# yolodet-pytorch **Repository Path**: wuzhihao7788/yolodet-pytorch ## Basic Information - **Project Name**: yolodet-pytorch - **Description**: YOLODet-PyTorch是端到端基于pytorch框架复现yolo最新算法的目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 64 - **Forks**: 26 - **Created**: 2020-10-26 - **Last Updated**: 2025-05-05 ## Categories & Tags **Categories**: ai **Tags**: None ## README 简体中文 | [English](README_en.md) # YOLODet-PyTorch YOLODet-PyTorch是端到端基于pytorch框架复现yolo最新算法的目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程。YOLODet-PyTorch以模块化的设计实现了多种主流YOLO目标检测算法,并且提供了丰富的数据增强、网络组件、损失函数等模块。 **目前检测库下模型均要求使用PyTorch 1.5及以上版本或适当的develop版本。** ## 内容 - [简介](#简介) - [安装说明](#安装说明) - [快速开始](#快速开始) - [预训练模型](#预训练模型) - [重要说明](#重要说明) - [鸣谢](#鸣谢) - [如何贡献代码](#如何贡献代码) ## 简介 ### 特性: - 模型丰富: YOLODet提供了丰富的模型,涵盖最新YOLO检测算法的复现,包含YOLOv5、YOLOv4、PP-YOLO、YOLOv3等YOLO系列目标检测算法。 - 高灵活度: YOLODet通过模块化设计来解耦各个组件,基于配置文件可以轻松地搭建各种检测模型。 ### 支持的模型: - [YOLOv5(s,m,l,x)](docs/yolov5_cn.md) - [YOLOv4(标准版,sam版)](docs/yolov4_cn.md) - [PP-YOLO](docs/pp-yolo_cn.md) - [YOLOv3](docs/yolov3_cn.md) ### 更多的Backone: - DarkNet - CSPDarkNet - ResNet - YOLOv5Darknet ### 数据增强方法: - Mosaic - MixUp - Resize - LetterBox - RandomCrop - RandomFlip - RandomHSV - RandomBlur - RandomNoise - RandomAffine - RandomTranslation - Normalize - ImageToTensor - 相关配置使用说明请参考【[这里](docs/TRANSFORMS_cn.md)】 ### 损失函数支持: - bbox loss (IOU,GIOU,DIOU,CIOU) - confidence loss(YOLOv4,YOLOv5,PP-YOLO) - IOU_Aware_Loss(PP-YOLO) - FocalLoss ### 训练技巧支持: - [指数移动平均](https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage) - 预热 - 梯度剪切 - 梯度累计更新 - 多尺度训练 - 学习率调整:Fixed,Step,Exp,Poly,Inv,Consine - Label Smooth - **强烈说明** 通过实验对比发现YOLOv5的正负样本划分定义和损失函数定义,使得模型收敛速度较快,远超原yolo系列对正负样本的划分和损失定义。对于如果卡资源不充足,想在短时间内收敛模型,可采用yolov5的正负样本划分和损失函数定义,相关参数为`yolo_loss_type=yolov5`。 - 额外补充 YOLOv5对于正样本的定义:在不同尺度下只要真框和给定锚框的的比值在4倍以内,该锚框即可负责预测该真值框。并根据gx,gy在grid中心点位置的偏移量会额外新增两个grid坐标来预测。通过这一系列操作,增加了正样本数量,加速模型收敛速度。而YOLO原系列对于真框,在不同尺度下只有在该尺度下IOU交并集最大的锚框负责预测该真框,其他锚框不负责,所以由于较少的正样本量,模型收敛速度较慢。 ### 扩展特性: - [x] **Group Norm** - [x] **Modulated Deformable Convolution** - [x] **Focus** - [x] **Spatial Pyramid Pooling** - [x] **FPN-PAN** - [x] **coord conv** - [x] **drop block** - [x] **SAM** ### 代码结构说明 ``` yolodet-pytorch ├──cfg #模型配置文件所在目录(yolov5,yolov4等) ├──tools #工具包,包含训练代码,测试代码和推断代码入口。 ├──yolodet #YOLO检测框架核心代码库 │ ├──apis #提供检测框架的训练,测试和推断和模型保存的接口 │ ├──dataset #包含DateSet,DateLoader和数据增强等通用方法 │ ├──models #YOLO检测框架的核心组件集结地 │ │ ├──detectors #所有类型检测器集结地 │ │ ├──backbones #所有骨干网络集结地 │ │ ├──necks #所有necks集结地 │ │ ├──heads #heads集结地 │ │ ├──loss #所有损失函数集结地 │ │ ├──hooks #hooks集结地(学习率调整,模型保存,训练日志,权重更新等) │ │ ├──utils #所有工具方法集结地 ``` ## 安装说明 安装和数据集准备请参考 [INSTALL.md](docs/INSTALL_cn.md) 。 ## 快速开始 请参阅 [GETTING_STARTED.md](docs/GETTING_STARTED_cn.md) 了解YOLODet的基本用法。 ## 预训练模型 查看预训练模型请点击【[这里](docs/MODEL_ZOO_cn.md)】 ## 重要说明 由于该检测框架为个人闲暇之余,处于对深度学习的热爱,自己单独编写完成,也由于自己囊中羞涩,没有充足的显卡资源,提供的MSCOCO大型数据集的预训练模型为未完整训练的模型,后面会陆陆续续提供完整版的预训练模型,敬请大家期待。对于小型数据集本人已经测试和验证过,并在实际项目中使用过该框架训练的模型,没有问题,精度和速度都能保证。 ## 鸣谢 - 本检测框架中的代码结构参考[open-mmlab](https://github.com/open-mmlab)的 [mmdetection](https://github.com/open-mmlab/mmdetection)并做部分引用,已在代码注释中说明。 - 神经网络网络结构可视化工具:Netron https://github.com/lutzroeder/Netron - Paper YOLOv4: https://arxiv.org/abs/2004.10934 - Source code:https://github.com/AlexeyAB/darknet - More details: http://pjreddie.com/darknet/yolo/ - YOLOv5:https://github.com/ultralytics/yolov5 - PP-YOLO:https://arxiv.org/abs/2007.12099 - PP-YOLO code:https://github.com/PaddlePaddle/PaddleDetection ## 如何贡献代码 欢迎你为YOLODet提供代码,也十分感谢你的反馈。本人将不断完善和改进这个基于PyTorch实现的YOLO全系列的目标检测框架,并希望更多志同道合的爱好者和从业者能参与进来,共同维护这个项目。 如有对此感兴趣的同学,可联系我的gmail邮箱:wuzhihao7788@gmail.com,期待与你一起完善和进步。