# HGNN-AC **Repository Path**: xiao-song-sinx/HGNN-AC ## Basic Information - **Project Name**: HGNN-AC - **Description**: 基于属性补全的异质图节点分类 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-08 - **Last Updated**: 2021-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Heterogeneous Graph Neural Network via Attribute Completion This repository contains the demo code of the paper: >[Heterogeneous Graph Neural Network via Attribute Completion](https://doi.org/10.1145/3442381.3449914) which has been accepted by *WWW2021*. ## Dependencies * Python3 * NumPy * SciPy * scikit-learn * NetworkX * DGL * PyTorch ## Datasets The preprocessed datasets are available at [Baidu Netdisk](https://pan.baidu.com/s/1teLcrdVxrE1YQVU14sRJyw)(password: hgnn) or [Google Drive](https://drive.google.com/file/d/1PqUjvSViICa8yOszqDrw-j96hXVJ0MHR/view?usp=sharing). Please extract the zip file to folder `data`. We use the same methods as MAGNN to process the data, so you can also download datasets at [MAGNN's repository](https://github.com/cynricfu/MAGNN). ## Example * `python run_DBLP.py --cuda` * `python run_IMDB.py --cuda` * `python run_ACM.py --cuda` Please refer to the code for more parameters. ## Acknowledgements The demo code is implemented based on [MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding](https://github.com/cynricfu/MAGNN). ## Citing @inproceedings{hgnn-ac, title={Heterogeneous Graph Neural Network via Attribute Completion}, author={Di Jin and Cuiying Huo and Chundong Liang and Liang Yang}, booktitle = {WWW}, year={2021} }