# MISA **Repository Path**: xiao-song-sinx/MISA ## Basic Information - **Project Name**: MISA - **Description**: 论文代码:MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 1 - **Created**: 2021-11-10 - **Last Updated**: 2023-04-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis Code for the [ACM MM 2020](https://2020.acmmm.org) paper [MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis](https://arxiv.org/pdf/2005.03545.pdf)

### Setup the environment We work with a conda environment. ``` conda env create -f environment.yml conda activate misa-code ``` ### Data Download - Install [CMU Multimodal SDK](https://github.com/A2Zadeh/CMU-MultimodalSDK). Ensure, you can perform ```from mmsdk import mmdatasdk```. - Option 1: Download [pre-computed splits](https://drive.google.com/drive/folders/1IBwWNH0XjPnZWaAlP1U2tIJH6Rb3noMI?usp=sharing) and place the contents inside ```datasets``` folder. - Option 2: Re-create splits by downloading data from MMSDK. For this, simply run the code as detailed next. ### Running the code 1. ```cd src``` 2. Set ```word_emb_path``` in ```config.py``` to [glove file](http://nlp.stanford.edu/data/glove.840B.300d.zip). 3. Set ```sdk_dir``` to the path of CMU-MultimodalSDK. 2. ```python train.py --data mosi```. Replace ```mosi``` with ```mosei``` or ```ur_funny``` for other datasets. ### Citation If this paper is useful for your research, please cite us at: ``` @article{hazarika2020misa, title={MISA: Modality-Invariant and-Specific Representations for Multimodal Sentiment Analysis}, author={Hazarika, Devamanyu and Zimmermann, Roger and Poria, Soujanya}, journal={arXiv preprint arXiv:2005.03545}, year={2020} } ``` ### Contact For any questions, please email at [hazarika@comp.nus.edu.sg](mailto:hazarika@comp.nus.edu.sg)