4.0437e+00 +4.4695e+00 +4.0220e+00 +4.3393e+00 +4.2579e+00 +4.1393e+00 +4.1017e+00 +4.2183e+00 +4.0276e+00 +4.1574e+00 +4.4785e+00 +4.2630e+00 +4.0849e+00 +3.8983e+00 +4.2841e+00 +4.3601e+00 +4.1972e+00 +4.1662e+00 +3.9903e+00 +4.2034e+00 +4.0980e+00 +4.1120e+00 +4.1543e+00 +4.2383e+00 +4.1140e+00 +4.4671e+00 +4.1530e+00 +4.1238e+00 +4.0585e+00 +3.8745e+00 +4.2371e+00 +4.4388e+00 +4.2206e+00 +4.1618e+00 +4.2857e+00 +4.4007e+00 +4.2392e+00 +4.2324e+00 +4.1002e+00 +4.1468e+00 +4.1286e+00 +4.4042e+00 +4.2294e+00 +4.2438e+00 +4.1120e+00 +4.4141e+00 +4.1580e+00 +4.2274e+00 +4.0990e+00 +4.1360e+00 +4.3664e+00 +4.0960e+00 +4.0217e+00 +3.9669e+00 +4.2240e+00 +4.0719e+00 +4.4698e+00 +4.1852e+00 +3.9401e+00 +3.9825e+00 +3.9753e+00 +4.2043e+00 +4.0573e+00 +4.0781e+00 +4.2246e+00 +4.0636e+00 +4.2804e+00 +4.2260e+00 +3.9849e+00 +4.1261e+00 +4.2099e+00 +4.1770e+00 +4.2504e+00 +4.2255e+00 +4.0591e+00 +4.3197e+00 +3.9671e+00 +4.1822e+00 +4.2268e+00 +4.1627e+00 +4.2908e+00 +3.9744e+00 +3.9563e+00 +4.1557e+00 +4.3137e+00 +4.1028e+00 +4.1106e+00 +4.2228e+00 +3.9204e+00 +4.0583e+00 +4.1268e+00 +4.1026e+00 +4.2579e+00 +4.2142e+00 +4.1644e+00 +3.9501e+00 +4.2072e+00 +4.2266e+00 +4.1041e+00 +4.1669e+00 +4.3536e+00 +4.0293e+00 +4.1048e+00 +4.2040e+00 +4.5014e+00 +4.1895e+00 +4.3016e+00 +4.3261e+00 +4.0609e+00 +3.6715e+00 +4.1302e+00 +4.1246e+00 +3.9052e+00 +4.2540e+00 +4.1248e+00 +3.9966e+00 +4.1009e+00 +3.9407e+00 +4.1438e+00 +3.9162e+00 +4.1462e+00 +4.1618e+00 +4.4040e+00 +4.3110e+00 +4.2510e+00 +3.8899e+00 +4.1392e+00 +4.2086e+00 +4.1850e+00 +4.0644e+00 +4.1483e+00 +4.2332e+00 +4.0439e+00 +4.2479e+00 +4.1983e+00 +4.1258e+00 +4.2478e+00 +4.2432e+00 +4.1392e+00 +4.2974e+00 +4.1972e+00 +4.1896e+00 +4.2170e+00 +4.0821e+00 +4.0190e+00 +4.0207e+00 +4.1601e+00 +4.2091e+00 +4.0816e+00 +3.9508e+00 +4.2198e+00 +4.4389e+00 +4.3244e+00 +4.0825e+00 +4.2079e+00 +4.2335e+00 +4.2873e+00 +4.2108e+00 +4.1501e+00 +3.9371e+00 +4.0910e+00 +4.2400e+00 +4.2498e+00 +3.8264e+00 +4.0012e+00 +4.3590e+00 +4.1938e+00 +4.1687e+00 +4.4691e+00 +4.1654e+00 +4.4283e+00 +4.0863e+00 +4.2081e+00 +4.4782e+00 +4.0874e+00 +4.2261e+00 +4.2528e+00 +4.0490e+00 +4.0428e+00 +4.2657e+00 +4.2507e+00 +3.9889e+00 +4.2346e+00 +4.0913e+00 +4.2259e+00 +4.2528e+00 +4.2980e+00 +3.9945e+00 +4.1433e+00 +4.0975e+00 +4.1789e+00 +4.2293e+00 +4.1221e+00 +4.1621e+00 +4.3366e+00 +4.3340e+00 +4.2027e+00 +4.0607e+00 +3.8464e+00 +4.2787e+00 +4.1627e+00 +4.2095e+00 +4.2493e+00 +4.3215e+00 +4.1933e+00 +4.3105e+00 +4.3048e+00 +4.1309e+00 +4.1371e+00 +4.1457e+00 +4.3023e+00 +4.0394e+00 +4.2306e+00 +4.2538e+00 +4.0546e+00 +4.1074e+00 +4.0064e+00 +4.3332e+00 +4.0942e+00 +4.1770e+00 +4.1318e+00 +4.2654e+00 +3.7783e+00 +4.0644e+00 +4.2234e+00 +4.0424e+00 +4.2190e+00 +3.9857e+00 +3.8781e+00 +4.1833e+00 +4.3044e+00 +4.1987e+00 +4.2101e+00 +4.1814e+00 +4.2106e+00 +4.3239e+00 +3.9974e+00 +4.0227e+00 +4.2036e+00 +4.2985e+00 +4.1910e+00 +3.9929e+00 +4.4740e+00 +4.0065e+00 +4.1431e+00 +4.1976e+00 +4.2415e+00 +4.3636e+00 +3.8829e+00 +4.1328e+00 +4.0935e+00 +4.1014e+00 +4.1416e+00 +3.9511e+00 +4.0706e+00 +4.2281e+00 +4.2699e+00 +3.8799e+00 +3.9610e+00 +4.3294e+00 +4.2154e+00 +4.1065e+00 +3.9790e+00 +4.1908e+00 +4.2458e+00 +4.1694e+00 +3.9826e+00 +4.1021e+00 +3.9870e+00 +3.9414e+00 +4.1929e+00 +4.0100e+00 +4.0882e+00 +4.1555e+00 +4.0166e+00 +4.2910e+00 +3.9892e+00 +4.2327e+00 +4.2134e+00 +3.9535e+00 +4.2844e+00 +4.2313e+00 +3.9906e+00 +4.0654e+00 +4.1505e+00 +4.1589e+00 +3.9305e+00 +4.0239e+00 +4.1679e+00 +4.0857e+00 +4.1130e+00 +4.0931e+00 +3.8539e+00 +4.1992e+00 +4.1888e+00 +4.1483e+00 +4.2157e+00 +4.2050e+00 +3.8888e+00 +4.0969e+00 +4.2493e+00 +4.1856e+00 +4.2958e+00 +3.8184e+00 +3.9947e+00 +4.0709e+00 +4.1950e+00 +4.1890e+00 +4.1583e+00 +4.1053e+00 +4.2645e+00 +3.9915e+00 +4.0893e+00 +4.0629e+00 +4.2573e+00 +3.9746e+00 +3.9765e+00 +4.3212e+00 +4.2735e+00 +4.3013e+00 +4.1871e+00 +4.2829e+00 +4.1953e+00 +4.0132e+00 +4.1929e+00 +4.2222e+00 +4.1247e+00 +3.9955e+00 +4.0731e+00 +3.9798e+00 +4.3949e+00 +4.1354e+00 +3.9107e+00 +3.9786e+00 +4.0565e+00 +4.0701e+00 +3.9046e+00 +4.3450e+00 +3.9260e+00 +4.1380e+00 +3.8922e+00 +4.1768e+00 +4.0409e+00 +4.0916e+00 +4.1368e+00 +4.2116e+00 +4.0246e+00 +4.0404e+00 +3.9876e+00 +4.0691e+00 +4.1429e+00 +4.1501e+00 +4.0383e+00 +4.0860e+00 +4.1942e+00 +4.1045e+00 +4.1566e+00 +4.2224e+00 +4.1328e+00 +3.8172e+00 +4.0385e+00 +3.9848e+00 +4.0026e+00 +4.0796e+00 +4.2840e+00 +4.1464e+00 +4.1955e+00 +4.1038e+00 +4.2332e+00 +4.2153e+00 +4.0112e+00 +4.0110e+00 +4.1141e+00 +4.0023e+00 +3.9285e+00 +4.1291e+00 +4.0620e+00 +3.8912e+00 +3.9480e+00 +4.2032e+00 +4.0279e+00 +4.0607e+00 +4.3239e+00 +4.2217e+00 +4.0786e+00 +4.0217e+00 +4.1447e+00 +4.1457e+00 +4.1850e+00 +4.0914e+00 +3.9664e+00 +4.2739e+00 +4.1675e+00 +4.1555e+00 +4.2056e+00 +4.0461e+00 +4.2717e+00 +4.2021e+00 +4.1579e+00 +4.1355e+00 +4.0589e+00 +4.0908e+00 +4.1403e+00 +4.2834e+00 +3.9626e+00 +4.1572e+00 +4.0118e+00 +4.2276e+00 +4.1021e+00 +4.1685e+00 +4.4393e+00 +4.2176e+00 +4.1650e+00 +3.8732e+00 +4.0312e+00 +3.8334e+00 +4.2271e+00 +4.2736e+00 +3.8655e+00 +3.9883e+00 +3.9971e+00 +3.9466e+00 +4.2973e+00 +4.1076e+00 +4.1253e+00 +3.9103e+00 +4.1924e+00 +4.1459e+00 +4.0228e+00 +4.0376e+00 +4.1256e+00 +4.0720e+00 +3.9497e+00 +4.3201e+00 +4.2776e+00 +4.0910e+00 +4.2438e+00 +4.0659e+00 +4.1433e+00 +4.0398e+00 +4.3341e+00 +3.8928e+00 +3.9756e+00 +3.9160e+00 +4.1763e+00 +4.0433e+00 +4.2634e+00 +4.0250e+00 +3.9933e+00 +4.0930e+00 +4.0104e+00 +3.9493e+00 +3.9598e+00 +4.0127e+00 +3.9094e+00 +4.1086e+00 +4.0757e+00 +4.2286e+00 +4.0896e+00 +3.9375e+00 +4.0936e+00 +4.0929e+00 +4.0751e+00 +4.1770e+00 +4.1693e+00 +4.0577e+00 +4.1469e+00 +4.2207e+00 +4.2046e+00 +3.8979e+00 +4.0746e+00 +3.9787e+00 +4.0334e+00 +3.9025e+00 +4.1246e+00 +4.2651e+00 +3.8660e+00 +4.2372e+00 +4.0282e+00 +4.0096e+00 +3.9371e+00 +4.2258e+00 +4.0848e+00 +4.1646e+00 +4.0681e+00 +4.0063e+00 +3.8945e+00 +4.0899e+00 +4.0637e+00 +3.9424e+00 +4.0831e+00 +4.0844e+00 +4.0764e+00 +4.1876e+00 +3.8476e+00 +3.8718e+00 +4.0581e+00 +4.0548e+00 +4.0689e+00 +4.0649e+00 +3.9744e+00 +4.0206e+00 +3.9947e+00 +4.1170e+00 +3.9824e+00 +3.9230e+00 +3.8687e+00 +4.1639e+00 +4.0481e+00 +4.1391e+00 +3.9709e+00 +4.0428e+00 +4.0831e+00 +4.0150e+00 +4.0178e+00 +4.0838e+00 +3.9256e+00 +3.9854e+00 +4.0630e+00 +4.1328e+00 +3.9823e+00 +4.0905e+00 +4.0315e+00 +4.1073e+00 +4.1778e+00 +3.9334e+00 +4.3925e+00 +4.1638e+00 +4.4283e+00 +3.9453e+00 +4.0688e+00 +4.1055e+00 +3.9667e+00 +4.0821e+00 +3.8953e+00 +3.9634e+00 +4.2918e+00 +3.8680e+00 +4.0707e+00 +4.2484e+00 +4.0190e+00 +4.0970e+00 +3.9554e+00 +3.9877e+00 +4.0838e+00 +3.9985e+00 +3.8982e+00 +4.1842e+00 +3.9872e+00 +3.9521e+00 +4.2123e+00 +3.8805e+00 +3.9378e+00 +4.4086e+00 +4.1565e+00 +4.1784e+00 +3.9776e+00 +4.1766e+00 +4.2096e+00 +4.1673e+00 +3.8803e+00 +4.3173e+00 +3.9185e+00 +4.1840e+00 +3.7831e+00 +4.1134e+00 +3.9111e+00 +4.2830e+00 +4.0266e+00 +3.8259e+00 +3.9189e+00 +4.1067e+00 +3.9411e+00 +3.9929e+00 +4.3285e+00 +4.0745e+00 +4.0682e+00 +4.0822e+00 +4.1333e+00 +4.1740e+00 +3.9817e+00 +4.1739e+00 +4.1665e+00 +4.2629e+00 +4.2612e+00 +4.1754e+00 +4.0761e+00 +4.0025e+00 +3.8257e+00 +3.9632e+00 +4.2633e+00 +4.1934e+00 +3.9840e+00 +3.8979e+00 +3.8884e+00 +4.2025e+00 +3.9827e+00 +4.0400e+00 +3.9830e+00 +3.9057e+00 +4.0824e+00 +4.2181e+00 +4.0580e+00 +4.1452e+00 +4.1217e+00 +3.7594e+00 +3.9321e+00 +4.2193e+00 +4.2072e+00 +4.2994e+00 +3.8795e+00 +3.9955e+00 +4.1055e+00 +3.7481e+00 +4.0171e+00 +4.0125e+00 +3.9363e+00 +4.1460e+00 +3.9256e+00 +4.3081e+00 +4.1936e+00 +4.0885e+00 +3.8977e+00 +3.9242e+00 +4.1048e+00 +4.1463e+00 +4.1113e+00 +4.1348e+00 +4.0675e+00 +3.9364e+00 +3.9348e+00 +3.9130e+00 +4.2595e+00 +3.8932e+00 +4.0646e+00 +3.9688e+00 +4.0797e+00 +4.1309e+00 +3.8086e+00 +4.1230e+00 +3.9169e+00 +4.1092e+00 +3.9121e+00 +4.1775e+00 +4.2701e+00 +3.7745e+00 +4.0335e+00 +4.1587e+00 +4.0610e+00 +3.9296e+00 +4.0666e+00 +4.1582e+00 +3.9841e+00 +3.9070e+00 +4.0587e+00 +3.9228e+00 +3.8413e+00 +4.1370e+00 +4.0758e+00 +4.1806e+00 +3.9577e+00 +4.0261e+00 +3.8817e+00 +3.9391e+00 +4.2469e+00 +4.0224e+00 +3.9269e+00 +3.9309e+00 +3.9398e+00 +3.9411e+00 +3.8495e+00 +3.8422e+00 +4.1131e+00 +3.9302e+00 +3.8067e+00 +3.8705e+00 +4.0040e+00 +3.8478e+00 +3.8126e+00 +4.0632e+00 +4.0592e+00 +4.1154e+00 +4.1581e+00 +4.2445e+00 +3.7784e+00 +3.9061e+00 +3.9815e+00 +4.1703e+00 +4.0723e+00 +4.0966e+00 +3.9834e+00 +4.1598e+00 +4.0970e+00 +3.9688e+00 +4.0740e+00 +3.9308e+00 +3.9186e+00 +3.9976e+00 +3.9410e+00 +4.3507e+00 +4.1098e+00 +4.2199e+00 +4.0819e+00 +4.2194e+00 +4.1168e+00 +4.0510e+00 +3.8153e+00 +3.8497e+00 +3.8453e+00 +3.9146e+00 +3.7238e+00 +3.8640e+00 +3.8978e+00 +4.1385e+00 +3.9792e+00 +4.2162e+00 +4.3220e+00 +3.8796e+00 +4.2819e+00 +4.0277e+00 +4.3221e+00 +3.7588e+00 +3.9903e+00 +4.1206e+00 +3.7851e+00 +4.1497e+00 +3.8298e+00 +3.9942e+00 +3.9523e+00 +3.9435e+00 +4.0302e+00 +3.8704e+00 +4.0176e+00 +3.8612e+00 +4.1473e+00 +4.1187e+00 +4.0572e+00 +4.0228e+00 +3.8908e+00 +3.9323e+00 +4.1246e+00 +3.7998e+00 +4.1292e+00 +4.1411e+00 +3.8106e+00 +4.1421e+00 +3.9371e+00 +4.1679e+00 +4.1431e+00 +4.1762e+00 +3.9332e+00 +3.9066e+00 +3.8779e+00 +4.1676e+00 +4.0562e+00 +3.7959e+00 +4.2415e+00 +4.1468e+00 +4.1340e+00 +3.9892e+00 +3.8010e+00 +4.1200e+00 +3.9267e+00 +4.0034e+00 +3.8992e+00 +3.9975e+00 +4.1795e+00 +3.9199e+00 +3.8047e+00 +3.8882e+00 +3.9090e+00 +4.0789e+00 +4.2747e+00 +4.0563e+00 +4.0187e+00 +4.0385e+00 +4.1308e+00 +4.0332e+00 +3.9637e+00 +3.9986e+00 +4.1354e+00 +4.0704e+00 +3.8404e+00 +4.1824e+00 +3.6622e+00 +3.9742e+00 +3.9047e+00 +3.9892e+00 +3.9965e+00 +3.9457e+00 +3.9550e+00 +4.0214e+00 +3.8235e+00 +4.1256e+00 +4.3371e+00 +4.2509e+00 +4.1755e+00 +3.8911e+00 +4.1727e+00 +4.1882e+00 +4.0396e+00 +4.2598e+00 +4.0827e+00 +3.9064e+00 +4.2317e+00 +3.8765e+00 +4.1222e+00 +4.2821e+00 +4.2049e+00 +4.0057e+00 +3.9456e+00 +3.9320e+00 +3.8607e+00 +3.9519e+00 +3.9643e+00 +4.2029e+00 +4.0618e+00 +3.8223e+00 +4.0010e+00 +3.9756e+00 +4.2547e+00 +4.1677e+00 +3.9168e+00 +3.8208e+00 +4.0857e+00 +3.9479e+00 +3.8462e+00 +3.9416e+00 +4.1276e+00 +3.8763e+00 +3.7994e+00 +4.0434e+00 +3.9777e+00 +3.9476e+00 +3.7584e+00 +4.1359e+00 +3.8094e+00 +3.9933e+00 +3.9480e+00 +3.9182e+00 +4.0496e+00 +3.8871e+00 +4.0592e+00 +3.9440e+00 +3.9579e+00 +4.0457e+00 +4.1326e+00 +3.9793e+00 +3.7745e+00 +4.1138e+00 +4.1379e+00 +4.1210e+00 +3.8280e+00 +3.9273e+00 +3.9335e+00 +3.8580e+00 +4.0158e+00 +3.9685e+00 +4.0112e+00 +4.1766e+00 +3.9275e+00 +4.0006e+00 +3.8630e+00 +4.0983e+00 +3.9908e+00 +4.1716e+00 +3.7807e+00 +4.0037e+00 +3.9859e+00 +3.9179e+00 +4.1984e+00 +3.7683e+00 +3.9429e+00 +3.5846e+00 +3.8339e+00 +4.0209e+00 +3.7208e+00 +4.0132e+00 +4.0288e+00 +4.0673e+00 +4.2262e+00 +4.1895e+00 +3.9804e+00 +4.1530e+00 +3.9463e+00 +3.8510e+00 +3.7640e+00 +3.9863e+00 +4.0237e+00 +3.7748e+00 +3.9231e+00 +3.8381e+00 +3.9071e+00 +3.8581e+00 +3.7666e+00 +3.7673e+00 +3.9637e+00 +4.0223e+00 +4.0950e+00 +3.7960e+00 +3.7352e+00 +4.2004e+00 +4.0210e+00 +3.9393e+00 +4.0824e+00 +4.1418e+00 +3.8582e+00 +4.1624e+00 +4.1411e+00 +4.1310e+00 +4.1616e+00 +3.8949e+00 +4.2241e+00 +3.8519e+00 +3.9241e+00 +3.9530e+00 +3.9285e+00 +3.9220e+00 +3.9586e+00 +3.9207e+00 +3.9589e+00 +4.0569e+00 +3.7881e+00 +4.0319e+00 +4.0139e+00 +4.0096e+00 +4.0515e+00 +3.7967e+00 +4.0836e+00 +3.9624e+00 +4.0476e+00 +3.8822e+00 +3.8407e+00 +4.1197e+00 +4.0152e+00 +3.8491e+00 +3.8963e+00 +3.7975e+00 +3.7293e+00 +3.7819e+00 +4.0099e+00 +3.8632e+00 +3.9830e+00 +3.9698e+00 +3.7319e+00 +4.3173e+00 +3.7713e+00 +4.1857e+00 +4.2283e+00 +3.9850e+00 +4.0330e+00 +3.8677e+00 +3.9621e+00 +3.7292e+00 +3.9157e+00 +3.7416e+00 +3.8358e+00 +3.9901e+00 +3.9948e+00 +3.8078e+00 +4.1348e+00 +3.8378e+00 +4.2789e+00 +3.9107e+00 +3.9802e+00 +3.9011e+00 +3.7574e+00 +3.8840e+00 +4.0941e+00 +3.8219e+00 +3.8619e+00 +4.0421e+00 +3.9701e+00 +3.8680e+00 +3.8595e+00 +4.1338e+00 +4.1357e+00 +3.8076e+00 +3.8863e+00 +4.0642e+00 +4.0304e+00 +4.1039e+00 +4.0806e+00 +3.9896e+00 +3.8877e+00 +3.7646e+00 +4.0346e+00 +3.9295e+00 +4.0276e+00 +4.0080e+00 +3.7983e+00 +4.0897e+00 +3.8656e+00 +3.9699e+00 +3.7870e+00 +3.9631e+00 +3.8981e+00 +3.8367e+00 +3.8844e+00 +3.7797e+00 +3.9683e+00 +4.0244e+00 +3.9611e+00 +3.9171e+00 +3.9027e+00 +3.7128e+00 +4.0872e+00 +4.0607e+00 +3.9528e+00 +3.9915e+00 +3.8824e+00 +4.0949e+00 +3.9444e+00 +3.9374e+00 +3.9520e+00 +3.7486e+00 +4.0927e+00 +3.8484e+00 +3.9762e+00 +4.1425e+00 +4.0208e+00 +4.0394e+00 +4.0026e+00 +3.9394e+00 +3.7199e+00 +4.0064e+00 +3.9427e+00 +3.8382e+00 +3.8703e+00 +4.0295e+00 +3.7935e+00 +4.0830e+00 +3.6728e+00 +4.0981e+00 +3.9522e+00 +3.8412e+00 +3.8898e+00 +4.0796e+00 +4.3633e+00 +3.7919e+00 +3.9468e+00 +4.0317e+00 +3.8599e+00 +4.0885e+00 +3.7691e+00 +4.0647e+00 +3.9852e+00 +3.8217e+00 +3.9502e+00 +4.0393e+00 +3.8211e+00 +4.0287e+00 +3.9697e+00 +3.9348e+00 +3.7958e+00 +4.0929e+00 +3.8527e+00 +3.8915e+00 +3.7877e+00 +3.6447e+00 +3.8322e+00 +3.8774e+00 +3.9521e+00 +4.1158e+00 +4.0348e+00 +3.9536e+00 +3.9742e+00 +4.0626e+00 +3.8429e+00 +3.7177e+00 +3.9808e+00 +3.7822e+00 +3.9529e+00 +3.8669e+00 +3.8766e+00 +3.9801e+00 +4.0054e+00 +3.8048e+00 +4.1387e+00 +3.7886e+00 +3.9095e+00 +4.1216e+00 +4.1313e+00 +3.9069e+00 +3.9531e+00 +4.0115e+00 +3.8867e+00 +4.1771e+00 +3.9281e+00 +3.9958e+00 +3.8850e+00 +3.8346e+00 +3.8114e+00 +3.7833e+00 +3.8634e+00 +3.9485e+00 +3.9702e+00 +3.7520e+00 +3.7678e+00 +3.9387e+00 +4.1211e+00 +3.7599e+00 +4.0094e+00 +4.0808e+00 +3.9216e+00 +3.9671e+00 +3.9575e+00 +3.7860e+00 +3.8823e+00 +3.8247e+00 +3.8254e+00 +4.1803e+00 +3.9355e+00 +3.7034e+00 +3.9866e+00 +3.9451e+00 +3.7387e+00 +3.8945e+00 +3.9974e+00 +3.9883e+00 +3.7344e+00 +4.0093e+00 +4.2092e+00 +4.0856e+00 +3.8614e+00 +4.0219e+00 +3.9703e+00 +3.7463e+00 +4.0915e+00 +3.9495e+00 +3.8650e+00 +3.8839e+00 +4.0681e+00 +3.9007e+00 +3.8986e+00 +3.7160e+00 +3.8187e+00 +3.9049e+00 +3.9219e+00 +3.8721e+00 +3.6703e+00 +3.9337e+00 +3.8475e+00 +3.6945e+00 +4.0563e+00 +4.1731e+00 +4.1093e+00 +4.1815e+00 +3.8991e+00 +4.0566e+00 +3.7979e+00 +3.7198e+00 +4.0190e+00 +3.9501e+00 +3.8941e+00 +3.7849e+00 +4.0427e+00 +3.8219e+00 +3.7197e+00 +4.0213e+00 +3.8759e+00 +3.9790e+00 +3.9073e+00 +4.1513e+00 +3.9621e+00 +3.7978e+00 +3.9002e+00 +3.8176e+00 +3.8539e+00 +3.8668e+00 +3.9985e+00 +3.8728e+00 +3.7543e+00 +3.9602e+00 +3.8898e+00 +4.0404e+00 +3.9249e+00 +3.9263e+00 +3.7317e+00 +4.1859e+00 +4.0236e+00 +4.0457e+00 +3.8387e+00 +3.8349e+00 +4.0237e+00 +3.9723e+00 +3.8526e+00 +3.9144e+00 +4.1672e+00 +3.9686e+00 +3.9382e+00 +4.1386e+00 +3.9389e+00 +3.5482e+00 +3.8062e+00 +4.0990e+00 +3.8644e+00 +3.9616e+00 +3.9203e+00 +4.1111e+00 +4.1820e+00 +3.9930e+00 +3.9781e+00 +3.9452e+00 +3.9451e+00 +3.8276e+00 +3.7955e+00 +3.9200e+00 +3.7472e+00 +3.9380e+00 +3.8219e+00 +3.9247e+00 +4.0709e+00 +3.9069e+00 +3.7589e+00 +3.8452e+00 +3.9186e+00 +3.8944e+00 +3.8882e+00 +3.9656e+00 +4.2074e+00 +3.9373e+00 +3.9133e+00 +3.9913e+00 +3.8063e+00 +3.9657e+00 +3.5698e+00 +3.7794e+00 +3.8103e+00 +3.8675e+00 +3.8899e+00 +3.7330e+00 +3.9954e+00 +3.9350e+00 +4.0419e+00 +4.1429e+00 +4.1841e+00 +3.8131e+00 +3.9017e+00 +4.0238e+00 +3.9972e+00 +3.7397e+00 +3.9003e+00 +3.8582e+00 +4.0137e+00 +3.8272e+00 +3.7465e+00 +3.8436e+00 +3.8219e+00 +3.9275e+00 +3.8100e+00 +3.5549e+00 +3.8426e+00 +3.7018e+00 +3.8570e+00 +3.8406e+00 +3.7927e+00 +3.7754e+00 +4.0281e+00 +3.7557e+00 +4.1015e+00 +3.8642e+00 +3.9523e+00 +4.0444e+00 +3.9575e+00 +4.0592e+00 +3.8999e+00 +3.8239e+00 +3.7614e+00 +4.0735e+00 +3.8866e+00 +3.7762e+00 +3.6904e+00 +3.9410e+00 +3.8967e+00 +3.7227e+00 +4.0712e+00 +3.9357e+00 +3.9193e+00 +4.1295e+00 +3.8952e+00 +3.9332e+00 +4.1021e+00 +3.5885e+00 +3.9301e+00 +3.8073e+00 +4.0580e+00 +4.0783e+00 +3.8039e+00 +3.8792e+00 +3.8739e+00 +3.5995e+00 +4.0319e+00 +3.9595e+00 +4.1487e+00 +3.7158e+00 +3.9258e+00 +4.0761e+00 +3.8467e+00 +3.8952e+00 +4.3390e+00 +3.7935e+00 +3.9704e+00 +3.7089e+00 +3.9947e+00 +3.8771e+00 +4.0038e+00 +3.9838e+00 +3.8746e+00 +3.6826e+00 +3.7311e+00 +3.7519e+00 +3.6797e+00 +3.8574e+00 +3.8958e+00 +3.9025e+00 +3.8004e+00 +3.8487e+00 +3.9424e+00 +3.6065e+00 +3.7279e+00 +3.9246e+00 +4.0030e+00 +3.7908e+00 +3.5713e+00 +4.0610e+00 +3.8411e+00 +3.8787e+00 +3.7512e+00 +4.1149e+00 +3.7423e+00 +4.0545e+00 +4.0062e+00 +3.9991e+00 +3.5902e+00 +3.8029e+00 +4.0812e+00 +4.0481e+00 +3.9636e+00 +3.8468e+00 +3.9086e+00 +4.1533e+00 +3.6800e+00 +3.8914e+00 +3.7964e+00 +3.7511e+00 +4.0298e+00 +3.7505e+00 +3.7053e+00 +3.8009e+00 +3.8100e+00 +4.0219e+00 +3.9316e+00 +3.8034e+00 +3.7015e+00 +4.0490e+00 +3.8749e+00 +3.7108e+00 +3.8981e+00 +3.9110e+00 +3.9875e+00 +4.1259e+00 +3.8075e+00 +3.9564e+00 +3.9433e+00 +3.8173e+00 +3.8514e+00 +3.7572e+00 +4.0160e+00 +3.8194e+00 +3.8383e+00 +3.7262e+00 +3.9837e+00 +3.8499e+00 +3.9812e+00 +3.6123e+00 +3.8551e+00 +4.0803e+00 +3.9819e+00 +3.8575e+00 +3.8495e+00 +4.0055e+00 +3.8545e+00 +4.1123e+00 +3.8127e+00 +3.9344e+00 +4.0002e+00 +3.9354e+00 +3.8912e+00 +3.6398e+00 +3.6618e+00 +3.8971e+00 +3.9539e+00 +3.8527e+00 +3.7120e+00 +3.9243e+00 +3.7665e+00 +4.1406e+00 +3.8816e+00 +3.5754e+00 +4.0210e+00 +3.7422e+00 +4.0474e+00 +3.8088e+00 +3.8050e+00 +3.7029e+00 +3.7456e+00 +3.9162e+00 +4.0459e+00 +3.7554e+00 +3.7623e+00 +3.8089e+00 +3.9461e+00 +3.8830e+00 +3.9028e+00 +4.0445e+00 +3.8504e+00 +3.7139e+00 +3.8751e+00 +4.2640e+00 +4.0574e+00 +3.9711e+00 +3.9678e+00 +4.0768e+00 +3.9372e+00 +4.0507e+00 +4.0142e+00 +4.0132e+00 +3.6534e+00 +4.0284e+00 +3.9456e+00 +3.5860e+00 +3.8582e+00 +3.8421e+00 +3.5788e+00 +3.9140e+00 +3.8235e+00 +3.8111e+00 +4.1812e+00 +3.6924e+00 +3.6744e+00 +4.0110e+00 +3.9122e+00 +3.8987e+00 +3.8180e+00 +3.8074e+00 +3.8866e+00 +3.7069e+00 +4.1272e+00 +3.9708e+00 +3.6108e+00 +3.5848e+00 +3.5522e+00 +3.7357e+00 +3.9137e+00 +3.9543e+00 +3.8146e+00 +3.7544e+00 +3.8679e+00 +3.8952e+00 +4.0198e+00 +4.0627e+00 +4.0598e+00 +4.0232e+00 +3.7901e+00 +3.8921e+00 +3.9749e+00 +3.8050e+00 +3.9160e+00 +3.7548e+00 +3.8555e+00 +3.8166e+00 +3.8743e+00 +4.1411e+00 +3.8627e+00 +3.6596e+00 +3.6686e+00 +3.8881e+00 +3.8176e+00 +3.8095e+00 +3.9272e+00 +3.6926e+00 +3.8317e+00 +3.8744e+00 +3.7723e+00 +4.0869e+00 +3.8232e+00 +3.6857e+00 +3.8139e+00 +3.8957e+00 +3.7163e+00 +4.1781e+00 +3.9609e+00 +4.0165e+00 +3.7307e+00 +3.7151e+00 +3.8773e+00 +3.7896e+00 +3.8356e+00 +4.1436e+00 +3.7015e+00 +3.7803e+00 +3.7592e+00 +3.5953e+00 +3.8963e+00 +3.8661e+00 +3.6298e+00 +3.6394e+00 +3.9672e+00 +3.9876e+00 +3.9585e+00 +3.9068e+00 +3.9304e+00 +4.0076e+00 +3.8009e+00 +4.0772e+00 +3.8325e+00 +3.7051e+00 +4.0349e+00 +3.9632e+00 +3.9312e+00 +3.8835e+00 +3.9980e+00 +3.8910e+00 +3.9290e+00 +3.9447e+00 +3.7328e+00 +3.7253e+00 +3.7356e+00 +3.7976e+00 +3.8281e+00 +3.5754e+00 +3.6489e+00 +3.6918e+00 +3.9818e+00 +3.6226e+00 +4.2102e+00 +3.9258e+00 +4.0622e+00 +3.8461e+00 +3.8677e+00 +3.9481e+00 +4.0748e+00 +4.2925e+00 +3.9743e+00 +3.7496e+00 +3.9242e+00 +3.7878e+00 +3.9384e+00 +3.5425e+00 +3.9354e+00 +3.7675e+00 +3.9403e+00 +3.5551e+00 +3.6300e+00 +3.9455e+00 +3.6457e+00 +3.8709e+00 +3.7596e+00 +3.7867e+00 +3.9022e+00 +3.6495e+00 +3.9596e+00 +3.6315e+00 +3.6155e+00 +3.8189e+00 +3.8882e+00 +3.8348e+00 +3.6160e+00 +3.7082e+00 +3.9127e+00 +3.7097e+00 +3.8929e+00 +3.9537e+00 +3.8423e+00 +3.8145e+00 +3.6043e+00 +4.0197e+00 +3.8193e+00 +3.8474e+00 +3.9288e+00 +4.0865e+00 +3.6897e+00 +3.9616e+00 +3.6801e+00 +3.6325e+00 +3.5977e+00 +3.5945e+00 +3.9175e+00 +3.6556e+00 +3.6748e+00 +3.8851e+00 +3.5879e+00 +3.9325e+00 +3.5862e+00 +3.9572e+00 +4.0049e+00 +3.9156e+00 +3.8007e+00 +3.8807e+00 +3.6794e+00 +4.0352e+00 +3.6848e+00 +3.8667e+00 +3.8689e+00 +4.0368e+00 +3.8746e+00 +4.0169e+00 +3.9941e+00 +4.0686e+00 +3.9781e+00 +3.8119e+00 +3.6891e+00 +3.8633e+00 +4.1974e+00 +3.7979e+00 +3.5859e+00 +3.9699e+00 +3.8603e+00 +3.8219e+00 +3.7837e+00 +3.8419e+00 +3.9259e+00 +3.9431e+00 +3.8691e+00 +3.7373e+00 +3.8979e+00 +3.9501e+00 +3.8413e+00 +4.1093e+00 +3.7338e+00 +4.1261e+00 +3.9670e+00 +3.7749e+00 +3.9935e+00 +3.8084e+00 +3.8766e+00 +4.0016e+00 +3.6468e+00 +3.7975e+00 +4.3767e+00 +3.8875e+00 +3.9819e+00 +3.8563e+00 +3.7666e+00 +3.6696e+00 +3.9680e+00 +3.6918e+00 +3.7225e+00 +3.6119e+00 +3.8380e+00 +3.6378e+00 +3.8320e+00 +3.5257e+00 +3.9778e+00 +3.7677e+00 +3.6910e+00 +3.8753e+00 +3.8923e+00 +3.8155e+00 +3.8078e+00 +3.9041e+00 +3.9915e+00 +3.7675e+00 +3.6306e+00 +3.9551e+00 +3.6738e+00 +3.7302e+00 +3.5917e+00 +3.6792e+00 +3.9345e+00 +3.9334e+00 +3.9132e+00 +3.8668e+00 +3.7356e+00 +3.6730e+00 +3.9681e+00 +3.7271e+00 +3.9026e+00 +3.8718e+00 +3.6370e+00 +3.7748e+00 +3.7376e+00 +3.7487e+00 +3.8178e+00 +3.8667e+00 +3.6588e+00 +3.6179e+00 +3.7702e+00 +3.5909e+00 +4.0863e+00 +3.7504e+00 +4.0612e+00 +3.5103e+00 +3.8976e+00 +3.8723e+00 +3.9782e+00 +3.7315e+00 +3.8618e+00 +3.8935e+00 +3.6432e+00 +3.6950e+00 +3.6715e+00 +3.7463e+00 +3.7854e+00 +3.5527e+00 +3.8836e+00 +3.7940e+00 +3.7184e+00 +3.7155e+00 +3.5446e+00 +3.6722e+00 +3.8272e+00 +3.8738e+00 +4.0006e+00 +3.8707e+00 +3.9286e+00 +3.8115e+00 +3.9551e+00 +3.7264e+00 +3.8979e+00 +3.7534e+00 +3.9695e+00 +3.6208e+00 +3.8166e+00 +3.8776e+00 +3.7968e+00 +3.9064e+00 +3.9560e+00 +3.9981e+00 +3.8053e+00 +3.7804e+00 +4.1002e+00 +3.8159e+00 +3.4924e+00 +3.6831e+00 +3.9967e+00 +3.8602e+00 +3.7543e+00 +3.7503e+00 +3.6601e+00 +3.8185e+00 +3.8763e+00 +4.0810e+00 +3.8419e+00 +3.7038e+00 +3.8714e+00 +4.0242e+00 +3.5979e+00 +4.0314e+00 +3.7768e+00 +3.7471e+00 +3.6464e+00 +3.9180e+00 +3.8973e+00 +3.8087e+00 +3.8973e+00 +3.8175e+00 +3.8645e+00 +3.5433e+00 +3.6216e+00 +3.6471e+00 +3.5826e+00 +3.8906e+00 +3.9742e+00 +3.5280e+00 +3.6921e+00 +3.7666e+00 +3.5744e+00 +3.7846e+00 +3.7579e+00 +3.6300e+00 +3.8173e+00 +3.7385e+00 +3.8969e+00 +3.6610e+00 +3.7564e+00 +3.7784e+00 +3.6424e+00 +3.7688e+00 +3.7148e+00 +4.0385e+00 +3.8617e+00 +3.5421e+00 +3.6682e+00 +3.5863e+00 +3.8027e+00 +3.9081e+00 +3.6447e+00 +3.5816e+00 +3.7138e+00 +3.9020e+00 +3.7917e+00 +3.6166e+00 +3.6461e+00 +3.7845e+00 +3.7823e+00 +3.7689e+00 +3.3800e+00 +3.9641e+00 +3.8646e+00 +3.6122e+00 +3.8184e+00 +3.8117e+00 +4.0309e+00 +3.7310e+00 +3.9019e+00 +3.7288e+00 +4.0360e+00 +3.7173e+00 +3.7649e+00 +3.6728e+00 +4.0173e+00 +3.6526e+00 +3.7573e+00 +3.8614e+00 +3.6254e+00 +3.7264e+00 +3.8100e+00 +3.6935e+00 +3.9548e+00 +3.7384e+00 +3.8125e+00 +3.4738e+00 +3.9534e+00 +3.8951e+00 +4.0091e+00 +3.7752e+00 +3.8175e+00 +3.7484e+00 +3.8186e+00 +3.9469e+00 +3.7303e+00 +3.7744e+00 +3.8223e+00 +3.7803e+00 +3.8927e+00 +3.9215e+00 +3.4861e+00 +3.6370e+00 +3.9590e+00 +3.7915e+00 +3.9232e+00 +3.5777e+00 +3.9123e+00 +3.6276e+00 +3.8130e+00 +3.9168e+00 +3.9142e+00 +3.7956e+00 +3.6285e+00 +3.7946e+00 +3.7037e+00 +3.8572e+00 +3.6836e+00 +3.8802e+00 +3.7669e+00 +3.6567e+00 +3.6485e+00 +3.8630e+00 +3.7916e+00 +3.8306e+00 +3.5473e+00 +3.4370e+00 +3.8382e+00 +3.6453e+00 +3.8074e+00 +3.7952e+00 +3.7054e+00 +3.6550e+00 +4.0103e+00 +3.8055e+00 +3.5207e+00 +3.7462e+00 +3.8612e+00 +4.1221e+00 +3.8314e+00 +3.9647e+00 +3.9875e+00 +3.6524e+00 +3.7730e+00 +3.9908e+00 +3.7945e+00 +3.6282e+00 +3.7770e+00 +3.7447e+00 +3.6452e+00 +3.5352e+00 +3.8525e+00 +3.6919e+00 +3.8197e+00 +3.7267e+00 +3.7481e+00 +3.8067e+00 +3.8334e+00 +3.7286e+00 +3.8530e+00 +3.8498e+00 +3.8469e+00 +3.6314e+00 +3.8638e+00 +3.6532e+00 +3.6266e+00 +3.7152e+00 +3.7097e+00 +3.8024e+00 +3.8355e+00 +3.6341e+00 +3.8283e+00 +3.9258e+00 +3.6027e+00 +3.8156e+00 +3.9721e+00 +3.4990e+00 +3.8604e+00 +3.7202e+00 +3.5414e+00 +3.7134e+00 +3.7053e+00 +3.4748e+00 +3.6025e+00 +3.7220e+00 +3.7223e+00 +3.9695e+00 +3.7943e+00 +3.8592e+00 +3.7341e+00 +3.6335e+00 +3.6124e+00 +3.9818e+00 +3.9549e+00 +3.7696e+00 +3.4805e+00 +3.7977e+00 +3.5364e+00 +3.8950e+00 +3.5328e+00 +3.9085e+00 +3.7900e+00 +3.6879e+00 +3.9018e+00 +3.5762e+00 +3.8880e+00 +3.7048e+00 +3.9708e+00 +3.6997e+00 +3.7113e+00 +3.7723e+00 +3.8089e+00 +3.7030e+00 +3.8108e+00 +3.8482e+00 +3.7818e+00 +3.7175e+00 +3.8295e+00 +3.8594e+00 +3.9351e+00 +3.8691e+00 +3.7771e+00 +3.7396e+00 +3.8981e+00 +3.9048e+00 +3.5548e+00 +3.5603e+00 +3.9845e+00 +4.0021e+00 +3.7372e+00 +3.9407e+00 +3.7676e+00 +3.7294e+00 +3.6995e+00 +3.9449e+00 +3.5643e+00 +3.6031e+00 +3.9458e+00 +3.6087e+00 +3.6555e+00 +3.7382e+00 +3.6166e+00 +3.4568e+00 +3.7365e+00 +3.6731e+00 +3.8932e+00 +3.8512e+00 +3.6099e+00 +3.6931e+00 +3.8253e+00 +3.8571e+00 +3.6511e+00 +3.7194e+00 +3.6364e+00 +3.8725e+00 +3.6630e+00 +3.7737e+00 +3.8066e+00 +3.8633e+00 +3.7687e+00 +3.8235e+00 +3.6660e+00 +3.7174e+00 +3.5950e+00 +3.6361e+00 +3.6186e+00 +3.7470e+00 +3.9090e+00 +3.6449e+00 +3.8814e+00 +3.6477e+00 +3.9590e+00 +3.7090e+00 +3.5851e+00 +3.7684e+00 +3.7405e+00 +3.4736e+00 +3.4360e+00 +3.7041e+00 +3.6570e+00 +3.7248e+00 +3.8561e+00 +3.8193e+00 +3.8137e+00 +3.9044e+00 +3.7603e+00 +3.7553e+00 +3.4965e+00 +3.7659e+00 +3.8147e+00 +3.7624e+00 +3.3844e+00 +3.5955e+00 +3.6247e+00 +3.5614e+00 +3.6773e+00 +3.7500e+00 +3.6277e+00 +3.8290e+00 +3.6613e+00 +3.6337e+00 +3.8565e+00 +3.8809e+00 +3.6849e+00 +3.8450e+00 +3.6064e+00 +3.7413e+00 +3.6343e+00 +3.8005e+00 +3.5828e+00 +3.5406e+00 +3.6768e+00 +3.8691e+00 +3.6364e+00 +3.8573e+00 +4.1025e+00 +3.5957e+00 +3.8642e+00 +3.5456e+00 +3.6112e+00 +3.8939e+00 +3.6832e+00 +3.8979e+00 +3.7800e+00 +3.4934e+00 +3.9469e+00 +3.7331e+00 +3.6561e+00 +3.5984e+00 +3.9714e+00 +3.7121e+00 +3.8823e+00 +3.6108e+00 +3.8572e+00 +3.7597e+00 +3.7336e+00 +3.7961e+00 +3.8197e+00 +3.6569e+00 +3.7079e+00 +3.7054e+00 +3.6535e+00 +3.8142e+00 +3.8719e+00 +3.9928e+00 +3.8202e+00 +4.0257e+00 +3.4291e+00 +3.7031e+00 +3.8753e+00 +3.7386e+00 +3.9888e+00 +3.8998e+00 +3.8106e+00 +3.8258e+00 +3.9893e+00 +3.8570e+00 +3.7972e+00 +3.8780e+00 +3.6488e+00 +3.7416e+00 +3.6915e+00 +3.6111e+00 +3.6624e+00 +3.7041e+00 +3.9100e+00 +3.6374e+00 +3.6351e+00 +3.8139e+00 +3.4905e+00 +3.6406e+00 +3.9803e+00 +3.5528e+00 +3.7716e+00 +3.8790e+00 +3.7808e+00 +3.8001e+00 +3.8370e+00 +3.7495e+00 +3.5814e+00 +3.9137e+00 +3.8101e+00 +3.7367e+00 +3.8614e+00 +3.7105e+00 +3.8749e+00 +3.7595e+00 +3.5520e+00 +3.6053e+00 +3.6746e+00 +3.8229e+00 +3.6460e+00 +3.6565e+00 +3.7202e+00 +3.7512e+00 +3.8505e+00 +3.7371e+00 +3.8592e+00 +3.4863e+00 +3.9447e+00 +3.9024e+00 +3.7081e+00 +3.6868e+00 +3.7254e+00 +3.5815e+00 +3.9821e+00 +3.6846e+00 +3.7687e+00 +3.7079e+00 +3.6884e+00 +3.6102e+00 +3.8858e+00 +3.7349e+00 +3.9371e+00 +3.6656e+00 +3.7173e+00 +3.7431e+00 +3.7509e+00 +3.8146e+00 +3.5878e+00 +3.7112e+00 +3.7838e+00 +3.6834e+00 +3.8581e+00 +3.7485e+00 +3.7749e+00 +3.6269e+00 +3.8616e+00 +3.7776e+00 +3.5467e+00 +3.7517e+00 +3.8495e+00 +3.7148e+00 +3.9840e+00 +3.6892e+00 +3.6589e+00 +3.5228e+00 +3.7454e+00 +3.6216e+00 +3.9060e+00 +3.4618e+00 +3.6250e+00 +3.5544e+00 +3.7379e+00 +3.6019e+00 +3.6970e+00 +3.6055e+00 +3.6961e+00 +3.8814e+00 +3.6186e+00 +3.6329e+00 +3.8830e+00 +3.8224e+00 +3.8586e+00 +3.3884e+00 +3.7878e+00 +3.7381e+00 +3.5799e+00 +3.6788e+00 +3.6515e+00 +3.7411e+00 +3.4858e+00 +3.8181e+00 +3.9071e+00 +3.8459e+00 +3.6137e+00 +3.9053e+00 +3.4398e+00 +3.6076e+00 +4.0780e+00 +3.6371e+00 +3.6323e+00 +3.7771e+00 +3.9926e+00 +3.8330e+00 +3.7610e+00 +3.7912e+00 +3.8624e+00 +3.8217e+00 +3.8190e+00 +3.6589e+00 +3.6685e+00 +3.9646e+00 +3.5551e+00 +3.6724e+00 +3.8493e+00 +3.7407e+00 +3.8687e+00 +3.5642e+00 +3.5736e+00 +3.5001e+00 +3.6458e+00 +3.6893e+00 +3.5692e+00 +3.6024e+00 +3.5114e+00 +3.8587e+00 +3.4850e+00 +3.6662e+00 +3.5465e+00 +3.4955e+00 +3.6897e+00 +3.5596e+00 +3.7416e+00 +3.6902e+00 +3.6728e+00 +3.7333e+00 +3.8235e+00 +3.6543e+00 +3.8134e+00 +3.7854e+00 +3.6402e+00 +3.6436e+00 +3.9897e+00 +3.5192e+00 +3.6910e+00 +3.7744e+00 +3.4692e+00 +3.6960e+00 +3.6852e+00 +3.6995e+00 +3.5274e+00 +3.6362e+00 +3.8343e+00 +3.5620e+00 +3.7228e+00 +3.8176e+00 +3.6752e+00 +3.7763e+00 +3.6788e+00 +3.8655e+00 +3.8913e+00 +3.7500e+00 +3.5996e+00 +3.7261e+00 +3.7908e+00 +3.7571e+00 +3.8147e+00 +3.6316e+00 +3.7402e+00 +3.5545e+00 +3.5847e+00 +3.5669e+00 +3.6180e+00 +3.6273e+00 +3.5966e+00 +3.7180e+00 +3.6497e+00 +3.6267e+00 +3.7704e+00 +3.6144e+00 +3.8194e+00 +3.5586e+00 +3.7830e+00 +3.6164e+00 +3.5738e+00 +3.3891e+00 +3.5856e+00 +3.8380e+00 +3.9705e+00 +3.8130e+00 +3.6991e+00 +3.6705e+00 +3.8000e+00 +3.5031e+00 +3.5705e+00 +3.9172e+00 +3.4705e+00 +3.8159e+00 +3.6896e+00 +3.8675e+00 +3.5394e+00 +3.6310e+00 +3.7568e+00 +3.7142e+00 +3.8212e+00 +3.5225e+00 +3.8674e+00 +3.6205e+00 +3.6732e+00 +3.7268e+00 +3.9274e+00 +3.5888e+00 +3.8569e+00 +3.4381e+00 +3.6008e+00 +3.8891e+00 +3.6904e+00 +3.8416e+00 +3.7835e+00 +3.9026e+00 +3.7960e+00 +3.6263e+00 +3.7445e+00 +3.6330e+00 +3.4287e+00 +3.8555e+00 +3.8483e+00 +3.9001e+00 +3.5817e+00 +3.8575e+00 +4.1121e+00 +3.9188e+00 +3.4998e+00 +3.7674e+00 +3.5486e+00 +3.7077e+00 +3.8045e+00 +3.5562e+00 +3.4721e+00 +3.8293e+00 +3.7461e+00 +3.7377e+00 +3.6406e+00 +3.6739e+00 +3.7650e+00 +3.7387e+00 +3.6163e+00 +3.6924e+00 +3.8490e+00 +3.9459e+00 +3.6232e+00 +3.9566e+00 +3.6597e+00 +3.5820e+00 +3.8415e+00 +3.5676e+00 +3.6498e+00 +3.5248e+00 +3.6733e+00 +3.8412e+00 +3.5054e+00 +3.4469e+00 +3.5579e+00 +3.6670e+00 +3.6141e+00 +3.6763e+00 +3.9655e+00 +3.6836e+00 +3.5403e+00 +3.7726e+00 +3.6782e+00 +3.9354e+00 +3.6293e+00 +3.6457e+00 +3.7144e+00 +3.6387e+00 +3.6126e+00 +3.6181e+00 +3.6415e+00 +3.5322e+00 +3.6727e+00 +3.5769e+00 +3.6052e+00 +3.5407e+00 +3.4361e+00 +3.7760e+00 +3.7931e+00 +3.4955e+00 +3.7245e+00 +3.6297e+00 +3.7508e+00 +3.4922e+00 +3.5170e+00 +3.8087e+00 +3.6181e+00 +3.7158e+00 +3.4899e+00 +3.7122e+00 +3.7467e+00 +3.5042e+00 +3.6093e+00 +3.6921e+00 +3.6556e+00 +4.0269e+00 +3.6326e+00 +3.8377e+00 +3.7678e+00 +3.5318e+00 +3.7484e+00 +3.6551e+00 +3.4409e+00 +3.7998e+00 +3.4402e+00 +3.7280e+00 +3.8106e+00 +3.7440e+00 +3.6653e+00 +3.4772e+00 +3.6434e+00 +3.4223e+00 +3.5875e+00 +3.7244e+00 +3.3742e+00 +3.8401e+00 +3.5467e+00 +3.6626e+00 +3.3705e+00 +3.6543e+00 +3.6337e+00 +3.6927e+00 +3.5074e+00 +3.6635e+00 +3.8092e+00 +3.8747e+00 +3.5054e+00 +3.6438e+00 +3.3772e+00 +3.8372e+00 +3.6675e+00 +3.6686e+00 +3.7293e+00 +3.6573e+00 +3.8325e+00 +3.7733e+00 +3.8494e+00 +3.4867e+00 +3.6456e+00 +3.9498e+00 +3.6600e+00 +3.5092e+00 +3.6392e+00 +3.6300e+00 +3.3424e+00 +3.7951e+00 +3.6943e+00 +3.5955e+00 +3.8393e+00 +3.4852e+00 +3.7802e+00 +3.9367e+00 +3.4812e+00 +3.3453e+00 +3.7009e+00 +3.6304e+00 +3.4581e+00 +3.7241e+00 +3.7096e+00 +3.5645e+00 +3.8085e+00 +3.5764e+00 +3.4496e+00 +3.7462e+00 +3.5906e+00 +3.5658e+00 +3.8006e+00 +3.6116e+00 +3.8003e+00 +3.4646e+00 +3.7046e+00 +3.6724e+00 +3.8201e+00 +3.6343e+00 +3.4803e+00 +3.7328e+00 +3.7237e+00 +3.5800e+00 +3.4901e+00 +3.6659e+00 +3.6344e+00 +3.9383e+00 +3.3556e+00 +3.8178e+00 +3.4538e+00 +3.7588e+00 +3.7156e+00 +3.6135e+00 +3.7208e+00 +3.4293e+00 +3.4075e+00 +3.6793e+00 +3.6617e+00 +3.6520e+00 +3.8177e+00 +3.8964e+00 +3.7610e+00 +3.8287e+00 +3.6999e+00 +3.5630e+00 +3.6506e+00 +3.7459e+00 +3.5633e+00 +3.4431e+00 +3.6163e+00 +3.6608e+00 +3.5361e+00 +3.5706e+00 +3.8900e+00 +3.7877e+00 +3.4953e+00 +3.5337e+00 +3.8667e+00 +3.4322e+00 +3.6744e+00 +3.6254e+00 +3.8271e+00 +3.6448e+00 +3.5452e+00 +3.6918e+00 +3.7387e+00 +3.5784e+00 +3.7212e+00 +3.7479e+00 +3.5662e+00 +3.5339e+00 +3.7446e+00 +3.7298e+00 +3.9255e+00 +3.5160e+00 +3.5539e+00 +3.4857e+00 +3.7979e+00 +3.6542e+00 +3.6464e+00 +3.7720e+00 +3.8460e+00 +3.7069e+00 +3.5896e+00 +3.7640e+00 +3.7178e+00 +3.8078e+00 +3.6445e+00 +3.9215e+00 +3.5395e+00 +3.6357e+00 +3.4529e+00 +3.6078e+00 +3.7709e+00 +3.7337e+00 +3.6677e+00 +3.3848e+00 +3.5457e+00 +3.5565e+00 +3.5370e+00 +3.5592e+00 +3.4673e+00 +3.4210e+00 +3.7530e+00 +3.3108e+00 +3.5183e+00 +3.4771e+00 +3.4230e+00 +3.7020e+00 +3.6624e+00 +3.6926e+00 +3.6646e+00 +3.6132e+00 +4.0036e+00 +3.8836e+00 +3.6498e+00 +3.6676e+00 +3.6098e+00 +3.7770e+00 +3.5986e+00 +3.5383e+00 +3.3849e+00 +3.9746e+00 +3.5150e+00 +3.8229e+00 +3.6722e+00 +3.6489e+00 +3.6220e+00 +3.6655e+00 +3.7401e+00 +3.7393e+00 +3.8802e+00 +3.6067e+00 +3.6763e+00 +3.6575e+00 +3.6121e+00 +3.6981e+00 +3.4960e+00 +3.8049e+00 +3.7178e+00 +3.6596e+00 +3.7896e+00 +3.6130e+00 +3.5630e+00 +3.8056e+00 +3.8824e+00 +3.6070e+00 +3.6164e+00 +3.5387e+00 +3.7177e+00 +3.5311e+00 +3.7900e+00 +3.4770e+00 +3.8059e+00 +3.5162e+00 +3.6962e+00 +3.9981e+00 +3.6662e+00 +3.7453e+00 +3.7125e+00 +3.5906e+00 +3.5748e+00 +3.5491e+00 +3.6079e+00 +3.8001e+00 +3.5493e+00 +3.4956e+00 +3.4672e+00 +3.5272e+00 +3.6869e+00 +3.6572e+00 +3.6223e+00 +3.6815e+00 +3.7448e+00 +3.6960e+00 +3.7787e+00 +3.7937e+00 +3.3240e+00 +3.7361e+00 +3.4792e+00 +3.2931e+00 +3.4123e+00 +3.7779e+00 +3.4242e+00 +3.8064e+00 +3.7091e+00 +3.4095e+00 +3.4820e+00 +3.3700e+00 +3.6866e+00 +3.5723e+00 +3.4491e+00 +3.6898e+00 +3.8114e+00 +3.4092e+00 +3.6762e+00 +3.5543e+00 +3.8470e+00 +3.7681e+00 +3.5680e+00 +3.5173e+00 +3.6421e+00 +3.5477e+00 +3.7776e+00 +3.4714e+00 +3.6589e+00 +3.8880e+00 +3.6981e+00 +3.5690e+00 +3.8325e+00 +3.7465e+00 +3.5332e+00 +3.6348e+00 +3.6250e+00 +3.5239e+00 +3.5245e+00 +3.6104e+00 +3.4142e+00 +3.4457e+00 +3.7024e+00 +3.5789e+00 +3.4502e+00 +3.5298e+00 +3.4266e+00 +3.5783e+00 +3.5589e+00 +3.6564e+00 +3.8458e+00 +3.4827e+00 +3.3803e+00 +3.5311e+00 +3.4945e+00 +3.4641e+00 +3.5416e+00 +3.6744e+00 +3.6286e+00 +3.5139e+00 +3.7379e+00 +3.6962e+00 +3.6442e+00 +3.6086e+00 +3.6354e+00 +3.7378e+00 +3.6749e+00 +3.3761e+00 +3.4631e+00 +3.6285e+00 +3.6669e+00 +3.8400e+00 +3.7243e+00 +3.4651e+00 +3.3953e+00 +3.7042e+00 +3.4501e+00 +3.4488e+00 +3.7019e+00 +3.7525e+00 +3.6220e+00 +3.7931e+00 +3.4648e+00 +3.5861e+00 +3.5432e+00 +3.7708e+00 +3.4895e+00 +3.6778e+00 +3.6617e+00 +3.7313e+00 +3.5787e+00 +3.4904e+00 +3.3048e+00 +3.7910e+00 +3.4893e+00 +3.7321e+00 +3.7909e+00 +3.6479e+00 +3.7296e+00 +3.8059e+00 +3.4220e+00 +3.8284e+00 +3.7946e+00 +3.6609e+00 +3.5192e+00 +3.5481e+00 +3.5832e+00 +3.5050e+00 +3.4732e+00 +3.7199e+00 +3.5727e+00 +3.7167e+00 +3.4661e+00 +3.7182e+00 +3.4791e+00 +3.5027e+00 +3.7240e+00 +3.5447e+00 +3.5345e+00 +3.6703e+00 +3.4159e+00 +3.7020e+00 +3.3808e+00 +3.7698e+00 +3.5637e+00 +3.7874e+00 +3.6175e+00 +3.3683e+00 +3.5108e+00 +3.5977e+00 +3.5020e+00 +3.6571e+00 +3.5615e+00 +3.5057e+00 +3.6059e+00 +3.5374e+00 +3.6524e+00 +3.5558e+00 +3.5550e+00 +3.3979e+00 +3.5036e+00 +3.6631e+00 +3.6150e+00 +3.8461e+00 +3.4026e+00 +3.6278e+00 +3.8024e+00 +3.5999e+00 +3.6532e+00 +3.5941e+00 +3.5263e+00 +3.7573e+00 +3.3619e+00 +3.7530e+00 +3.7058e+00 +3.3212e+00 +3.3973e+00 +3.4879e+00 +3.4893e+00 +3.6312e+00 +3.7044e+00 +3.5064e+00 +3.4949e+00 +3.4872e+00 +3.3989e+00 +3.4513e+00 +3.5766e+00 +3.6018e+00 +3.7030e+00 +3.4095e+00 +3.5198e+00 +3.4075e+00 +3.6168e+00 +3.6572e+00 +3.8006e+00 +3.6535e+00 +3.5580e+00 +3.5259e+00 +3.7709e+00 +3.5028e+00 +3.5113e+00 +3.5558e+00 +3.6653e+00 +3.4553e+00 +3.5410e+00 +3.7459e+00 +3.8250e+00 +3.6060e+00 +3.6695e+00 +3.6213e+00 +3.9090e+00 +3.5822e+00 +3.8731e+00 +3.4542e+00 +3.5125e+00 +3.4823e+00 +3.6424e+00 +3.5138e+00 +3.5960e+00 +3.6486e+00 +3.5764e+00 +3.7466e+00 +3.2682e+00 +3.4842e+00 +3.4702e+00 +3.6204e+00 +3.7204e+00 +3.8085e+00 +3.6149e+00 +3.4357e+00 +3.6129e+00 +3.6046e+00 +3.5563e+00 +3.7274e+00 +3.6784e+00 +3.4715e+00 +3.4713e+00 +3.4706e+00 +3.4388e+00 +3.5775e+00 +3.7246e+00 +3.3820e+00 +3.7270e+00 +3.6358e+00 +3.5716e+00 +3.6736e+00 +3.8898e+00 +3.5931e+00 +3.6010e+00 +3.5854e+00 +3.6548e+00 +3.6664e+00 +3.4989e+00 +3.3197e+00 +3.7341e+00 +3.7517e+00 +3.5124e+00 +3.9396e+00 +3.4879e+00 +3.6444e+00 +3.3542e+00 +3.4836e+00 +3.6806e+00 +3.5720e+00 +3.7403e+00 +3.4042e+00 +3.6715e+00 +3.6235e+00 +3.7761e+00 +3.3825e+00 +3.6022e+00 +3.7461e+00 +3.4633e+00 +3.5022e+00 +3.4326e+00 +3.7812e+00 +3.3502e+00 +3.9817e+00 +3.6796e+00 +3.3984e+00 +3.6871e+00 +3.7625e+00 +3.4434e+00 +3.6553e+00 +3.4363e+00 +3.4724e+00 +3.5564e+00 +3.8044e+00 +3.4724e+00 +3.5060e+00 +3.5302e+00 +3.9033e+00 +3.6609e+00 +3.5888e+00 +3.3626e+00 +3.6606e+00 +3.5685e+00 +3.7999e+00 +3.3931e+00 +3.5656e+00 +3.6718e+00 +3.6107e+00 +3.4552e+00 +3.5213e+00 +3.4669e+00 +3.6311e+00 +3.6951e+00 +3.4884e+00 +3.7115e+00 +3.6608e+00 +3.6307e+00 +3.5053e+00 +3.6434e+00 +3.7355e+00 +3.7243e+00 +3.4681e+00 +3.5662e+00 +3.7130e+00 +3.4879e+00 +3.6710e+00 +3.6388e+00 +3.4555e+00 +3.9142e+00 +3.6597e+00 +3.6043e+00 +3.4639e+00 +3.5245e+00 +3.5828e+00 +3.6860e+00 +3.5977e+00 +3.5451e+00 +3.7351e+00 +3.6288e+00 +3.5503e+00 +3.6049e+00 +3.4726e+00 +3.6813e+00 +3.3652e+00 +3.4978e+00 +3.5596e+00 +3.6063e+00 +3.4316e+00 +3.6338e+00 +3.2663e+00 +3.5887e+00 +3.4007e+00 +3.6795e+00 +3.8095e+00 +3.6453e+00 +3.4849e+00 +3.7343e+00 +3.6027e+00 +3.5378e+00 +3.3584e+00 +3.2236e+00 +3.3458e+00 +3.4288e+00 +3.3481e+00 +3.7616e+00 +3.4801e+00 +3.5306e+00 +3.6276e+00 +3.6665e+00 +3.6634e+00 +3.5248e+00 +3.5216e+00 +3.6616e+00 +3.7403e+00 +3.4415e+00 +3.5642e+00 +3.3303e+00 +3.5676e+00 +3.6500e+00 +3.5783e+00 +3.7316e+00 +3.5722e+00 +3.8060e+00 +3.4575e+00 +3.6021e+00 +3.4702e+00 +3.6423e+00 +3.3073e+00 +3.4640e+00 +3.6179e+00 +3.4632e+00 +3.6548e+00 +3.6120e+00 +3.3041e+00 +3.5363e+00 +3.4610e+00 +3.5238e+00 +3.6789e+00 +3.6695e+00 +3.3046e+00 +3.4718e+00 +3.5160e+00 +3.6413e+00 +3.6040e+00 +3.6328e+00 +3.6326e+00 +3.4751e+00 +3.4278e+00 +3.1986e+00 +3.4592e+00 +3.5433e+00 +3.4608e+00 +3.7054e+00 +3.5915e+00 +3.6141e+00 +3.6329e+00 +3.7820e+00 +3.5186e+00 +3.5565e+00 +3.5834e+00 +3.7063e+00 +3.4964e+00 +3.4888e+00 +3.6221e+00 +3.6330e+00 +3.5026e+00 +3.5486e+00 +3.5505e+00 +3.6758e+00 +3.3895e+00 +3.8047e+00 +3.4599e+00 +3.4401e+00 +3.8439e+00 +3.7015e+00 +3.6703e+00 +3.6472e+00 +3.3239e+00 +3.5600e+00 +3.4890e+00 +3.4857e+00 +3.5067e+00 +3.4163e+00 +3.8841e+00 +3.6231e+00 +3.5930e+00 +3.5953e+00 +3.4346e+00 +3.5664e+00 +3.4809e+00 +3.4604e+00 +3.5746e+00 +3.2886e+00 +3.3287e+00 +3.4098e+00 +3.5345e+00 +3.5127e+00 +3.4998e+00 +3.6334e+00 +3.6206e+00 +3.5412e+00 +3.6726e+00 +3.6520e+00 +3.6216e+00 +3.5246e+00 +3.5952e+00 +3.4334e+00 +3.6755e+00 +3.5689e+00 +3.6468e+00 +3.5963e+00 +3.8029e+00 +3.6744e+00 +3.5920e+00 +3.3372e+00 +3.5033e+00 +3.5735e+00 +3.4862e+00 +3.7135e+00 +3.5455e+00 +3.4102e+00 +3.3791e+00 +3.7250e+00 +3.5598e+00 +3.5427e+00 +3.6784e+00 +3.8534e+00 +3.3680e+00 +3.4649e+00 +3.5283e+00 +3.8401e+00 +3.4915e+00 +3.5633e+00 +3.6730e+00 +3.4831e+00 +3.3951e+00 +3.4938e+00 +3.5491e+00 +3.4022e+00 +3.3749e+00 +4.0263e+00 +3.5806e+00 +3.5312e+00 +3.9451e+00 +3.4883e+00 +3.6288e+00 +3.6144e+00 +3.4586e+00 +3.9752e+00 +3.6602e+00 +3.3774e+00 +3.7694e+00 +3.5583e+00 +3.4900e+00 +3.6023e+00 +3.4986e+00 +3.2904e+00 +3.3981e+00 +3.6663e+00 +3.6195e+00 +3.4582e+00 +3.6020e+00 +3.7122e+00 +3.6488e+00 +3.7265e+00 +3.5499e+00 +3.6323e+00 +3.6631e+00 +3.4128e+00 +3.4856e+00 +3.4545e+00 +3.5858e+00 +3.7659e+00 +3.5298e+00 +3.6339e+00 +3.5801e+00 +3.3278e+00 +3.6242e+00 +3.6955e+00 +3.5298e+00 +3.6306e+00 +3.7737e+00 +3.7131e+00 +3.6289e+00 +3.4674e+00 +3.5635e+00 +3.6111e+00 +3.2722e+00 +3.7837e+00 +3.5368e+00 +3.2905e+00 +3.4581e+00 +3.5859e+00 +3.6785e+00 +3.4071e+00 +3.4821e+00 +3.4813e+00 +3.7837e+00 +3.5171e+00 +3.4123e+00 +3.3095e+00 +3.4793e+00 +3.5701e+00 +3.4566e+00 +3.6949e+00 +3.5668e+00 +3.7494e+00 +3.4690e+00 +3.9039e+00 +3.7115e+00 +3.6332e+00 +3.7582e+00 +3.4263e+00 +3.6291e+00 +3.4833e+00 +3.3114e+00 +3.6399e+00 +3.6579e+00 +3.5006e+00 +3.5217e+00 +3.8178e+00 +3.5014e+00 +3.8368e+00 +3.5402e+00 +3.5589e+00 +3.6606e+00 +3.5845e+00 +3.6388e+00 +3.7020e+00 +3.5552e+00 +3.6610e+00 +3.6524e+00 +3.5839e+00 +3.4706e+00 +3.3851e+00 +3.6201e+00 +3.4898e+00 +3.5110e+00 +3.7125e+00 +3.5643e+00 +3.5413e+00 +3.4783e+00 +3.3819e+00 +3.4849e+00 +3.5846e+00 +3.3388e+00 +3.4970e+00 +3.6583e+00 +3.5871e+00 +3.4619e+00 +3.4682e+00 +3.4995e+00 +3.3834e+00 +3.5492e+00 +3.4012e+00 +3.1972e+00 +3.2493e+00 +3.5095e+00 +3.6428e+00 +3.3851e+00 +3.5451e+00 +3.2674e+00 +3.5359e+00 +3.4870e+00 +3.3711e+00 +3.4114e+00 +3.6480e+00 +3.5435e+00 +3.6433e+00 +3.3973e+00 +3.2838e+00 +3.4447e+00 +3.3419e+00 +3.5978e+00 +3.4209e+00 +3.3975e+00 +3.1148e+00 +3.2695e+00 +3.4847e+00 +3.4586e+00 +3.3912e+00 +3.5702e+00 +3.3751e+00 +3.7322e+00 +3.7756e+00 +3.5518e+00 +3.3358e+00 +3.8517e+00 +3.5681e+00 +3.5819e+00 +3.6183e+00 +3.7558e+00 +3.4579e+00 +3.7455e+00 +3.2112e+00 +3.7294e+00 +3.3556e+00 +3.4942e+00 +3.3088e+00 +3.4945e+00 +3.4854e+00 +3.5493e+00 +3.4484e+00 +3.5969e+00 +3.5277e+00 +3.4638e+00 +3.5325e+00 +3.4485e+00 +3.5347e+00 +3.6137e+00 +3.3664e+00 +3.6757e+00 +3.4499e+00 +3.4991e+00 +3.5012e+00 +3.3888e+00 +3.7495e+00 +3.5022e+00 +3.3277e+00 +3.7120e+00 +3.9088e+00 +3.5364e+00 +3.5347e+00 +3.4851e+00 +3.6159e+00 +3.7130e+00 +3.4977e+00 +3.3743e+00 +3.4951e+00 +3.8048e+00 +3.3969e+00 +3.6182e+00 +3.6894e+00 +3.4292e+00 +3.6575e+00 +3.3199e+00 +3.5586e+00 +3.3016e+00 +3.6020e+00 +3.3503e+00 +3.6439e+00 +3.5398e+00 +3.4422e+00 +3.7221e+00 +3.3372e+00 +3.2967e+00 +3.3225e+00 +3.6927e+00 +3.7218e+00 +3.4062e+00 +3.5160e+00 +3.5906e+00 +3.3249e+00 +3.5844e+00 +3.6083e+00 +3.4319e+00 +3.2982e+00 +3.5141e+00 +3.4617e+00 +3.7170e+00 +3.4562e+00 +3.4192e+00 +3.2838e+00 +3.4342e+00 +3.3601e+00 +3.4934e+00 +3.6252e+00 +3.7190e+00 +3.7101e+00 +3.3370e+00 +3.7356e+00 +3.7365e+00 +3.5139e+00 +3.7061e+00 +3.6978e+00 +3.3771e+00 +3.4428e+00 +3.2604e+00 +3.9043e+00 +3.3310e+00 +3.6010e+00 +3.5166e+00 +3.5316e+00 +3.6772e+00 +3.6172e+00 +3.5761e+00 +3.3213e+00 +3.3762e+00 +3.7496e+00 +3.5004e+00 +3.7904e+00 +3.4754e+00 +3.5914e+00 +3.5673e+00 +3.5126e+00 +3.4641e+00 +3.4684e+00 +3.4883e+00 +3.5641e+00 +3.5667e+00 +3.6182e+00 +3.5496e+00 +3.5068e+00 +3.5408e+00 +3.1711e+00 +3.3738e+00 +3.4397e+00 +3.6804e+00 +3.6741e+00 +3.3208e+00 +3.2616e+00 +3.3221e+00 +3.5445e+00 +3.5834e+00 +3.4460e+00 +3.3372e+00 +3.3944e+00 +3.4902e+00 +3.2965e+00 +3.7031e+00 +3.6114e+00 +3.6280e+00 +3.4913e+00 +3.6569e+00 +3.3835e+00 +3.4987e+00 +3.7531e+00 +3.5299e+00 +3.7646e+00 +3.6471e+00 +3.7164e+00 +3.3570e+00 +3.5041e+00 +3.5354e+00 +3.5548e+00 +3.3303e+00 +3.4384e+00 +3.6796e+00 +3.7048e+00 +3.6669e+00 +3.4955e+00 +3.5686e+00 +3.5969e+00 +3.4845e+00 +3.3097e+00 +3.3544e+00 +3.3461e+00 +3.6161e+00 +3.4560e+00 +3.4704e+00 +3.5020e+00 +3.6476e+00 +3.5614e+00 +3.2828e+00 +3.4121e+00 +3.6591e+00 +3.5505e+00 +3.4135e+00 +3.4166e+00 +3.3764e+00 +3.5637e+00 +3.7032e+00 +3.5168e+00 +3.4616e+00 +3.3305e+00 +3.3193e+00 +3.4111e+00 +3.3177e+00 +3.5840e+00 +3.6258e+00 +3.2616e+00 +3.5624e+00 +3.4457e+00 +3.5099e+00 +3.5590e+00 +3.4919e+00 +3.3305e+00 +3.2001e+00 +3.4411e+00 +3.5150e+00 +3.6098e+00 +3.5448e+00 +3.5438e+00 +3.6156e+00 +3.4893e+00 +3.5382e+00 +3.4306e+00 +3.5251e+00 +3.4427e+00 +3.5938e+00 +3.3657e+00 +3.3975e+00 +3.5269e+00 +3.6127e+00 +3.5122e+00 +3.5494e+00 +3.3252e+00 +3.4633e+00 +3.5017e+00 +3.4499e+00 +3.3781e+00 +3.7279e+00 +3.5339e+00 +3.5155e+00 +3.6305e+00 +3.5538e+00 +3.5005e+00 +3.6385e+00 +3.4207e+00 +3.5980e+00 +3.6918e+00 +3.5504e+00 +3.5554e+00 +3.4246e+00 +3.4936e+00 +3.3478e+00 +3.6054e+00 +3.3285e+00 +3.6052e+00 +3.7562e+00 +3.4365e+00 +3.2365e+00 +3.3266e+00 +3.7271e+00 +3.5282e+00 +3.4348e+00 +3.5850e+00 +3.4346e+00 +3.4897e+00 +3.5588e+00 +3.6693e+00 +3.4541e+00 +3.4325e+00 +3.2227e+00 +3.6683e+00 +3.4817e+00 +3.6019e+00 +3.5778e+00 +3.3694e+00 +3.5823e+00 +3.3342e+00 +3.5412e+00 +3.3203e+00 +3.4383e+00 +3.5698e+00 +3.2678e+00 +3.5672e+00 +3.3071e+00 +3.4341e+00 +3.1723e+00 +3.6526e+00 +3.3804e+00 +3.4762e+00 +3.4256e+00 +3.3997e+00 +3.2397e+00 +3.5802e+00 +3.4512e+00 +3.3201e+00 +3.4360e+00 +3.5948e+00 +3.5533e+00 +3.5621e+00 +3.7207e+00 +3.5815e+00 +3.5933e+00 +3.4980e+00 +3.2502e+00 +3.6915e+00 +3.2670e+00 +3.3226e+00 +3.5779e+00 +3.5102e+00 +3.3600e+00 +3.5792e+00 +3.3877e+00 +3.4521e+00 +3.3942e+00 +3.4411e+00 +3.6565e+00 +3.4487e+00 +3.3864e+00 +3.4696e+00 +3.6079e+00 +3.7627e+00 +3.4002e+00 +3.5648e+00 +3.3166e+00 +3.5668e+00 +3.3814e+00 +3.2890e+00 +3.4579e+00 +3.3532e+00 +3.4096e+00 +3.5480e+00 +3.4178e+00 +3.6600e+00 +3.4732e+00 +3.3778e+00 +3.3350e+00 +3.5933e+00 +3.3705e+00 +3.7139e+00 +3.6023e+00 +3.5055e+00 +3.4439e+00 +3.6296e+00 +3.5023e+00 +3.6229e+00 +3.4008e+00 +3.3135e+00 +3.4448e+00 +3.5076e+00 +3.1759e+00 +3.6751e+00 +3.6675e+00 +3.7427e+00 +3.3738e+00 +3.3689e+00 +3.5262e+00 +3.1866e+00 +3.3810e+00 +3.5358e+00 +3.7259e+00 +3.5700e+00 +3.3829e+00 +3.4070e+00 +3.6755e+00 +3.5254e+00 +3.5307e+00 +3.4200e+00 +3.4682e+00 +3.2503e+00 +3.4487e+00 +3.3040e+00 +3.6373e+00 +3.6537e+00 +3.6961e+00 +3.3884e+00 +3.7371e+00 +3.4926e+00 +3.2179e+00 +3.5870e+00 +3.5184e+00 +3.4344e+00 +3.3345e+00 +3.5732e+00 +3.5728e+00 +3.3817e+00 +3.5317e+00 +3.2153e+00 +3.4909e+00 +3.0764e+00 +3.6379e+00 +3.4149e+00 +3.3850e+00 +3.2652e+00 +3.5073e+00 +3.5158e+00 +3.4717e+00 +3.3789e+00 +3.6636e+00 +3.1755e+00 +3.5091e+00 +3.4322e+00 +3.6068e+00 +3.6112e+00 +3.4529e+00 +3.2444e+00 +3.6331e+00 +3.2731e+00 +3.2647e+00 +3.5376e+00 +3.4160e+00 +3.3354e+00 +3.4496e+00 +3.4902e+00 +3.6280e+00 +3.5942e+00 +3.3057e+00 +3.5682e+00 +3.3913e+00 +3.3052e+00 +3.4350e+00 +3.2377e+00 +3.3225e+00 +3.3373e+00 +3.2332e+00 +3.4319e+00 +3.5254e+00 +3.6028e+00 +3.6524e+00 +3.5028e+00 +3.2675e+00 +3.2787e+00 +3.3590e+00 +3.3635e+00 +3.3599e+00 +3.6036e+00 +3.4098e+00 +3.5195e+00 +3.3948e+00 +3.3706e+00 +3.5138e+00 +3.4867e+00 +3.3687e+00 +3.2829e+00 +3.5078e+00 +3.4369e+00 +3.4215e+00 +3.3458e+00 +3.4085e+00 +3.4811e+00 +3.6942e+00 +3.3142e+00 +3.5270e+00 +3.4999e+00 +3.2799e+00 +3.5515e+00 +3.4674e+00 +3.2922e+00 +3.4460e+00 +3.5304e+00 +3.3095e+00 +3.4902e+00 +3.6939e+00 +3.4137e+00 +3.2198e+00 +3.5844e+00 +3.3198e+00 +3.3771e+00 +3.6824e+00 +3.5047e+00 +3.7003e+00 +3.2444e+00 +3.4254e+00 +3.7740e+00 +3.4248e+00 +3.5071e+00 +3.5010e+00 +3.0846e+00 +3.3644e+00 +3.6341e+00 +3.5384e+00 +3.2653e+00 +3.6156e+00 +3.3693e+00 +3.4572e+00 +3.4768e+00 +3.5759e+00 +3.1772e+00 +3.7287e+00 +3.4070e+00 +3.3167e+00 +3.1916e+00 +3.4348e+00 +3.4962e+00 +3.6316e+00 +3.4959e+00 +3.2270e+00 +3.5616e+00 +3.0673e+00 +3.2591e+00 +3.5157e+00 +3.2130e+00 +3.3587e+00 +3.4758e+00 +3.5144e+00 +3.4114e+00 +3.5333e+00 +3.5720e+00 +3.6180e+00 +3.6153e+00 +3.5187e+00 +3.3036e+00 +3.5887e+00 +3.4237e+00 +3.5672e+00 +3.7445e+00 +3.6667e+00 +3.5271e+00 +3.4844e+00 +3.5470e+00 +3.4171e+00 +3.3774e+00 +3.4870e+00 +3.7777e+00 +3.4045e+00 +3.5727e+00 +3.4364e+00 +3.4907e+00 +3.6297e+00 +3.5103e+00 +3.4670e+00 +3.6163e+00 +3.6393e+00 +3.2172e+00 +3.5398e+00 +3.3551e+00 +3.3940e+00 +3.6590e+00 +3.3611e+00 +3.1650e+00 +3.4749e+00 +3.6583e+00 +3.3451e+00 +3.5383e+00 +3.4634e+00 +3.1321e+00 +3.3270e+00 +3.4760e+00 +3.6131e+00 +3.4817e+00 +3.4162e+00 +3.3169e+00 +3.6047e+00 +3.8206e+00 +3.4996e+00 +3.5810e+00 +3.5234e+00 +3.4131e+00 +3.4602e+00 +3.3917e+00 +3.4680e+00 +3.5728e+00 +3.4496e+00 +3.5246e+00 +3.3280e+00 +3.5196e+00 +3.3554e+00 +3.4863e+00 +3.5723e+00 +3.3751e+00 +3.2660e+00 +3.2973e+00 +3.5487e+00 +3.6160e+00 +3.3617e+00 +3.4000e+00 +3.3699e+00 +3.3809e+00 +3.6450e+00 +3.6370e+00 +3.1810e+00 +3.7090e+00 +3.3078e+00 +3.2874e+00 +3.4556e+00 +3.3699e+00 +3.5339e+00 +3.4635e+00 +3.5294e+00 +3.7002e+00 +3.6420e+00 +3.2159e+00 +3.4349e+00 +3.4217e+00 +3.5205e+00 +3.4546e+00 +3.6142e+00 +3.4379e+00 +3.6686e+00 +3.3275e+00 +3.2473e+00 +3.2702e+00 +3.6351e+00 +3.3749e+00 +3.7392e+00 +3.3422e+00 +3.5166e+00 +3.5186e+00 +3.4078e+00 +3.2495e+00 +3.1741e+00 +3.4613e+00 +3.1663e+00 +3.3402e+00 +3.5811e+00 +3.5664e+00 +3.3291e+00 +3.1445e+00 +3.2715e+00 +3.5555e+00 +3.2402e+00 +3.5489e+00 +3.4010e+00 +3.3464e+00 +3.5199e+00 +3.2308e+00 +3.2012e+00 +3.1534e+00 +3.3314e+00 +3.7001e+00 +3.5810e+00 +3.2986e+00 +3.3549e+00 +3.3365e+00 +3.5653e+00 +3.3019e+00 +3.4095e+00 +3.4180e+00 +3.4575e+00 +3.4578e+00 +3.3721e+00 +3.5520e+00 +3.4358e+00 +3.5255e+00 +3.3531e+00 +3.2742e+00 +3.5174e+00 +3.5171e+00 +3.4027e+00 +3.4536e+00 +3.4661e+00 +3.6574e+00 +3.6723e+00 +3.5424e+00 +3.2766e+00 +3.2087e+00 +3.5473e+00 +3.2671e+00 +3.5537e+00 +3.5329e+00 +3.7500e+00 +3.6400e+00 +3.6289e+00 +3.5505e+00 +3.5322e+00 +3.3950e+00 +3.2444e+00 +3.4858e+00 +3.6172e+00 +3.6827e+00 +3.2323e+00 +3.5474e+00 +3.6270e+00 +3.7035e+00 diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_eval_8p.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_eval_8p.sh" new file mode 100644 index 0000000000000000000000000000000000000000..182d4e9ab5d3ef6cdab81132ca7eea83381a2a43 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_eval_8p.sh" @@ -0,0 +1,128 @@ +#!/usr/bin/env bash + +##################README################## +# 请注意修改(必选)项,确保配置正确 +# 最后的输出结果环节,没有强制要求按照示例执行,只需按照运行结果示例得到相同目录结构和输出结果即可 + +##################基础配置参数,需要模型审视修改################## +# 必选字段(必须在此处定义的参数): Network batch_size RANK_SIZE +#网络名称,同目录名称(必选) +Network="ResNet101_ID1595_for_PyTorch" +#训练epoch +train_epochs=110 +#训练batch_size(必选) +batch_size=2048 +#训练step +#train_steps=`expr 1281167 / ${batch_size}` +#学习率 +learning_rate=0.4 +# 训练使用的npu卡数 +export RANK_SIZE=8 +# 数据集路径,保持为空,不需要修改 +data_path="" +# 上一次训练生成的ckpt文件路径 +resume=checkpoint.pth.tar + +# 参数校验,data_path为必传参数, 其他参数的增删由模型自身决定;此处若新增参数需在上面有定义并赋值 +for para in $* +do + if [[ $para == --world_size* ]];then + world_size=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + + +##################指定训练脚本执行路径################## +# cd到与test文件同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径 +cur_path=`pwd` +cur_path_last_dirname=${cur_path##*/} +if [ x"${cur_path_last_dirname}" == x"test" ]; then + test_path_dir=${cur_path} + cd .. + cur_path=`pwd` +else + test_path_dir=${cur_path}/test +fi + + +##################创建日志输出目录,根据模型审视################## +# 模型采用非循环方式启动多卡训练,创建日志输出目录如下;采用循环方式启动多卡训练的模型,在循环中创建日志输出目录,可参考CRNN模型 +# 非循环方式下8卡训练日志输出路径中的ASCEND_DEVICE_ID默认为0,只是人为指定文件夹名称, 不涉及训练业务 +ASCEND_DEVICE_ID=0 +if [ -d ${test_path_dir}/output/$ASCEND_DEVICE_ID ];then + rm -rf ${test_path_dir}/output/$ASCEND_DEVICE_ID + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +else + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +fi + +##################启动训练脚本################## +# 训练开始时间,不需要修改 +start_time=$(date +%s) +# source 环境变量 +source ${test_path_dir}/env.sh +# 启动脚本(必选) +python3.7 ./main.py \ + ${data_path} \ + -a resnet101 \ + --evaluate \ + --resume ${resume} \ + --addr=$(hostname -I |awk '{print $1}') \ + --seed=49 \ + --workers=160 \ + --learning-rate=${learning_rate} \ + --mom=0.9 \ + --weight-decay=1.0e-04 \ + --print-freq=1 \ + --dist-url='tcp://127.0.0.1:50000' \ + --multiprocessing-distributed \ + --world-size=1 \ + --rank=0 \ + --device='npu' \ + --dist-backend='hccl' \ + --epochs=${train_epochs} \ + --batch-size=${batch_size} \ + --amp \ + --loss-scale=1024 > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +wait + +##################获取训练数据##################(必选) +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep -a '* Acc@1' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print}'|awk -F "Acc@1" '{print $NF}'|awk -F " " '{print $1}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'eval' + + +#最后一个迭代loss值,不需要修改 +ActualLoss=`grep Test ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log |awk -F "Loss" '{print $NF}' | awk -F " " '{print $1}' | awk 'END {print}'` +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_1p.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_1p.sh" new file mode 100644 index 0000000000000000000000000000000000000000..da5a23696328ff5a1633cdfe5d6598d7622751ff --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_1p.sh" @@ -0,0 +1,173 @@ +#!/usr/bin/env bash + +##################README################## +# 请注意修改(必选)项,确保配置正确 +# 最后的输出结果环节,没有强制要求按照示例执行,只需按照运行结果示例得到相同目录结构和输出结果即可 + +##################基础配置参数,需要模型审视修改################## +# 必选字段(必须在此处定义的参数): Network batch_size RANK_SIZE +#网络名称,同目录名称(必选) +Network="ResNet101_ID1595_for_PyTorch" +#训练epoch +train_epochs=110 +#训练batch_size(必选) +batch_size=256 +#训练step +#train_steps=`expr 1281167 / ${batch_size}` +#学习率 +learning_rate=0.1 +# 训练使用的npu卡数 +export RANK_SIZE=1 +# 数据集路径,保持为空,不需要修改 +data_path="" + +#维测参数,precision_mode需要模型审视修改 +#precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --device_id* ]];then + device_id=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +# 校验单卡训练是否指定了device id,分动态分配device id 与手动指定device id,此处不需要修改 +if [ $ASCEND_DEVICE_ID ];then + echo "device id is ${ASCEND_DEVICE_ID}" + ln -s source dest +elif [ ${device_id} ]; then + export ASCEND_DEVICE_ID=${device_id} + echo "device id is ${ASCEND_DEVICE_ID}" +else + echo "[Error] device id must be confing" + exit 1 +fi + + +#################指定训练脚本执行路径################## +# cd到与test文件同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径 +cur_path=`pwd` +cur_path_last_dirname=${cur_path##*/} +if [ x"${cur_path_last_dirname}" == x"test" ]; then + test_path_dir=${cur_path} + cd .. + cur_path=`pwd` +else + test_path_dir=${cur_path}/test +fi + + +##################创建日志输出目录,不需要修改################## +ASCEND_DEVICE_ID=${device_id} +if [ -d ${test_path_dir}/output/$ASCEND_DEVICE_ID ];then + rm -rf ${test_path_dir}/output/$ASCEND_DEVICE_ID + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +else + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +fi + +##################启动训练脚本################## +#训练开始时间,不需要修改 +start_time=$(date +%s) +# source 环境变量 +source ${test_path_dir}/env.sh +# 启动脚本(必选) +python3.7 ./main.py \ + ${data_path} \ + -a resnet101 \ + --addr=$(hostname -I |awk '{print $1}') \ + --seed=49 \ + --workers=128 \ + --learning-rate=${learning_rate} \ + --mom=0.9 \ + --weight-decay=1.0e-04 \ + --print-freq=1 \ + --device='npu' \ + --gpu=${ASCEND_DEVICE_ID} \ + --dist-backend='hccl' \ + --epochs=${train_epochs} \ + --amp \ + --FusedSGD \ + --batch-size=${batch_size} > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +wait + +##################获取训练数据##################(必选) +# 训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +# 终端结果打印,不需要修改 +echo "------------------ Final result ------------------" +# 输出性能FPS,需要模型审视修改 +FPS=`grep -a 'FPS' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F " " '{print $NF}'|awk 'END {print}'` +# 打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +# 输出训练精度,需要模型审视修改 +train_accuracy=`grep -a '* Acc@1' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print}'|awk -F "Acc@1" '{print $NF}'|awk -F " " '{print $1}'` +# 打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +# 性能看护结果汇总 +# 训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +# 获取性能数据,不需要修改 +# 吞吐量 +ActualFPS=${FPS} +# 单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*1000/'${FPS}'}'` + +# 从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep Epoch: ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|grep -v Test|awk -F "Loss" '{print $NF}' | awk -F " " '{print $1}' >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +# 最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + + +##################将训练数据存入文件################## +# 关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_8p.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_8p.sh" new file mode 100644 index 0000000000000000000000000000000000000000..471ac69e1dab173b8a2947ea35cad8fbef31269f --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_full_8p.sh" @@ -0,0 +1,165 @@ +#!/usr/bin/env bash + +##################README################## +# 请注意修改(必选)项,确保配置正确 +# 最后的输出结果环节,没有强制要求按照示例执行,只需按照运行结果示例得到相同目录结构和输出结果即可 + +##################基础配置参数,需要模型审视修改################## +# 必选字段(必须在此处定义的参数): Network batch_size RANK_SIZE +#网络名称,同目录名称(必选) +Network="ResNet101_ID1595_for_PyTorch" +#训练epoch +train_epochs=110 +#训练batch_size(必选) +batch_size=2048 +#训练step +#train_steps=`expr 1281167 / ${batch_size}` +#学习率 +learning_rate=0.5 +# 训练使用的npu卡数 +export RANK_SIZE=8 +# 数据集路径,保持为空,不需要修改 +data_path="" + +#维测参数,precision_mode需要模型审视修改 +#precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --workers* ]];then + workers=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +##################指定训练脚本执行路径################## +# cd到与test文件同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径 +cur_path=`pwd` +cur_path_last_dirname=${cur_path##*/} +if [ x"${cur_path_last_dirname}" == x"test" ]; then + test_path_dir=${cur_path} + cd .. + cur_path=`pwd` +else + test_path_dir=${cur_path}/test +fi + + +##################创建日志输出目录,根据模型审视################## +# 模型采用非循环方式启动多卡训练,创建日志输出目录如下;采用循环方式启动多卡训练的模型,在循环中创建日志输出目录,可参考CRNN模型 +# 非循环方式下8卡训练日志输出路径中的ASCEND_DEVICE_ID默认为0,只是人为指定文件夹名称, 不涉及训练业务 +ASCEND_DEVICE_ID=0 +if [ -d ${test_path_dir}/output/$ASCEND_DEVICE_ID ];then + rm -rf ${test_path_dir}/output/$ASCEND_DEVICE_ID + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +else + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +fi + +##################启动训练脚本################## +#训练开始时间,不需要修改 +start_time=$(date +%s) +# source 环境变量 +source ${test_path_dir}/env.sh +# 启动脚本(必选) +python3.7 ./main.py \ + ${data_path} \ + -a resnet101 \ + --addr=$(hostname -I |awk '{print $1}') \ + --seed=49 \ + --workers=128 \ + --learning-rate=${learning_rate} \ + --mom=0.9 \ + --weight-decay=1.0e-04 \ + --print-freq=1 \ + --dist-url='tcp://127.0.0.1:50000' \ + --multiprocessing-distributed \ + --world-size=1 \ + --rank=0 \ + --device='npu' \ + --dist-backend='hccl' \ + --epochs=${train_epochs} \ + --batch-size=${batch_size} \ + --amp \ + --device_list=0,1,2,3,4,5,6,7 \ + --FusedSGD \ + --loss-scale=1024 > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +wait + +##################获取训练数据##################(必选) +# 训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +# 结果打印,不需要修改 +echo "------------------ Final result ------------------" +# 输出性能FPS,需要模型审视修改 +FPS=`grep -a 'FPS' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F " " '{print $NF}'|awk 'END {print}'` +# 打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +# 输出训练精度,需要模型审视修改 +train_accuracy=`grep -a '* Acc@1' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print}'|awk -F "Acc@1" '{print $NF}'|awk -F " " '{print $1}'` +# 打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +# 性能看护结果汇总 +# 训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +# 获取性能数据,不需要修改 +# 吞吐量 +ActualFPS=${FPS} +# 单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*1000/'${FPS}'}'` + +# 从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep Epoch: ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|grep -v Test|awk -F "Loss" '{print $NF}' | awk -F " " '{print $1}' >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +# 最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +# 关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_1p.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_1p.sh" new file mode 100644 index 0000000000000000000000000000000000000000..90b0d7ee8c4bbacf07e9665aab638becba3a92de --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_1p.sh" @@ -0,0 +1,171 @@ +#!/usr/bin/env bash + +##################README################## +# 请注意修改(必选)项,确保配置正确 +# 最后的输出结果环节,没有强制要求按照示例执行,只需按照运行结果示例得到相同目录结构和输出结果即可 + +##################基础配置参数,需要模型审视修改################## +# 必选字段(必须在此处定义的参数): Network batch_size RANK_SIZE +#网络名称,同目录名称(必选) +Network="ResNet101_ID1595_for_PyTorch" +#训练epoch +train_epochs=1 +#训练batch_size(必选) +batch_size=256 +#训练step +#train_steps=`expr 1281167 / ${batch_size}` +#学习率 +learning_rate=0.1 +# 训练使用的npu卡数 +export RANK_SIZE=1 +# 数据集路径,保持为空,不需要修改 +data_path="" + +#维测参数,precision_mode需要模型审视修改 +#precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --device_id* ]];then + device_id=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +# 校验单卡训练是否指定了device id,分动态分配device id 与手动指定device id,此处不需要修改 +if [ $ASCEND_DEVICE_ID ];then + echo "device id is ${ASCEND_DEVICE_ID}" +elif [ ${device_id} ]; then + export ASCEND_DEVICE_ID=${device_id} + echo "device id is ${ASCEND_DEVICE_ID}" +else + echo "[Error] device id must be confing" + exit 1 +fi + + +##################指定训练脚本执行路径################## +# cd到与test文件同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径 +cur_path=`pwd` +cur_path_last_dirname=${cur_path##*/} +if [ x"${cur_path_last_dirname}" == x"test" ]; then + test_path_dir=${cur_path} + cd .. + cur_path=`pwd` +else + test_path_dir=${cur_path}/test +fi + + +##################创建日志输出目录,不需要修改################## +ASCEND_DEVICE_ID=${device_id} +if [ -d ${test_path_dir}/output/$ASCEND_DEVICE_ID ];then + rm -rf ${test_path_dir}/output/$ASCEND_DEVICE_ID + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +else + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +fi + +##################启动训练脚本################## +#训练开始时间,不需要修改 +start_time=$(date +%s) +# source 环境变量 +source ${test_path_dir}/env.sh +# 启动脚本(必选) +python3.7 ./main.py \ + ${data_path} \ + -a resnet101 \ + --addr=$(hostname -I |awk '{print $1}') \ + --seed=49 \ + --workers=128 \ + --learning-rate=${learning_rate} \ + --mom=0.9 \ + --weight-decay=1.0e-04 \ + --print-freq=1 \ + --device='npu' \ + --gpu=${ASCEND_DEVICE_ID} \ + --dist-backend='hccl' \ + --epochs=${train_epochs} \ + --amp \ + --FusedSGD \ + --batch-size=${batch_size} > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +wait + +##################获取训练数据##################(必选) +# 训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +# 终端结果打印,不需要修改 +echo "------------------ Final result ------------------" +# 输出性能FPS,需要模型审视修改 +FPS=`grep -a 'FPS' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F " " '{print $NF}'|awk 'END {print}'` +# 打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +# 输出训练精度,需要模型审视修改 +train_accuracy=`grep -a '* Acc@1' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print}'|awk -F "Acc@1" '{print $NF}'|awk -F " " '{print $1}'` +# 打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +# 性能看护结果汇总 +# 训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +# 获取性能数据,不需要修改 +# 吞吐量 +ActualFPS=${FPS} +# 单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*1000/'${FPS}'}'` + +# 从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep Epoch: ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|grep -v Test|awk -F "Loss" '{print $NF}' | awk -F " " '{print $1}' >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +# 最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + + +##################将训练数据存入文件################## +# 关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git "a/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_8p.sh" "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_8p.sh" new file mode 100644 index 0000000000000000000000000000000000000000..811bf6c43409270214cc443df1648004e0ab0cd0 --- /dev/null +++ "b/Pytorch\350\256\255\347\273\203\347\244\272\344\276\213/ResNet101_ID1595_for_PyTorch/test/train_performance_8p.sh" @@ -0,0 +1,164 @@ +#!/usr/bin/env bash + +##################README################## +# 请注意修改(必选)项,确保配置正确 +# 最后的输出结果环节,没有强制要求按照示例执行,只需按照运行结果示例得到相同目录结构和输出结果即可 + +##################基础配置参数,需要模型审视修改################## +# 必选字段(必须在此处定义的参数): Network batch_size RANK_SIZE +#网络名称,同目录名称(必选) +Network="ResNet101_ID1595_for_PyTorch" +#训练epoch +train_epochs=2 +#训练batch_size(必选) +batch_size=2048 +#训练step +#train_steps=`expr 1281167 / ${batch_size}` +#学习率 +learning_rate=0.5 +# 训练使用的npu卡数 +export RANK_SIZE=8 +# 数据集路径,保持为空,不需要修改 +data_path="" + +#维测参数,precision_mode需要模型审视修改 +#precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --workers* ]];then + workers=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +##################指定训练脚本执行路径################## +# cd到与test文件同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径 +cur_path=`pwd` +cur_path_last_dirname=${cur_path##*/} +if [ x"${cur_path_last_dirname}" == x"test" ]; then + test_path_dir=${cur_path} + cd .. + cur_path=`pwd` +else + test_path_dir=${cur_path}/test +fi + + +##################创建日志输出目录,根据模型审视################## +# 模型采用非循环方式启动多卡训练,创建日志输出目录如下;采用循环方式启动多卡训练的模型,在循环中创建日志输出目录,可参考CRNN模型 +# 非循环方式下8卡训练日志输出路径中的ASCEND_DEVICE_ID默认为0,只是人为指定文件夹名称, 不涉及训练业务 +ASCEND_DEVICE_ID=0 +if [ -d ${test_path_dir}/output/$ASCEND_DEVICE_ID ];then + rm -rf ${test_path_dir}/output/$ASCEND_DEVICE_ID + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +else + mkdir -p ${test_path_dir}/output/$ASCEND_DEVICE_ID +fi + +##################启动训练脚本################## +#训练开始时间,不需要修改 +start_time=$(date +%s) +# source 环境变量 +source ${test_path_dir}/env.sh +# 启动脚本(必选) +python3.7 ./main.py \ + ${data_path} \ + -a resnet101 \ + --addr=$(hostname -I |awk '{print $1}') \ + --seed=49 \ + --workers=128 \ + --learning-rate=${learning_rate} \ + --mom=0.9 \ + --weight-decay=1.0e-04 \ + --print-freq=1 \ + --dist-url='tcp://127.0.0.1:50000' \ + --multiprocessing-distributed \ + --world-size=1 \ + --rank=0 \ + --device='npu' \ + --dist-backend='hccl' \ + --epochs=${train_epochs} \ + --batch-size=${batch_size} \ + --amp \ + --device_list=0,1,2,3,4,5,6,7 \ + --FusedSGD \ + --loss-scale=1024 > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +wait + +##################获取训练数据##################(必选) +# 训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +# 结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +FPS=`grep -a 'FPS' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F " " '{print $NF}'|awk 'END {print}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep -a '* Acc@1' ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print}'|awk -F "Acc@1" '{print $NF}'|awk -F " " '{print $1}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#性能看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据,不需要修改 +#吞吐量 +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*1000/'${FPS}'}'` + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep Epoch: ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|grep -v Test|awk -F "Loss" '{print $NF}' | awk -F " " '{print $1}' >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' ${test_path_dir}/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> ${test_path_dir}/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/docs/.keep b/docs/.keep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git "a/docs/XxxxNet\347\275\221\347\273\234\346\250\241\345\236\213[\344\272\244\344\273\230\345\206\205\345\256\271]\346\265\213\350\257\225\346\212\245\345\221\212.docx" "b/docs/XxxxNet\347\275\221\347\273\234\346\250\241\345\236\213[\344\272\244\344\273\230\345\206\205\345\256\271]\346\265\213\350\257\225\346\212\245\345\221\212.docx" new file mode 100644 index 0000000000000000000000000000000000000000..870d22278c0a820f5a2ae736c4696015ce467a11 Binary files /dev/null and "b/docs/XxxxNet\347\275\221\347\273\234\346\250\241\345\236\213[\344\272\244\344\273\230\345\206\205\345\256\271]\346\265\213\350\257\225\346\212\245\345\221\212.docx" differ diff --git a/docs/models_result.xlsx b/docs/models_result.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..6569e5c353d1669a4fe7bf95610263775ccf0e6b Binary files /dev/null and b/docs/models_result.xlsx differ diff --git a/figures/moder_faq20_0607.png b/figures/model_faq20_0607.png similarity index 100% rename from figures/moder_faq20_0607.png rename to figures/model_faq20_0607.png diff --git a/figures/moder_faq21_0607.png b/figures/model_faq21_0607.png similarity index 100% rename from figures/moder_faq21_0607.png rename to figures/model_faq21_0607.png diff --git "a/officefile/\351\231\204\344\273\2661_\351\253\230\346\240\241\345\220\210\344\275\234xx\347\275\221\347\273\234\350\275\254\351\252\214\346\224\266_CheckList.xlsx" "b/officefile/\351\231\204\344\273\2661_\351\253\230\346\240\241\345\220\210\344\275\234xx\347\275\221\347\273\234\350\275\254\351\252\214\346\224\266_CheckList.xlsx" index b70eb726e6afed6a1ef3f48c18f700635d74147f..4e48d1fb01e92c6f7e9118594b66d1367185272e 100644 Binary files "a/officefile/\351\231\204\344\273\2661_\351\253\230\346\240\241\345\220\210\344\275\234xx\347\275\221\347\273\234\350\275\254\351\252\214\346\224\266_CheckList.xlsx" and "b/officefile/\351\231\204\344\273\2661_\351\253\230\346\240\241\345\220\210\344\275\234xx\347\275\221\347\273\234\350\275\254\351\252\214\346\224\266_CheckList.xlsx" differ diff --git "a/pytorch-train-guide/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\350\256\255\347\273\203.md" "b/pytorch-train-guide/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\350\256\255\347\273\203.md" index 87f26eea49db2059de22f52d990bdb95c363efd8..0a1607fbea186c4feb90106dbc63b483006ba2ed 100644 --- "a/pytorch-train-guide/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\350\256\255\347\273\203.md" +++ "b/pytorch-train-guide/AscendPyTorch\346\250\241\345\236\213\344\274\227\346\231\272\346\226\207\346\241\243-\350\256\255\347\273\203.md" @@ -87,9 +87,31 @@ >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) **说明:** > +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + >安装CANN包:./Ascend-Toolkit-\{version\}-xxx-\{gcc\_version\}.run --install --quiet + +### 2.2 whl包安装 + +1. 获取安装Ascend版本的Pytorch和Apex [download link](https://support.huaweicloud.com/ug-pt-training-pytorch/atlasmprtg_13_0003.html) + +2. 安装pytorch + ``` + pip3.7 install --upgrade torch-*.whl + pip3.7 install --upgrade apex-*.whl + pip3.7 install --upgrade torchvision==0.6.0 # 对应当前torch==1.5.0的版本,arm请使用0.2.2 + ``` + +>![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) +**说明:** +> +>当前适配Pytorch版本为1.5.0 +>运行Ascend-Pytorch需要配置环境变量,环境变量脚本参照[env_npu.sh](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/src/env_npu.sh) + >```source env_npu.sh``` +======= >当前适配Pytorch版本为1.5.0 >运行Ascend-Pytorch需要配置环境变量,环境变量脚本参照[env_npu.sh](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/src/env_npu.sh) >```source env_npu.sh``` +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md 3. (可选)编译和安装PyTorch框架 - 若希望通过修改Pytorch框架层代码来实现性能精度调测,可以自行编译Pytorch版本以满足调测需求 @@ -289,7 +311,11 @@ world_size=args.world_size, rank=args.rank) ``` 2. 在npu上需要将 args.dist_backend 设置为 hccl ,其余设置方式和gpu保持一致 +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + 3. DDP中需要将broadcast_buffers置为False +======= 3. DDP中需要将broadcast_buffers置为False +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md ```model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], broadcast_buffers=False)``` - 需使用Ascend-Apex改造代码,使用方法基本与开源版本一致,主要为对齐GPU和NPU - 在这个环节优先关注功能性,即是否能跑通,现有算子是否能够满足,其次应关注loss是否符合预期 @@ -668,11 +694,19 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 - 提供了默认的GPU环境```conda activate pt-1.5``` - 通过```conda create -n xxx --copy pt-1.5```创建个人的conda环境 - NPU +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) + **说明:** + >请使用python3.7.5启动脚本 + + - 环境变量脚本参照[env_npu.sh](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/src/env_npu.sh) +======= - npu需先```sorce env_npu.sh``` - 环境变量脚本参照[env_npu.sh](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/src/env_npu.sh) - 环境默认安装在python3.7/python3.7.5 - 请勿随意重装torch、apex包 +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md - 软件版本确认 - ```ll /usr/local/Ascend/ascend-toolkit/latest``` - 版本对应关系 @@ -681,7 +715,10 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 | :------: | :------: | | 20.2.rc1 | 2020-1230 | | 5.0.1 | 2021-0330 | +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md +======= | 5.0.2 | 2021-0630 | +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md ### 3.3 验收资料及脚本规范 @@ -715,7 +752,13 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 - 若无法达到,则需要向华为方提交[Pytorch训练-NPU性度不达标评审模板-v1.0.docx](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/blob/master/officefile/Pytorch%E8%AE%AD%E7%BB%83-NPU%E6%80%A7%E5%BA%A6%E4%B8%8D%E8%BE%BE%E6%A0%87%E8%AF%84%E5%AE%A1%E6%A8%A1%E6%9D%BF-v1.0.docx)的认证申请,华为方将定期组织专家组对申请模型进行评审,通过评审的模型允许以不达标的性能进行交付 - 提交申请前请联系华为方支撑人员询问需要哪些准备,常见的准备有代码包,GPU和NPU的Prof文件,性能较差的场景举例分析 - 如有特殊需求请与华为方支撑人员沟通确认 +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + - pth save + - checkpoint.pth需要每个epoch结束后更新 + - 建议间隔5/10个epoch生成一个pth文件,不应该每个epoch都生成一个独立的pth文件,pth文件总数不应该大于20 +======= - pth 建议间隔5/10个epoch生成一个pth文件,不应该每个epoch都生成一个独立的pth文件,pth文件总数不应该大于20 +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md - 交付件清单: - 最终交付方式 - **代码仓、非代码仓交付件、交付所需材料一并打压缩包包邮件发送** @@ -753,12 +796,21 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 - 最终验收完成后合入主干 - gitee仓文件目录名称规范、验收使用脚本(请自验)、PR内容模板 +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + - 代码仓示例 [ResNet101](https://gitee.com/ascend/modelzoo/tree/master/contrib/PyTorch/Research/cv/image_classification/ResNet101_ID1595_for_PyTorch) + - 运行结果示例 [ResNet101](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/blob/master/Pytorch训练示例/ResNet101_ID1595_for_PyTorch) + - 内含test中shell脚本的必选修改说明,含最终跑完后输出的文件样式 + - 对于该示例,最终的必要输出件为 + 1. ```test/output/0/ResNet101_ID1595_for_PyTorch_bs256_1p_perf.log``` + 2. ```test/output/0/train_ResNet101_ID1595_for_PyTorch_bs256_1p_perf_loss.txt``` +======= - 代码仓示例 [WideResNet50](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/tree/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/WideResNet50_2_ID1627_for_PyTorch) - 运行结果 - 内含test中shell脚本的必选修改说明,含最终跑完后输出的文件样式 - 对于该示例,最终的必要输出件为 1. ```test/output/0/WideResNet50_2_ID1627_for_PyTorch_bs256_1p_perf.log``` 2. ```test/output/0/train_WideResNet50_2_ID1627_for_PyTorch_bs256_1p_perf_loss.txt``` +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md - 文件夹名称及目录规范 >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) **说明:** @@ -770,6 +822,19 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 ``` test/ ├── env_npu.sh (环境变量) +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + ├── train_eval_8p.sh (eval脚本,模板) + ├── train_full_1p.sh (1p 完整训练脚本,要求能够复现精度性能,1P若无法跑完可仅配置参数) + ├── train_full_8p.sh (8p 完整训练脚本,要求能够复现精度性能) + ├── train_performance_1p.sh (1p 性能脚本,运行一定step,得到性能数据,运行时长应该控制在30min内) + └── train_performance_8p.sh (8p 性能脚本,运行一定step,得到性能数据,运行时长应该控制在30min内) + ``` + - demo.py 用于运行单p推理,模板请参考[demo.py](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/ResNet101_ID1595_for_PyTorch/demo.py) + - pthtar2onnx.py 用于导出onnx,可以参考[pthtar2onnx.py](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/ResNet101_ID1595_for_PyTorch//pthtar2onnx.py) + - 重命名原始README.md为README_raw.md,创建新的README.md,模板请参考[README.md](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/ResNet101_ID1595_for_PyTorch/README.md) + - (requirements.txt和DockerFile 2选1)Python依赖库信息requirements.txt,可以参考[requirements.txt](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/ResNet101_ID1595_for_PyTorch/requirements.txt) ;创建构建docker环境所需的Dockerfile,可以参考[Dockerfile](https://gitee.com/ascend/modelzoo/blob/master/built-in/PyTorch/Official/cv/image_classification/ResNet50_for_PyTorch/Dockerfile) + - (requirements.txt和DockerFile 2选1)Python依赖库信息requirements.txt,可以参考[requirements.txt](https://gitee.com/ascend/modelzoo/blob/master/built-in/PyTorch/Official/cv/image_classification/Shufflenetv2_for_PyTorch/requirements.txt) ;创建构建docker环境所需的Dockerfile,可以参考[Dockerfile](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/ResNet101_ID1595_for_PyTorch/Dockerfile) +======= ├── train_eval_8p.sh (8p eval脚本,模板) ├── train_full_1p.sh (1p 完整训练脚本,要求能够复现精度性能,若使用8P脚本对齐精度则1P脚本仅需跑1000step或1个epoch) ├── train_full_8p.sh (8p 完整训练脚本,要求能够复现精度性能) @@ -782,6 +847,7 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 - requirements.txt Python依赖库信息requirements.txt,可以参考[requirements.txt](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/WideResNet50_2_ID1627_for_PyTorch/requirements.txt) - DockerFile 创建构建docker环境所需的Dockerfile,可以参考[Dockerfile](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/WideResNet50_2_ID1627_for_PyTorch/Dockerfile) - modelzoo_level.txt 表示当前模型状态,可以参考[modelzoo_level.txt](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/Pytorch%E8%AE%AD%E7%BB%83%E7%A4%BA%E4%BE%8B/WideResNet50_2_ID1627_for_PyTorch/modelzoo_level.txt),文件内字段含义可以参考[CONTRIBUTING.md](https://gitee.com/ascend/modelzoo/blob/master/contrib/CONTRIBUTING.md) +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md - 验收使用脚本(请自验) >![](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/public_sys-resources/icon-note.gif) **说明:** @@ -795,7 +861,11 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 # 8p train perf # 是否正确输出了性能log文件 +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + bash test/train_performance_1p.sh --data_path xxx +======= bash test/train_performance_8p.sh --data_path xxx +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md # 8p train full # 是否正确输出了性能精度log文件,是否正确保存了模型文件 @@ -822,6 +892,52 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 - `````[学校学院名称][高校贡献][Pytorch][模型名称]-PR内容摘要````` - 举例说明:`````[华为大学昇腾学院][高校贡献][Pytorch][AbNet]-初次提交````` ``` +<<<<<<< HEAD:AscendPyTorch模型众智文档-训练.md + **What type of PR is this?** + > task + + **What does this PR do / why do we need it**: + # 首次提交Pytorch AbNet + + | 名称 | 精度 | 性能 | + | :------: | :------: | :------: | + | GPU-1p | - | 2200 | + | GPU-8p | 100.0 | 2200 | + | NPU-1p | - | 2200 | + | NPU-8p | 100.0 | 14000 | + + # 自验报告 + ```shell + # 1p train perf + # 是否正确输出了性能log文件 + bash test/train_performance_1p.sh --data_path xxx + # 验收结果: OK / Failed + # 备注: 目标性能301FPS;验收测试性能336FPS;无输出日志,运行报错,报错日志xx 等 + + # 8p train perf + # 是否正确输出了性能log文件 + bash test/train_performance_1p.sh --data_path xxx + # 验收结果: OK / Failed + # 备注: 目标性能301FPS;验收测试性能336FPS;无输出日志,运行报错,报错日志xx 等 + + # 8p train full + # 是否正确输出了性能精度log文件,是否正确保存了模型文件 + bash test/train_full_8p.sh --data_path xxx + # 验收结果: OK / Failed + # 备注: 目标精度77.632;验收精度76.78;无输出日志,运行报错,报错日志xx 等 + + # 8p eval + # 是否正确输出了性能精度log文件 + bash test/train_eval_8p.sh --data_path xxx + # 验收结果: OK / Failed + # 备注: 功能正确,无输出日志,运行报错,报错日志xx 等 + + # online inference demo + # 是否正确输出预测结果,请确保输入固定tensor多次运行的输出结果一致 + python3.7.5 demo.py + # 验收结果: OK / Failed + # 备注: 功能正确,无输出日志,运行报错,报错日志xx 等 +======= # AbNet − 参考实现: ``` @@ -864,6 +980,7 @@ export ASCEND_GLOBAL_LOG_LEVEL=3 bash test/train_full_8p.sh --data_path xxx # 验收结果: OK / Failed # 备注: 目标精度77.632;验收精度76.78;无输出日志,运行报错,报错日志xx 等 +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f:pytorch-train-guide/AscendPyTorch模型众智文档-训练.md # 8p eval # 是否正确输出了性能精度log文件 diff --git a/src/env_npu.sh b/src/env_npu.sh index ba053474f57e6600c276f05d06a3ef85ec73cc89..24954441ce8cf8a4311b8b9972464e6654da10be 100644 --- a/src/env_npu.sh +++ b/src/env_npu.sh @@ -37,14 +37,22 @@ export TASK_QUEUE_ENABLE=1 #设置是否开启PTCopy,0-关闭/1-开启 export PTCOPY_ENABLE=1 #设置是否开启combined标志,0-关闭/1-开启 +<<<<<<< HEAD +export COMBINED_ENABLE=1 +======= export COMBINED_ENABLE=0 +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f #设置特殊场景是否需要重新编译,不需要修改 export DYNAMIC_OP="ADD#MUL" #HCCL白名单开关,1-关闭/0-开启 export HCCL_WHITELIST_DISABLE=1 +<<<<<<< HEAD + +======= export HCCL_IF_IP=$(hostname -I |awk '{print $1}') ulimit -SHn 512000 +>>>>>>> 56802d0238fd00d189c0439d18a4cbd35f81539f path_lib=$(python3.7 -c """ import sys diff --git "a/\347\246\273\347\272\277autotune\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" "b/\347\246\273\347\272\277autotune\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" new file mode 100644 index 0000000000000000000000000000000000000000..a79c18d19b16029587a899f9d58e91c85327f5f6 --- /dev/null +++ "b/\347\246\273\347\272\277autotune\344\275\277\347\224\250\346\214\207\345\257\274\344\271\246.md" @@ -0,0 +1,66 @@ +- 适用范围 +1. 在某个特定shape性能大幅下降 +2. 精益求精,对10ms上下的性能提升也高度敏感 + +## 1 设置DUMP数据环境变量 +``` +# 此处使用cann组合包路径 +export install_path=/usr/local/Ascend/ascend-toolkit/latest/ +export LD_LIBRARY_PATH=${install_path}/fwkacllib/lib64:$LD_LIBRARY_PATH +export PYTHONPATH=${install_path}/fwkacllib/python/site-packages:${install_path}/fwkacllib/python/site-packages/auto_tune.egg/auto_tune:${install_path}/fwkacllib/python/site-packages/schedule_search.egg:$PYTHONPATH +export ASCEND_OPP_PATH=${install_path}/opp + +#开启dump数据功能 +export ENABLE_TUNE_DUMP=True + +#设置dump数据路径 +export TUNE_DUMP_PATH=/home/HwHiAiUser/DumpData +``` + +## 2 DUMP数据 +- 运行想要DUMP数据的网络脚本,运行几个step即可。 +运行完成后,在dump数据路径下会生成相应的数据 + +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/dump_autotune_fig1.PNG) + +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/dump_autotune_fig2.PNG) + +## 3 开始autotune + +``` +export install_path=/usr/local/Ascend/ascend-toolkit/latest/ +export PATH=${PATH}:${install_path}/fwkacllib/bin/:${install_path}/atc/ccec_cpmpiler/bin:${install_path}/atc/bin + +#强制tune标志位,开启后无论是否已有知识库都会重新生成 +export REPEAT_TUNE=True + +python3.7.5 ${install_path}/fwkacllib/python/site-packages/schedule_search.egg/schedule_search/msoptune.py --start /home/HwHiAiUser/DumpData +``` +- 需要tensorflow==1.15.0 +- 默认先进行cube的autotune,再进行vector的RL,总时长(亲测时间约18h)和具体任务相关 +- cube的autotune的结果默认地址为:/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/data/tiling/ascend910/custom/,如想要给其他机器使用则需要将该结果放置对应机器的上述位置 +- vector的RL的结果默认地址为: /usr/local/Ascend/ascend-toolkit/latest/fwkacllib/data/rl/Ascend910/custom/,如想要给其他机器使用则需要将该结果放置对应机器的上述位置 +- cat *.json|wc -l查看有多少调优记录 +- 需要对上述两个文件夹执行 +``` +chown -R HwHiAiUser:HwHiAiUser * && chmod 777 * +``` +避免权限问题。 + +### 3.1 调试过程问题汇总 +- 调试过程中可能会遇到如下错误 +![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/dump_autotune_fig3.PNG) + + 执行指令安装相应的依赖 +``` +pip3.7.5 install /usr/local/Ascend/ascend-toolkit/latest/fwkacllib/lib64/*.whl +``` +- 执行autotune报错,提示如下错误 + ![](https://gitee.com/zwx5317131/ascend-pytorch-crowdintelligence-doc/raw/master/figures/dump_autotune_fig4.PNG) + + 需要先source下环境变量,[环境变量脚本参考路径](https://gitee.com/wangjiangben_hw/ascend-pytorch-crowdintelligence-doc/raw/master/src/env.sh) + +- 如果需要重新测试其他模型的autotune,请先将下面三个路径下的数据清除后再执行autotune + (1) dump数据路径:/home/HwHiAiUser/DumpData + (2) cube结果:/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/data/tiling/ascend910/custom/ + (3) vector的RL结果: /usr/local/Ascend/ascend-toolkit/latest/fwkacllib/data/rl/Ascend910/custom/ \ No newline at end of file