# YCB_Video_toolbox **Repository Path**: wangzihang_02/YCB_Video_toolbox ## Basic Information - **Project Name**: YCB_Video_toolbox - **Description**: 123123123123 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-02-14 - **Last Updated**: 2023-02-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### Introduction This is the toolbox for [The YCB-Video dataset](https://rse-lab.cs.washington.edu/projects/posecnn/) introduced for 6D object pose estimation. It provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. ### License The YCB-Video dataset is released under the MIT License (refer to the LICENSE file for details). ### Citing If you find our dataset useful in your research, please consider citing: @article{xiang2017posecnn, author = {Xiang, Yu and Schmidt, Tanner and Narayanan, Venkatraman and Fox, Dieter}, title = {PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes}, journal = {arXiv preprint arXiv:1711.00199}, year = {2017} } ### Annotation format The *-meta.mat file in the YCB-Video dataset contains the following fields: - center: 2D location of the projection of the 3D model origin in the image - cls_indexes: class labels of the objects - factor_depth: divde the depth image by this factor to get the actual depth vaule - intrinsic_matrix: camera intrinsics - poses: 6D poses of objects in the image - rotation_translation_matrix: RT of the camera motion in 3D - vertmap: coordinates in the 3D model space of each pixel in the image ### Usage 1. Download the YCB-Video dataset from [here](https://rse-lab.cs.washington.edu/projects/posecnn/). 2. Set your path of the YCB-Video dataset in [globals.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/globals.m) (required). 3. [show_pose_annotations.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/show_pose_annotations.m) displays the overlays of 3D shapes onto images according to our annotations. Check the code of this function to understand the annotation format. 4. [show_pose_results.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/show_pose_results.m) displays the 6D pose estimation results from PoseCNN. Unzip [results_PoseCNN.zip](https://github.com/yuxng/YCB_Video_toolbox/blob/master/results_PoseCNN.zip) before calling the function. 5. [evaluate_poses_stereo.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/evaluate_poses_stereo.m) evaluates our results on the stereo pairs. Check the code of this function to understand the evaluation metric. 6. [evaluate_poses_keyframe.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/evaluate_poses_keyframe.m) evaluates our results on the keyframes. 7. [plot_accuracy_stereo.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/plot_accuracy_stereo.m) plots all the accuracy-threshold curves from the stereo pairs. 8. [plot_accuracy_keyframe.m](https://github.com/yuxng/YCB_Video_toolbox/blob/master/plot_accuracy_keyframe.m) plots all the accuracy-threshold curves from the keyframes.