# ParameterFreeRCNs-MicroExpressionRec **Repository Path**: xia_zhaoqiang/ParameterFreeRCNs-MicroExpressionRec ## Basic Information - **Project Name**: ParameterFreeRCNs-MicroExpressionRec - **Description**: This repository contains the source code for our TIP work, which is entitled as "Revealing the Invisible With Model and Data Shrinking for Composite-Database Micro-Expression Recognition". - **Primary Language**: Python - **License**: CC-BY-4.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-31 - **Last Updated**: 2021-12-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: MER ## README Recurrent convolutional networks with parameter free modules for composite-database micro-expression recognition Descriptions These codes are used for micro-expression recognition on composite datasets (e.g., MEGC2019). The methods can be accessed by the paper "Revealing the Invisible With Model and Data Shrinking for Composite-Database Micro-Expression Recognition, IEEE TIP2020", which includes the RCN-A, RCN-S, RCN-W, RCN-P, RCN-C and RCN-F. Dependencies The code was written in Python 3.6, and tested on Windows 10 and CentOS 7. Pytorch: 1.1 or newer Numpy: 1.16.3 or newer Scikit-learn: 0.22.1 or newer Instructions The optical flow should be extracted by your own tools before training the deep model. The data can be prepared by the script "PrepareData_LOSO_CD.py". At last, various models can be accessed by using the commond "--modelname". For training, the command like "python ModelEval_Final.py --dataset smic --dataversion 1 --epochs 20 --learningrate 0.0005 --modelname rcn_a --batchsize 64 --featuremap 32 --poolsize 5 --lossfunction crossentropy" can be used.