# HGSL **Repository Path**: xiao-song-sinx/HGSL ## Basic Information - **Project Name**: HGSL - **Description**: 图神经网络的异质图结构学习 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-13 - **Last Updated**: 2021-11-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HGSL Source code of AAAI submission "Heterogeneous Graph Structure Learning for Graph Neural Networks" # Requirements ## Python Packages - Python >= 3.6.8 - Pytorch >= 1.3.0 ## GPU Memmory Requirements - ACM >= 8G - DBLP >=5G - Yelp >=3G # Usage Take DBLP dataset as an example: python train.py --dataset='dblp' # FAQ ## Code of preprocessing data? The data is originally preprocessed by GTN project (https://github.com/seongjunyun/Graph_Transformer_Networks). ## How to generate semantic embeddings? The semantic embeddings, i.e. $\mathcal{Z}$ in the paper, are generated by metapath2vec algorithm. Users may refer to https://github.com/dmlc/dgl/tree/master/examples/pytorch/metapath2vec for an implementation.