# factorized
**Repository Path**: xiao-song-sinx/factorized
## Basic Information
- **Project Name**: factorized
- **Description**: 论文代码:Learning Factorized Multimodal Representations
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-11-10
- **Last Updated**: 2021-11-10
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Learning Factorized Multimodal Representations
> Pytorch implementation for learning factorized multimodal representations using deep generative models.
Correspondence to:
- Paul Liang (pliang@cs.cmu.edu)
- Yao-Hung Hubert Tsai (yaohungt@cs.cmu.edu)
## Paper
[**Learning Factorized Multimodal Representations**](https://arxiv.org/abs/1806.06176)
[Yao-Hung Hubert Tsai*](https://yaohungt.github.io), [Paul Pu Liang*](http://www.cs.cmu.edu/~pliang/), [Amir Zadeh](https://www.amir-zadeh.com/), [Louis-Philippe Morency](https://www.cs.cmu.edu/~morency/), and [Ruslan Salakhutdinov](https://www.cs.cmu.edu/~rsalakhu/)
ICLR 2019. (*equal contribution)
## Installation
First check that the requirements are satisfied:
Python 3.6/3.7
PyTorch 0.4.0
numpy 1.13.3
sklearn 0.20.0
The next step is to clone the repository:
```bash
git clone https://github.com/pliang279/factorized.git
```
## Dataset
Please download the latest version of the CMU-MOSI, CMU-MOSEI, POM, and IEMOCAP datasets which can be found at https://github.com/A2Zadeh/CMU-MultimodalSDK/
## Scripts
Please run
```bash
python mfm_test_mosi.py
```
in the command line.
Similar commands for loading and running models for other datasets can be found in mfm_test_mmmo.py, mfm_test_moud.py etc.
If you use this code, please cite our paper:
```bash
@inproceedings{DBLP:journals/corr/abs-1806-06176,
title = {Learning Factorized Multimodal Representations},
author = {Yao{-}Hung Hubert Tsai and
Paul Pu Liang and
Amir Zadeh and
Louis{-}Philippe Morency and
Ruslan Salakhutdinov},
booktitle={ICLR},
year={2019}
}
```
Related papers and repositories building upon these datasets:
CMU-MOSEI dataset: [paper](http://aclweb.org/anthology/P18-1208), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Memory Fusion Network: [paper](https://arxiv.org/abs/1802.00927), [code](https://github.com/pliang279/MFN)
Multi-Attention Recurrent Network: [paper](https://arxiv.org/abs/1802.00923), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Graph-MFN: [paper](http://aclweb.org/anthology/P18-1208), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Multimodal Transformer: [paper](https://arxiv.org/abs/1906.00295), [code](https://github.com/yaohungt/Multimodal-Transformer)
Multimodal Cyclic Translations: [paper](https://arxiv.org/abs/1812.07809), [code](https://github.com/hainow/MCTN)