# Methodology-for-efficient-CNN-architectures-in-SCA **Repository Path**: wmd_study/Methodology-for-efficient-CNN-architectures-in-SCA ## Basic Information - **Project Name**: Methodology-for-efficient-CNN-architectures-in-SCA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-18 - **Last Updated**: 2025-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Methodology for Efficient CNN Architectures in Profiling Attacks The current repository is associated with the article "Methodology for efficient CNN architectures in Profiling Attacks" available on IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES) and the eprints Each dataset is composed of the following scripts and repositories: - cnn_architecture.py: provides the script in order to train the model introduced in the article, - exploit_pred.py: computes the evolution of the right key and saves the resulted picture (Credit: Damien Robissout), - (Optionnal) clr.py: computes the One-Cycle Policy (see "Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates " and "A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay, - "training_history": contains information related to the loss function and the accuracy, - "model_predictions": contains information related to the model predictions, - "fig": contains the figure related to the rank evolution, - "..._trained_models": containts the model used in the article. The trace sets were obtained from publicly databases: - DPA-contest v4: http://www.dpacontest.org/v4/42_traces.php - AES_HD dataset: https://github.com/AESHD/AES_HD_Dataset - AES_RD dataset: https://github.com/ikizhvatov/randomdelays-traces - ASCAD: https://github.com/ANSSI-FR/ASCAD ## Raw data files hashes The zip file SHA-256 hash value is:
**AES_HD/AES_HD_dataset.zip:** `00a3d02f01bae8c4fcefda33e3d1adb57bed0509ded3cdcf586e213b3d87e41b`
**AES_RD/AES_RD_dataset/AES_RD_attack.zip:** `379c0e29e7f2b7e24ca2ece40b83200b083d48afabd6eabbb01f8ed38a42ebcf` **AES_RD/AES_RD_dataset/AES_RD_profiling.zip:** `93a77b83df7e54656fce798c184e4fb4e3cdc5a740758c0432bdb8c7bd58154d`
**ASCAD/N=0/ASCAD_dataset.zip:** `5f5924e2d0beca5b57fbc48ace137dbb2fe12dd03976aa38f4a699ab21e966b0` **ASCAD/N=50/ASCAD_dataset.zip:** `9bf704727390a73cf67d3952bc2cacef532b0b62e55f85d615edaa6cd8521f51` **ASCAD/N=100/ASCAD_dataset.zip:** `2d803db27e58fec3d805cd3cf039b303cad1e0c9ea7a8102a07020bd07113cd9`
**DPA-contest v4/DPAv4_dataset.zip:** `c42e0626793848ad38634f1765354fbecd9df3fa606ceb593a94febe6ebeda1f`
## Citation If you use our code, models or wish to refer to our results, please use the following BibTex entry: ``` @article{Zaid_Bossuet_Habrard_Venelli_2019, title={Methodology for Efficient CNN Architectures in Profiling Attacks}, volume={2020}, url={https://tches.iacr.org/index.php/TCHES/article/view/8391}, DOI={10.13154/tches.v2020.i1.1-36}, number={1}, journal={IACR Transactions on Cryptographic Hardware and Embedded Systems}, author={Zaid, Gabriel and Bossuet, Lilian and Habrard, Amaury and Venelli, Alexandre}, year={2019}, month={Nov.}, pages={1-36} } ```