# Turi-Create **Repository Path**: weblinuxgame/Turi-Create ## Basic Information - **Project Name**: Turi-Create - **Description**: 这一框架应该会让开发者更容易构建机器学习模型 - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 6 - **Created**: 2017-12-28 - **Last Updated**: 2022-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Turi Create # Turi Create Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. * **Easy-to-use:** Focus on tasks instead of algorithms * **Visual:** Built-in, streaming visualizations to explore your data * **Flexible:** Supports text, images, audio, video and sensor data * **Fast and Scalable:** Work with large datasets on a single machine * **Ready To Deploy:** Export models to Core ML for use in iOS, macOS, watchOS, and tvOS apps Example: Image classifier with a few lines of code -------------------------------------------------- If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code: ```python import turicreate as tc # Load data data = tc.SFrame('photoLabel.sframe') # Create a model model = tc.image_classifier.create(data, target='photoLabel') # Make predictions predictions = model.predict(data) # Export to Core ML model.export_coreml('MyClassifier.mlmodel') ``` It's easy to use the resulting model in an [iOS application](https://developer.apple.com/documentation/vision/classifying_images_with_vision_and_core_ml):

Turi Create

With Turi Create, you can tackle a number of common scenarios: * [Recommender systems](userguide/recommender/introduction.md) * [Image classification](userguide/image_classifier/introduction.md) * [Image similarity](userguide/image_similarity/introduction.md) * [Object detection](userguide/object_detection/introduction.md) * [Activity classifier](userguide/activity_classifier/introduction.md) * [Text classifier](userguide/text_classifier/introduction.md) You can also work with essential machine learning models, organized into algorithm-based toolkits: * [Classifiers](userguide/supervised-learning/classifier.md) * [Regression](userguide/supervised-learning/regression.md) * [Graph analytics](userguide/graph_analytics/intro.md) * [Clustering](userguide/clustering/intro.md) * [Nearest Neighbors](userguide/nearest_neighbors/nearest_neighbors.md) * [Topic models](userguide/text/intro.md) Supported Platforms ------------------- Turi Create supports: * macOS 10.12+ * Linux (with glibc 2.12+) * Windows 10 (via WSL) System Requirements ------------------- * Python 2.7 (Python 3.5+ support coming soon) * x86\_64 architecture Installation ------------ For detailed instructions for different varieties of Linux see [LINUX\_INSTALL.md](LINUX_INSTALL.md). For common installation issues see [INSTALL\_ISSUES.md](INSTALL_ISSUES.md). We recommend using virtualenv to use, install, or build Turi Create. ```shell pip install virtualenv ``` The method for installing *Turi Create* follows the [standard python package installation steps](https://packaging.python.org/installing/). To create and activate a Python virtual environment called `venv` follow these steps: ```shell # Create a Python virtual environment cd ~ virtualenv venv # Activate your virtual environment source ~/venv/bin/activate ``` Alternatively, if you are using [Anaconda](https://www.anaconda.com/what-is-anaconda/), you may use its virtual environment: ```shell conda create -n venv python=2.7 anaconda source activate venv ``` To install `Turi Create` within your virtual environment: ```shell (venv) pip install -U turicreate ``` Documentation ------------- The package [User Guide](https://apple.github.io/turicreate/docs/userguide) and [API Docs](https://apple.github.io/turicreate/docs/api) contain more details on how to use Turi Create. GPU Support ----------- Turi Create **does not require a GPU**, but certain models can be accelerated by the use of a GPU. To enable GPU support after installation of the `turicreate` package, please perform the following steps: * Install CUDA 8.0 ([instructions](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/)) * Install cuDNN 5 for CUDA 8.0 ([instructions](https://developer.nvidia.com/cudnn)) Make sure to add the CUDA library path to your `LD_LIBRARY_PATH` environment variable. In the typical case, this means adding the following line to your `~/.bashrc` file: ```shell export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` If you installed the cuDNN files into a separate directory, make sure to separately add it as well. Next step is to uninstall `mxnet` and install the CUDA-enabled `mxnet-cu80` package: ``` (venv) pip uninstall -y mxnet (venv) pip install mxnet-cu80==0.11.0 ``` Make sure you install the same version of MXNet as the one `turicreate` depends on (currently `0.11.0`). If you have trouble setting up the GPU, the [MXNet installation instructions](https://mxnet.incubator.apache.org/get_started/install.html) may offer additional help. Building From Source --------------------- If you want to build Turi Create from source, see [BUILD.md](BUILD.md). Contributing ------------ See [CONTRIBUTING.md](CONTRIBUTING.md).