# mip-splatting **Repository Path**: week233/mip-splatting ## Basic Information - **Project Name**: mip-splatting - **Description**: [CVPR'24 Best Student Paper] Mip-Splatting: Alias-free 3D Gaussian Splatting - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-11 - **Last Updated**: 2025-03-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Mip-Splatting: Alias-free 3D Gaussian Splatting

Zehao Yu · Anpei Chen · Binbin Huang · Torsten Sattler · Andreas Geiger

CVPR 2024 Best Student Paper

Paper | arXiv | Project Page | Online Viewer

Logo

We introduce a 3D smoothing filter and a 2D Mip filter for 3D Gaussian Splatting (3DGS), eliminating multiple artifacts and achieving alias-free renderings.


# Update We integrated an improved densification metric proposed in [Gaussian Opacity Fields](https://niujinshuchong.github.io/gaussian-opacity-fields/), which significantly improves the novel view synthesis results, please check the [paper](https://arxiv.org/pdf/2404.10772.pdf) for details. Please download the lastest code and reinstall `diff-gaussian-rasterization` to try it out. # Installation Clone the repository and create an anaconda environment using ``` git clone git@github.com:autonomousvision/mip-splatting.git cd mip-splatting conda create -y -n mip-splatting python=3.8 conda activate mip-splatting pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html conda install cudatoolkit-dev=11.3 -c conda-forge pip install -r requirements.txt pip install submodules/diff-gaussian-rasterization pip install submodules/simple-knn/ ``` # Dataset ## Blender Dataset Please download and unzip nerf_synthetic.zip from the [NeRF's official Google Drive](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1). Then generate multi-scale blender dataset with ``` python convert_blender_data.py --blender_dir nerf_synthetic/ --out_dir multi-scale ``` ## Mip-NeRF 360 Dataset Please download the data from the [Mip-NeRF 360](https://jonbarron.info/mipnerf360/) and request the authors for the treehill and flowers scenes. # Training and Evaluation ``` # single-scale training and multi-scale testing on NeRF-synthetic dataset python scripts/run_nerf_synthetic_stmt.py # multi-scale training and multi-scale testing on NeRF-synthetic dataset python scripts/run_nerf_synthetic_mtmt.py # single-scale training and single-scale testing on the mip-nerf 360 dataset python scripts/run_mipnerf360.py # single-scale training and multi-scale testing on the mip-nerf 360 dataset python scripts/run_mipnerf360_stmt.py ``` # Online viewer After training, you can fuse the 3D smoothing filter to the Gaussian parameters with ``` python create_fused_ply.py -m {model_dir}/{scene} --output_ply fused/{scene}_fused.ply" ``` Then use our [online viewer](https://niujinshuchong.github.io/mip-splatting-demo) to visualize the trained model. # Acknowledgements This project is built upon [3DGS](https://github.com/graphdeco-inria/gaussian-splatting). Please follow the license of 3DGS. We thank all the authors for their great work and repos. # Citation If you find our code or paper useful, please cite ```bibtex @InProceedings{Yu2024MipSplatting, author = {Yu, Zehao and Chen, Anpei and Huang, Binbin and Sattler, Torsten and Geiger, Andreas}, title = {Mip-Splatting: Alias-free 3D Gaussian Splatting}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {19447-19456} } ``` If you find our improved densification metric useful, please kindly cite ``` @article{Yu2024GOF, author = {Yu, Zehao and Sattler, Torsten and Geiger, Andreas}, title = {Gaussian Opacity Fields: Efficient High-quality Compact Surface Reconstruction in Unbounded Scenes}, journal = {arXiv:2404.10772}, year = {2024}, } ```