# text_gcn **Repository Path**: wlzhang2020/text_gcn ## Basic Information - **Project Name**: text_gcn - **Description**: Graph Convolutional Networks for Text Classification. AAAI 2019 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-04 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # text_gcn The implementation of Text GCN in our paper: Liang Yao, Chengsheng Mao, Yuan Luo. "Graph Convolutional Networks for Text Classification." In 33rd AAAI Conference on Artificial Intelligence (AAAI-19), 7370-7377 ## Require Python 2.7 or 3.6 Tensorflow >= 1.4.0 ## Reproducing Results 1. Run `python remove_words.py 20ng` 2. Run `python build_graph.py 20ng` 3. Run `python train.py 20ng` 4. Change `20ng` in above 3 command lines to `R8`, `R52`, `ohsumed` and `mr` when producing results for other datasets. ## Example input data 1. `/data/20ng.txt` indicates document names, training/test split, document labels. Each line is for a document. 2. `/data/corpus/20ng.txt` contains raw text of each document, each line is for the corresponding line in `/data/20ng.txt` 3. `prepare_data.py` is an example for preparing your own data, note that '\n' is removed in your documents or sentences. ## Inductive version An inductive version of Text GCN is [fast_text_gcn](https://github.com/yao8839836/fast_text_gcn), where test documents are not included in training process.