# meta-learning-lstm **Repository Path**: xbnpyk/meta-learning-lstm ## Basic Information - **Project Name**: meta-learning-lstm - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-05-17 - **Last Updated**: 2025-03-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # meta-learning-lstm This repo contains the code for the following paper: https://openreview.net/pdf?id=rJY0-Kcll ## Dependencies The following libaries are necessary: * [torch-autograd](https://github.com/twitter/torch-autograd) * [torch-ipc](https://github.com/twitter/torch-ipc) (use version from commit 'c1b2984c4c2dae085005d385996f4c0660173b27') * [torch-Dataset](https://github.com/twitter/torch-dataset) * [moses](https://github.com/Yonaba/Moses) ## Training Splits corresponding to meta-training, meta-validation, and meta-testing are placed in `data/miniImagenet/`. Download corresponding imagenet images and place in folder called `images` and place folder in `data/miniImagenet/`. To train a model: ``` th train/run-train.lua --task [1-shot or 5-shot task] --data config.imagenet --model [model name] ``` For example, to run matching-nets: ``` th train/run-train.lua --task config.5-shot-5-class --data config.imagenet --model config.baselines.train-matching-net ``` And, to run LSTM meta-learner for 5-shot task: ``` th train/run-train.lua --task config.5-shot-5-class --data config.imagenet --model config.lstm.train-imagenet-5shot ``` ## Contact For questions about miniImagenet format, please contact Sachin Ravi at email given in the paper.