# IOTJ_experiment **Repository Path**: xianshianwentyl/iotj_experiment ## Basic Information - **Project Name**: IOTJ_experiment - **Description**: 实现IOTJ论文实验部分 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-22 - **Last Updated**: 2022-05-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: Python, 联邦学习 ## README # FLSim ## About ### 仓库原作者出处: Welcome to **FLSim**, a PyTorch based federated learning simulation framework, created for experimental research in a paper accepted by [IEEE INFOCOM 2020](https://infocom2020.ieee-infocom.org): [Hao Wang](https://www.haow.ca), Zakhary Kaplan, [Di Niu](https://sites.ualberta.ca/~dniu/Homepage/Home.html), [Baochun Li](http://iqua.ece.toronto.edu/bli/index.html). "Optimizing Federated Learning on Non-IID Data with Reinforcement Learning," in the Proceedings of IEEE INFOCOM, Beijing, China, April 27-30, 2020. ### 本仓库新建目的: 在原仓库基础上,实现IOTJ论文中的实验部分 ## Installation To install **FLSim**, all that needs to be done is clone this repository to the desired directory. ### Dependencies **FLSim** uses [Anaconda](https://www.anaconda.com/distribution/) to manage Python and it's dependencies, listed in [`environment.yml`](environment.yml). To install the `fl-py37` Python environment, set up Anaconda (or Miniconda), then download the environment dependencies with: ```shell conda env create -f environment.yml ``` ## Usage Before using the repository, make sure to activate the `fl-py37` environment with: ```shell conda activate fl-py37 ``` ### Simulation To start a simulation, run [`run.py`](run.py) from the repository's root directory: ```shell python run.py --config=config.json --log=INFO ``` ##### `run.py` flags * `--config` (`-c`): path to the configuration file to be used. * `--log` (`-l`): level of logging info to be written to console, defaults to `INFO`. ##### `config.json` files **FLSim** uses a JSON file to manage the configuration parameters for a federated learning simulation. Provided in the repository is a generic template and three preconfigured simulation files for the CIFAR-10, FashionMNIST, and MNIST datasets. For a detailed list of configuration options, see the [wiki page](https://github.com/iQua/flsim/wiki/Configuration). If you have any questions, please feel free to contact Hao Wang (haowang@ece.utoronto.ca)