# mcgan-cvprw2017-pytorch **Repository Path**: workhard123/mcgan-cvprw2017-pytorch ## Basic Information - **Project Name**: mcgan-cvprw2017-pytorch - **Description**: This is an implementation of our CVPRW2017 paper "Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets". - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-10 - **Last Updated**: 2021-11-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Multispectral conditional Generative Adversarial Nets This repository is an implementation of ["Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets"](https://arxiv.org/abs/1710.04835). ![Results](images/results.png) ## Requirements I recommend Anaconda to manage your Python libraries. Because it is easy to install some of the libraries necessary to prepare the data. * Python3 (tested with 3.5.4) * PyTorch (tested with 0.4.1) * TorchVision (tested with 0.2.1) * Numpy (tested with 1.14.2) * OpenCV (tested with 3.3.1) * Pillow (tested with 5.0.0) * tqdm (tested with 4.15.0) * PyYAML (tested with 3.12) ## Preparing the data Please refer to [make_dataset/README.md](make_dataset/README.md). ## How to train You need set each parameters in `config.yml`. When you run `train.py`, `config.yml` is automatically copied to a directory `out_dir` defined at `config.yml`. ```bash python train.py ``` ## How to test ```bash python predict.py --config --test_dir --out_dir --pretrained --cuda ``` ## Pre-trained model You can download a pre-trained model from [here](https://drive.google.com/open?id=1qANetLPqN54Qvv2LYWE_wJodFsejUpY1). (200MB) ## License Academic use only.