# EPSILON **Repository Path**: wenb11/EPSILON ## Basic Information - **Project Name**: EPSILON - **Description**: 时空联合规划,包含交互的行为规划层和基于优化的运动规划层 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-06 - **Last Updated**: 2025-01-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EPSILON ## About This is the project page of the paper "**EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments**". In this repo, we provide a simple and lightweight multi-agent simulator based on ROS and a demo implementation of the proposed EPSILON planning system. If you use EPSILON for your academic research, please consider citing the follow * Ding, Wenchao, et al. "EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments." IEEE Transactions on Robotics (2021). ***Paper:*** [IEEE Xplore](https://ieeexplore.ieee.org/document/9526613/), [arXiv](https://arxiv.org/abs/2108.07993) ***Demo video:*** [YouTube](https://youtu.be/3i0cIQrZs-4) BibTex ``` @article{ding2021epsilon, title={EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments}, author={Ding, Wenchao and Zhang, Lu and Chen, Jing and Shen, Shaojie}, journal={IEEE Transactions on Robotics}, year={2021}, publisher={IEEE} } ``` The following papers are also related: * Ding, Wenchao, et al. "Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor." IEEE Robotics and Automation Letters 4.3 (2019): 2997-3004. [(arXiv link)](https://arxiv.org/abs/1906.09788) * Zhang, Lu, et al. "Efficient uncertainty-aware decision-making for automated driving using guided branching." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. [(arXiv link)](https://arxiv.org/abs/2003.02746) If you have any question, please feel free to contact us via `lzhangbz@connect.ust.hk (Lu Zhang)` and `wdingae@connect.ust.hk (Wenchao Ding)`. ## Prerequisites This project has been tested on Ubuntu 16.04 (ROS Kinetic) and 18.04 (ROS Melodic). For ROS installation, please refer to the official [website](http://wiki.ros.org/ROS/Installation). ### Denpendencies * Install required packages ``` sudo apt-get install libgoogle-glog-dev libdw-dev libopenblas-dev gfortran ``` ``` pip install empy pygame ``` #### Install OOQP We use [OOQP](http://pages.cs.wisc.edu/~swright/ooqp/) for solving quadratic programming problems. Please refer to [link_1](https://github.com/emgertz/OOQP) and [link_2](http://pages.cs.wisc.edu/~swright/ooqp/) for the installation instruction. #### Install Protobuf We use [Protocol Buffers](https://developers.google.com/protocol-buffers/) for parameter configuration. For the installation guide, please refer to this [link](https://github.com/protocolbuffers/protobuf/blob/master/src/README.md). ## Build on ROS We recommend the users create an empty workspace. Clone the repo and build: ``` cd ${YOUR_WORKSPACE_PATH}/src git clone https://github.com/HKUST-Aerial-Robotics/EPSILON.git cd .. catkin_make source ~/${YOUR_WORKSPACE_PATH}/devel/setup.bash ``` ## Just have a try! 1. Open a new terminal window and start roscore: ``` roscore ``` 2. Launch RViz with `.rviz` file: ``` roscd phy_simulator/rviz/ rviz -d phy_simulator_planning.rviz ``` 3. Launch the planner's node and AI nodes: ``` roslaunch planning_integrated test_ssc_with_eudm_ros.launch roslaunch ai_agent_planner onlane_ai_agent.launch ``` 4. Launch the simulator: ``` roslaunch phy_simulator phy_simulator_planning.launch ``` Note that the simulator should be launched last.