# LLamaSharp **Repository Path**: workingbird/LLamaSharp ## Basic Information - **Project Name**: LLamaSharp - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-11-05 - **Last Updated**: 2023-11-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README īģŋ![logo](Assets/LLamaSharpLogo.png) [![Discord](https://img.shields.io/discord/1106946823282761851?label=Discord)](https://discord.gg/7wNVU65ZDY) [![QQ Group](https://img.shields.io/static/v1?label=QQ&message=加å…ĨQQįž¤&color=brightgreen)](http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=sN9VVMwbWjs5L0ATpizKKxOcZdEPMrp8&authKey=RLDw41bLTrEyEgZZi%2FzT4pYk%2BwmEFgFcrhs8ZbkiVY7a4JFckzJefaYNW6Lk4yPX&noverify=0&group_code=985366726) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp?label=LLamaSharp)](https://www.nuget.org/packages/LLamaSharp) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp.Backend.Cpu?label=LLamaSharp.Backend.Cpu)](https://www.nuget.org/packages/LLamaSharp.Backend.Cpu) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp.Backend.Cuda11?label=LLamaSharp.Backend.Cuda11)](https://www.nuget.org/packages/LLamaSharp.Backend.Cuda11) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp.Backend.Cuda12?label=LLamaSharp.Backend.Cuda12)](https://www.nuget.org/packages/LLamaSharp.Backend.Cuda12) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp.Backend.MacMetal?label=LLamaSharp.Backend.MacMetal)](https://www.nuget.org/packages/LLamaSharp.Backend.MacMetal) [![LLamaSharp Badge](https://img.shields.io/nuget/v/LLamaSharp.semantic-kernel?label=LLamaSharp.semantic-kernel)](https://www.nuget.org/packages/LLamaSharp.semantic-kernel) **The C#/.NET binding of [llama.cpp](https://github.com/ggerganov/llama.cpp). It provides higher-level APIs to inference the LLaMA Models and deploy it on local device with C#/.NET. It works on both Windows, Linux and MAC without requirment for compiling llama.cpp yourself. Even without GPU or not enought GPU memory, you can still apply LLaMA models well with this repo. 🤗** **Furthermore, it provides integrations with other projects such as [semantic-kernel](https://github.com/microsoft/semantic-kernel), [kernel-memory](https://github.com/microsoft/kernel-memory) and [BotSharp](https://github.com/SciSharp/BotSharp) to provide higher-level applications.** ## Documentation - [Quick start](https://scisharp.github.io/LLamaSharp/0.5/GetStarted/) - [Tricks for FAQ](https://scisharp.github.io/LLamaSharp/0.5/Tricks/) - [Full documentation](https://scisharp.github.io/LLamaSharp/0.5/) - [API reference](https://scisharp.github.io/LLamaSharp/0.5/xmldocs/) ## Examples - [Official Console Examples](./LLama.Examples/NewVersion/) - [Unity Demo](https://github.com/eublefar/LLAMASharpUnityDemo) - [LLamaStack (with WPF and Web support)](https://github.com/saddam213/LLamaStack) ## Installation Firstly, search `LLamaSharp` in nuget package manager and install it. ``` PM> Install-Package LLamaSharp ``` Then, search and install one of the following backends. (Please don't install two or more) ``` LLamaSharp.Backend.Cpu # cpu for windows, linux and mac (mac metal is also supported) LLamaSharp.Backend.Cuda11 # cuda11 for windows and linux LLamaSharp.Backend.Cuda12 # cuda12 for windows and linux LLamaSharp.Backend.MacMetal # special for using mac metal ``` We publish these backends because they are the most popular ones. If none of them matches, please compile the [llama.cpp](https://github.com/ggerganov/llama.cpp) yourself. In this case, please **DO NOT** install the backend packages, instead, add your DLL to your project and ensure it will be copied to the output directory when compiling your project. For more informations please refer to ([this guide](https://scisharp.github.io/LLamaSharp/0.5/ContributingGuide/)). For [microsoft semantic-kernel](https://github.com/microsoft/semantic-kernel) integration, please search and install the following package: ``` LLamaSharp.semantic-kernel ``` ### Tips for choosing a version In general, there may be some break changes between two minor releases, for example 0.5.1 and 0.6.0. On the contrary, we don't introduce API break changes in patch release. Therefore it's recommended to keep the highest patch version of a minor release. For example, keep 0.5.6 instead of 0.5.3. ### Mapping from LLamaSharp to llama.cpp Here's the mapping of them and corresponding model samples provided by `LLamaSharp`. If you're not sure which model is available for a version, please try our sample model. The llama.cpp commit id will help if you want to compile a DLL yourself. | LLamaSharp.Backend | LLamaSharp | Verified Model Resources | llama.cpp commit id | | - | - | -- | - | | - | v0.2.0 | This version is not recommended to use. | - | | - | v0.2.1 | [WizardLM](https://huggingface.co/TheBloke/wizardLM-7B-GGML/tree/previous_llama), [Vicuna (filenames with "old")](https://huggingface.co/eachadea/ggml-vicuna-13b-1.1/tree/main) | - | | v0.2.2 | v0.2.2, v0.2.3 | [WizardLM](https://huggingface.co/TheBloke/wizardLM-7B-GGML/tree/previous_llama_ggmlv2), [Vicuna (filenames without "old")](https://huggingface.co/eachadea/ggml-vicuna-13b-1.1/tree/main) | 63d2046 | | v0.3.0, v0.3.1 | v0.3.0, v0.4.0 | [LLamaSharpSamples v0.3.0](https://huggingface.co/AsakusaRinne/LLamaSharpSamples/tree/v0.3.0), [WizardLM](https://huggingface.co/TheBloke/wizardLM-7B-GGML/tree/main) | 7e4ea5b | | v0.4.1-preview (cpu only) | v0.4.1-preview | [Open llama 3b](https://huggingface.co/SlyEcho/open_llama_3b_ggml), [Open Buddy](https://huggingface.co/OpenBuddy/openbuddy-llama-ggml)| aacdbd4 | | v0.4.2-preview (cpu,cuda11) |v0.4.2-preview | [Llama2 7b GGML](https://huggingface.co/TheBloke/llama-2-7B-Guanaco-QLoRA-GGML)| 3323112 | | v0.5.1 | v0.5.1 | [Llama2 7b GGUF](https://huggingface.co/TheBloke/llama-2-7B-Guanaco-QLoRA-GGUF)| 6b73ef1 | | v0.6.0 | v0.6.0 | | [cb33f43](https://github.com/ggerganov/llama.cpp/commit/cb33f43a2a9f5a5a5f8d290dd97c625d9ba97a2f) | | v0.7.0 | v0.7.0 | [Thespis-13B](https://huggingface.co/TheBloke/Thespis-13B-v0.5-GGUF/tree/main?not-for-all-audiences=true), [LLaMA2-7B](https://huggingface.co/TheBloke/Thespis-13B-v0.5-GGUF/tree/main?not-for-all-audiences=true) | [207b519](https://github.com/ggerganov/llama.cpp/commit/207b51900e15cc7f89763a3bb1c565fe11cbb45d) | Many hands make light work. If you have found any other model resource that could work for a version, we'll appreciate it for opening an PR about it! 😊 ## FAQ 1. GPU out of memory: Please try setting `n_gpu_layers` to a smaller number. 2. Unsupported model: `llama.cpp` is under quick development and often has break changes. Please check the release date of the model and find a suitable version of LLamaSharp to install, or use the model we provide [on huggingface](https://huggingface.co/AsakusaRinne/LLamaSharpSamples). 3. Cannot find backend package: 1) ensure you installed one of them. 2) check if there's a `libllama.dll` under your output path. 3) check if your system supports avx2, which is the default settings of official runtimes now. If not, please compile llama.cpp yourself. ## Quick Start #### Model Inference and Chat Session LLamaSharp provides two ways to run inference: `LLamaExecutor` and `ChatSession`. The chat session is a higher-level wrapping of the executor and the model. Here's a simple example to use chat session. ```cs using LLama.Common; using LLama; string modelPath = ""; // change it to your own model path var prompt = "Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\r\n\r\nUser: Hello, Bob.\r\nBob: Hello. How may I help you today?\r\nUser: Please tell me the largest city in Europe.\r\nBob: Sure. The largest city in Europe is Moscow, the capital of Russia.\r\nUser:"; // use the "chat-with-bob" prompt here. // Load a model var parameters = new ModelParams(modelPath) { ContextSize = 1024, Seed = 1337, GpuLayerCount = 5 }; using var model = LLamaWeights.LoadFromFile(parameters); // Initialize a chat session using var context = model.CreateContext(parameters); var ex = new InteractiveExecutor(context); ChatSession session = new ChatSession(ex); // show the prompt Console.WriteLine(); Console.Write(prompt); // run the inference in a loop to chat with LLM while (prompt != "stop") { foreach (var text in session.Chat(prompt, new InferenceParams() { Temperature = 0.6f, AntiPrompts = new List { "User:" } })) { Console.Write(text); } prompt = Console.ReadLine(); } // save the session session.SaveSession("SavedSessionPath"); ``` #### Quantization The following example shows how to quantize the model. With LLamaSharp you needn't to compile c++ project and run scripts to quantize the model, instead, just run it in C#. ```cs string srcFilename = ""; string dstFilename = ""; string ftype = "q4_0"; if(Quantizer.Quantize(srcFileName, dstFilename, ftype)) { Console.WriteLine("Quantization succeed!"); } else { Console.WriteLine("Quantization failed!"); } ``` For more usages, please refer to [Examples](./LLama.Examples). #### Web API We provide [the integration of ASP.NET core](./LLama.WebAPI) and a [web app demo](./LLama.Web). Please clone the repo to have a try. Since we are in short of hands, if you're familiar with ASP.NET core, we'll appreciate it if you would like to help upgrading the Web API integration. ## Console Demo ![demo-console](Assets/console_demo.gif) ## How to Get a Model Model in format `gguf` is valid for LLamaSharp (and `ggml` before v0.5.1). One option is to search `LLama` and `gguf` in [huggingface](https://huggingface.co/) to find a model. Another choice is generate gguf format file yourself with a pytorch weight (or any other), pleae refer to [convert.py](https://github.com/ggerganov/llama.cpp/blob/master/convert.py) and [convert-llama-ggml-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-llama-ggml-to-gguf.py) to get gguf file though a ggml transform. ## Roadmap --- ✅: completed. âš ī¸: outdated for latest release but will be updated. đŸ”ŗ: not completed --- ✅ LLaMa model inference ✅ Embeddings generation, tokenization and detokenization ✅ Chat session ✅ Quantization ✅ Grammar ✅ State saving and loading âš ī¸ BotSharp Integration ✅ ASP.NET core Integration ✅ Semantic-kernel Integration đŸ”ŗ Fine-tune âš ī¸ Local document search (enabled by kernel-memory now) đŸ”ŗ MAUI Integration ## Contributing Any contribution is welcomed! Please read the [contributing guide](https://scisharp.github.io/LLamaSharp/0.4/ContributingGuide/). You can do one of the followings to help us make `LLamaSharp` better: - Append a model link that is available for a version. (This is very important!) - Star and share `LLamaSharp` to let others know it. - Add a feature or fix a BUG. - Help to develop Web API and UI integration. - Just start an issue about the problem you met! ## Contact us Join our chat on [Discord](https://discord.gg/7wNVU65ZDY). Join [QQ group](http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=sN9VVMwbWjs5L0ATpizKKxOcZdEPMrp8&authKey=RLDw41bLTrEyEgZZi%2FzT4pYk%2BwmEFgFcrhs8ZbkiVY7a4JFckzJefaYNW6Lk4yPX&noverify=0&group_code=985366726) ## License This project is licensed under the terms of the MIT license.