# factorized **Repository Path**: xiao-song-sinx/factorized ## Basic Information - **Project Name**: factorized - **Description**: 论文代码:Learning Factorized Multimodal Representations - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-10 - **Last Updated**: 2021-11-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Learning Factorized Multimodal Representations > Pytorch implementation for learning factorized multimodal representations using deep generative models. Correspondence to: - Paul Liang (pliang@cs.cmu.edu) - Yao-Hung Hubert Tsai (yaohungt@cs.cmu.edu) ## Paper [**Learning Factorized Multimodal Representations**](https://arxiv.org/abs/1806.06176)
[Yao-Hung Hubert Tsai*](https://yaohungt.github.io), [Paul Pu Liang*](http://www.cs.cmu.edu/~pliang/), [Amir Zadeh](https://www.amir-zadeh.com/), [Louis-Philippe Morency](https://www.cs.cmu.edu/~morency/), and [Ruslan Salakhutdinov](https://www.cs.cmu.edu/~rsalakhu/)
ICLR 2019. (*equal contribution) ## Installation First check that the requirements are satisfied:
Python 3.6/3.7
PyTorch 0.4.0
numpy 1.13.3
sklearn 0.20.0 The next step is to clone the repository: ```bash git clone https://github.com/pliang279/factorized.git ``` ## Dataset Please download the latest version of the CMU-MOSI, CMU-MOSEI, POM, and IEMOCAP datasets which can be found at https://github.com/A2Zadeh/CMU-MultimodalSDK/ ## Scripts Please run ```bash python mfm_test_mosi.py ``` in the command line. Similar commands for loading and running models for other datasets can be found in mfm_test_mmmo.py, mfm_test_moud.py etc. If you use this code, please cite our paper: ```bash @inproceedings{DBLP:journals/corr/abs-1806-06176, title = {Learning Factorized Multimodal Representations}, author = {Yao{-}Hung Hubert Tsai and Paul Pu Liang and Amir Zadeh and Louis{-}Philippe Morency and Ruslan Salakhutdinov}, booktitle={ICLR}, year={2019} } ``` Related papers and repositories building upon these datasets:
CMU-MOSEI dataset: [paper](http://aclweb.org/anthology/P18-1208), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Memory Fusion Network: [paper](https://arxiv.org/abs/1802.00927), [code](https://github.com/pliang279/MFN)
Multi-Attention Recurrent Network: [paper](https://arxiv.org/abs/1802.00923), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Graph-MFN: [paper](http://aclweb.org/anthology/P18-1208), [code](https://github.com/A2Zadeh/CMU-MultimodalSDK/)
Multimodal Transformer: [paper](https://arxiv.org/abs/1906.00295), [code](https://github.com/yaohungt/Multimodal-Transformer)
Multimodal Cyclic Translations: [paper](https://arxiv.org/abs/1812.07809), [code](https://github.com/hainow/MCTN)