# ai-edu
**Repository Path**: williamjava/ai-edu
## Basic Information
- **Project Name**: ai-edu
- **Description**: AI education materials for Chinese students, teachers and IT professionals.
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-08-28
- **Last Updated**: 2024-06-01
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# 微软人工智能教育与学习共建社区
本社区是微软亚洲研究院(Microsoft Research Asia,简称MSRA)人工智能教育团队创立的人工智能教育与学习共建社区.
在教育部指导下,依托于新一代人工智能开放科研教育平台,微软亚洲研究院研发团队和学术合作部将为本社区提供全面支持。我们将在此提供人工智能应用开发的真实案例,以及配套的教程、工具等学习资源,人工智能领域的一线教师及学习者也将分享他们的资源与经验。
正如微软的使命“予力全球每一人、每一组织,成就不凡”所指出的,期待借由本社区的建立,能以开源的方式,与广大师生、开发者一起学习、一起贡献,共同丰富、完善本社区,既而为中国人工智能的发展添砖加瓦。
本社区注明版权出处的内容适用于[License](./LICENSE.md)版权许可。
[English Version](./0-EnglishVersion/README.md)
# 新闻
**2021-04-20:**
更新[中文文本蕴含](./B-实践案例/B17-快速构建中文文本蕴含深度学习模型/Readme.md)案例
**2021-03-07:**
A7-强化学习,准备中。
**2021-02-07:**
新书出版!
目前在各大网店都可以买到。全书400多页,全彩印刷,由高等教育出版社出版,是下面所述的“神经网络基本原理教程”的印刷版。
**2021-01-07:**
A5-现代软件工程,开始编写。
**2020-03-25:**
社区结构更新啦!模块调整并重新命名,结构更清晰!
将[神经网络基本原理教程](https://aka.ms/beginnerAI) 移入 [A-基础教程](https://github.com/microsoft/ai-edu/tree/master/A-基础教程) 模块。该模块下还有 [数学基础](https://github.com/microsoft/ai-edu/tree/master/A-基础教程/A1-PythonBasic/math_intro) 和 [Python语言导论](https://github.com/microsoft/ai-edu/tree/master/A-基础教程/A1-PythonBasic/py_intro)。教程更集中,学习更方便!
实践案例全部汇集在 [B-实践案例](https://github.com/microsoft/ai-edu/tree/master/B-实践案例) 模块,并配上案例概览帮助文档,更有针对性学习案例!
[E-课程集锦](https://github.com/microsoft/ai-edu/tree/master/E-课程集锦/) 模块汇集了微软及多所高校开源人工智能教学大纲及课件。欢迎感兴趣的朋友前往查看!
**2019-11-20:**
首页改版啦!新版本的首页,将社区资源进一步系统化,按认识AI(初级),理解AI(中级),研究AI(高级)的结构分级编写了学习路径,并给出学习时长参考,先修知识资源参考,循序渐进,旨在帮助广大学习者更最高效地学习AI,赶快学起来吧!
**2019-11-19:**
更新[智能对联](./B-实践案例/B13-AI对联生成案例)案例,案例更加简洁、清晰,方便上手!
**2019-11-15:**
[神经网络基本原理简明教程](https://aka.ms/beginnerAI)暨**9步学习神经网络**全部内容完成!
# 学习资源介绍
介绍:
本社区的学习资源优质且免费,绝大部分为原创内容,核心学习资源包括**实战篇**和**理论篇**两大部分,辅以参考学习路径和先修知识参考资源,让广大学习者可以清晰地选择适合自己的学习路径,高效地学习。
**1. 实战篇**
以“做中学“的理念为核心,从人工智能真实的应用场景与案例出发,先讲生动的案例,配合详实的实际操作说明,然后在动手实现场景的基础上,逐步引入人工智能学习中的相关理论知识,以递进学习的新颖方式层层剖析人工智能开发的主流场景,让大家在不需要大量时间学习庞大的理论基础的情况下,也可以真正动手开始进行人工智能应用的开发,提高实际动手的能力.
[点此进入详细内容](https://github.com/microsoft/ai-edu/tree/master/B-实践案例)
**2. 理论篇**
理论篇的内容又称作“[9步学习神经网络](https://aka.ms/beginnerAI )”,为微软亚洲研究院研发团队原创内容,着重讲述偏理论的知识,同样以“做中学”为核心概念,但是独特地以化繁为简,深入浅出为特点,提供通俗易懂的理论讲解,清晰工整的代码,准确无误的内容,完整的作业体系,不但有理论,还有大量实践动手环节,帮助读者不但迅速掌握“深度学习”的基础知识,更好地理解并使用现有框架,而且可以助力读者快速学习最新出现的各种神经网络的扩展或者变型,跟上快速发展的AI浪潮,使学习者从新的角度快速上手神经网络的学习,做到真正的从入门到精通。该部分内容在针对合作伙伴线下的培训中,受到广大学习者的广泛好评。
[点此进入详细内容](https://github.com/microsoft/ai-edu/tree/master/A-基础教程)
# AI 前沿精选
[大规模利用单语数据提升神经机器翻译](https://www.msra.cn/zh-cn/news/features/emnlp-2019-exploiting-monolingual-data-at-scale-for-nmt)
[基于层次化注意力图网络和多视角学习的商品推荐](https://www.msra.cn/zh-cn/news/features/emnlp-2019-rmg)
[AI换脸鉴别率超99.6%,微软用技术应对虚假信息](https://www.msra.cn/zh-cn/news/features/ai-detect-fake-face)
[微软亚洲研究院精选论文解读](https://www.msra.cn/zh-cn/news/features/emnlp-2019)
[查看更多...](https://www.msra.cn/zh-cn/news?wd&content-type=posts)
# 等你来战
- [挑战黄金点](./C-挑战项目/GoldenNumberGame)
- [北京航空航天大学2019春季](./C-挑战项目/BeihangUniversity2019Spring)
- [山东大学2019春季](./C-挑战项目/ShandongUniversity2019Spring)
- [Code Search](./C-挑战项目/CodeSearch)
- [2019实践空间站](./C-挑战项目/2019studentclub)
# 如何贡献
我们非常欢迎您参与到社区共建中来,贡献高质量的内容,丰富社区资源并帮助更多学习者。在您准备贡献之前,请仔细阅读[共建指南](./CONTRIBUTING.md), 并遵守其中的规范,并确保您所贡献的内容符合我们的[License](./LICENSE.md)。如需了解贡献的步骤和具体技巧,请参阅[如何高效贡献](./contribute_efficiently.md)。
----
[访问旧版主页 (Version 1.0)](./README_1.0.md)
[访问旧版主页 (Version 2.0)](./README_2.0.md)