# YOLOv3
**Repository Path**: wangxu1112/YOLOv3
## Basic Information
- **Project Name**: YOLOv3
- **Description**: Keras implementation of yolo v3 object detection.
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2019-09-20
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# YOLOv3
Keras(TF backend) implementation of yolo v3 objects detection.
According to the paper [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf).
## Requirement
- OpenCV 3.4
- Python 3.6
- Tensorflow-gpu 1.5.0
- Keras 2.1.3
## Quick start
- Download official [yolov3.weights](https://pjreddie.com/media/files/yolov3.weights) and put it on top floder of project.
- Run the follow command to convert darknet weight file to keras h5 file. The `yad2k.py` was modified from [allanzelener/YAD2K](https://github.com/allanzelener/YAD2K).
```
python yad2k.py cfg\yolo.cfg yolov3.weights data\yolo.h5
```
- run follow command to show the demo. The result can be found in `images\res\` floder.
```
python demo.py
```
## Demo result
It can be seen that yolo v3 has a better classification ability than yolo v2.

## TODO
- Train the model.
## Reference
@article{YOLOv3,
title={YOLOv3: An Incremental Improvement},
author={J Redmon, A Farhadi },
year={2018}
## Copyright
See [LICENSE](LICENSE) for details.