# Automatic-Modulation-Classification **Repository Path**: winginging/Automatic-Modulation-Classification ## Basic Information - **Project Name**: Automatic-Modulation-Classification - **Description**: Some Code for Master Thesis - Research on Deep Learning Based Modulation Recognition Technologies - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-12-08 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Automatic-Modulation-Classification Source Code for Master Thesis Research on Deep Learning Based Modulation Recognition Technologies Author: ZhiKun Lei School: National Key Laboratory of Science and Technology on Communication University: University of Electronic Science and Technology of China Version: Matlab2017a Python2.7.15 Keras2.2 Tensorflow(i forget :p)   Some Notes: Hope these code will be helpful for someone like me who struggled for a master degree. If these codes are helpful for you. Plz click star to support me :) Not Guaranteed To Be Correct. Thank you for reading. Master Thesis Link: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1019850977.nh&uid=WEEvREcwSlJHSldRa1FhcTdWa2FjVHcwaStHZTFIVEJVYkh4N295WCtaWT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MTI1ODRSTE9lWnVabUZ5M21VN3ZCVkYyNkY3dTlIdGpMcUpFYlBJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1U= 2019.8.23 Update Stop. --- ### Part 0 - dataset - AWGN channel signals - Rayleigh channel signals --- ### Part 1 - Likelihood Based AMC - simulation of paper - F. Hameed, O. A. Dobre, D. Popescu. On the likelihood-based approach to modulation classification[J]. IEEE Transactions on Wireless Communications, 2009, 8(12): 5884-5892 - fig.6 ALRT-UB for {BPSK, QPSK} - AWGN Channel - Rayleigh Channel - Freqency Offset - Phase Jitter --- ### Part 2 - Cumulant Based AMC - simulation of paper - A. Swami, B. M Sadler. Hierarchical digital modulation classification using cumulants[J].IEEE Transactions on communications, 2000, 48(3): 416-429 - extract cumulant features - cumulant features + thershold classifer - cumulant features + neural network classifer --- ### Part 3 - Instantaneous Signal Feature Based AMC - extract instantaneous features - refer paper: E. E. Azzouz, A. K. Nandi. Automatic identification of digital modulation types[J]. Signal Processing, 1995, 47(1):55-69 - instantaneous features + decision tree classifer - instantaneous features + neural network classifer --- ### Part 4 - CNN Based AMC - Train CNN Model - Test CNN Model - Some Result Paper Recommend: J. O’Shea, T. Roy, T. C. Clancy. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179 F. Meng, P. Chen, L. Wu, et al. Automatic modulation classification: A deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10760-10772 --- ### Part 5 - RNN Based AMC - Train RNN(SimpleRNN GRU LSTM) Model - Test RNN Model - Some Result Paper Recommend: S. Rajendran, W. Meert, D. Giustiniano, et al. Deep Learning Models for Wireless Signal Classification with Distributed Low-Cost Spectrum Sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 11(99):1-13 S. Hu, Y. Pei, P. P. Liang, et al. Robust Modulation Classification under Uncertain Noise Condition Using Recurrent Neural Network[C]. IEEE Global Communications Conference, 2018, 1-7 --- ### Part 6 - CNN with Transfer Learning on AMC - Pretrain CNN(labeled data - ordinary training method/ unlabeled data - autoencoder) - Retrain or Finetune CNN Paper Recommend: J. Yosinski, J. Clune, A. Nguyen, et al. Understanding neural networks through deep visualization[J]. arXiv preprint arXiv:1506.06579, 2015