# chainer_ctc **Repository Path**: xbnpyk/chainer_ctc ## Basic Information - **Project Name**: chainer_ctc - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-26 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Fast CTC for Chainer ==================== This module contains two implementations of CTC [Graves2006] for [Chainer](http://chainer.org). 1. Is build using custom CUDA kernels / Cython code 2. Is a wrapper around Baidu's warp-ctc The first one is faster than the original Chainer implementation but slower than warp-ctc. However, it allows for easier modification of the CTC algorithm. If you want to tinker with it, use the first method. If you just want speed, use warp-ctc. Requirements ------------ 1. Chainer 2. Python 3.x 3. GPU + CUDA for high performance Installation ------------ First, clone this repository. ``` git clone https://github.com/jheymann85/chainer_ctc.git ``` Next, we need to install warp-ctc. This can be done with the install script ``` chmod +x install_warp-ctc.sh ./install_warp-ctc.sh ``` Now you can install the module ``` pip install --user -e . ``` Finally, run the tests to see if the installation was successful ``` nosetests tests/ ``` Credits ------- Baidu for their incredible fast [warp-ctc](https://github.com/baidu-research/warp-ctc) implementation. \[Graves2006\]: Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber **Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks**