# MULT-MicroExpressionSpot **Repository Path**: xia_zhaoqiang/mult-micro-expression-spot ## Basic Information - **Project Name**: MULT-MicroExpressionSpot - **Description**: This repo is the implementation of our paper "Micro-expression Spotting with Multi-scale Local Transformer in Long Videos". - **Primary Language**: Python - **License**: CC-BY-4.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-09-08 - **Last Updated**: 2023-09-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MULT-MicroExpressionSpot This repo is the implementation of our paper "[Micro-expression Spotting with Multi-scale Local Transformer in Long Videos](https://www.sciencedirect.com/science/article/pii/S0167865523000776)". The entire pipeline can be divided into five parts. Please use the code by the following content. ## Feature Extraction ### Optical flow calculation We use TV-L1(opencv) to calculate optical flow, and the optical flow interval was 2. We save the optical flow in x and y directions separately. ### 3D feature extraction by the pretrained model 1) Features are extracted by [I3D] (https://github.com/Finspire13/pytorch-i3d-feature-extraction) 2) Sliding window ground truth information are generated Reference address: (https://github.com/VividLe/A2Net) SAMM: The sliding windows contain 256 features. Features are calculated with stride=2, thus one sliding window corresponding to 512 frames. CAS(ME)^2: The sliding windows contain 128 features. Features are calculated with stride=2, thus one sliding window corresponding to 256 frames. [CAS(ME)^2](https://pan.baidu.com/s/1z_jB7vkoHBf5MaoQ0Ky1KQ ), password:95lo [SAMM](https://pan.baidu.com/s/1HzmuhuEQ0PyvIqfZHouzdA), password:d3lb ## Modifying the configuration file ### experiments/samm(cas).yaml - ROOT_DIR - FEAT_DIR - ANNO_PATH ## Train the model 1) Select options in main.py (CAS(ME)^2 or SAMM) 2) Run main.py ## Evaluation 1) Select options in tools/F1_score.py (CAS(ME)^2 or SAMM) 2) Run tools/F1_score.py ## Accessing the Results Accessing existing results: https://pan.baidu.com/s/1f7gi95edkoFJWCXBl87I4g , password:rltx