# multi-class-text-classification-cnn-rnn **Repository Path**: wwfcoder/multi-class-text-classification-cnn-rnn ## Basic Information - **Project Name**: multi-class-text-classification-cnn-rnn - **Description**: Classify Kaggle San Francisco Crime Description into 39 classes. Build the model with CNN, RNN (GRU and LSTM) and Word Embeddings on Tensorflow. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2019-07-31 - **Last Updated**: 2022-12-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### Project: Classify Kaggle San Francisco Crime Description ### Highlights: - This is a **multi-class text classification (sentence classification)** problem. - The goal of this project is to **classify Kaggle San Francisco Crime Description into 39 classes**. - This model was built with **CNN, RNN (LSTM and GRU) and Word Embeddings** on **Tensorflow**. ### Data: [Kaggle San Francisco Crime](https://www.kaggle.com/c/sf-crime/data) - Input: **Descript** - Output: **Category** - Examples: Descript | Category -----------|----------- GRAND THEFT FROM LOCKED AUTO|LARCENY/THEFT POSSESSION OF NARCOTICS PARAPHERNALIA|DRUG/NARCOTIC AIDED CASE, MENTAL DISTURBED|NON-CRIMINAL AGGRAVATED ASSAULT WITH BODILY FORCE|ASSAULT ATTEMPTED ROBBERY ON THE STREET WITH A GUN|ROBBERY ### Train: - Command: python3 train.py train_data.file train_parameters.json - Example: ```python3 train.py ./data/train.csv.zip ./training_config.json``` ### Predict: - Command: python3 predict.py ./trained_results_dir/ new_data.csv - Example: ```python3 predict.py ./trained_results_1478563595/ ./data/small_samples.csv``` ### Reference: - [Implement a cnn for text classification in tensorflow](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/)