代码拉取完成,页面将自动刷新
同步操作将从 chensong/Intrusion-Detection-Systems 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import pandas as pd
from sklearn.kernel_approximation import RBFSampler
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error)
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import Normalizer
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error, roc_curve, classification_report,auc)
traindata = pd.read_csv('kddtrain.csv', header=None)
testdata = pd.read_csv('kddtest.csv', header=None)
X = traindata.iloc[:,1:42]
Y = traindata.iloc[:,0]
C = testdata.iloc[:,0]
T = testdata.iloc[:,1:42]
scaler = Normalizer().fit(X)
trainX = scaler.transform(X)
scaler = Normalizer().fit(T)
testT = scaler.transform(T)
traindata = np.array(trainX)
trainlabel = np.array(Y)
testdata = np.array(testT)
testlabel = np.array(C)
#traindata = X_train
#testdata = X_test
#trainlabel = y_train
#testlabel = y_test
print("-----------------------------------------LR---------------------------------")
model = LogisticRegression()
model.fit(traindata, trainlabel)
# make predictions
expected = testlabel
np.savetxt('classical/expected.txt', expected, fmt='%01d')
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelLR.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaLR.txt', proba)
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
# fit a Naive Bayes model to the data
print("-----------------------------------------NB---------------------------------")
model = GaussianNB()
model.fit(traindata, trainlabel)
print(model)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelNB.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaNB.txt', proba)
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
# fit a k-nearest neighbor model to the data
print("-----------------------------------------KNN---------------------------------")
model = KNeighborsClassifier()
model.fit(traindata, trainlabel)
print(model)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelKNN.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaKNN.txt', proba)
# summarize the fit of the model
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("----------------------------------------------")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
print("-----------------------------------------DT---------------------------------")
model = DecisionTreeClassifier()
model.fit(traindata, trainlabel)
print(model)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelDT.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaDT.txt', proba)
# summarize the fit of the model
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("----------------------------------------------")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
print("-----------------------------------------Adaboost---------------------------------")
model = AdaBoostClassifier(n_estimators=100)
model.fit(traindata, trainlabel)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelAB.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaAB.txt', proba)
# summarize the fit of the model
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("----------------------------------------------")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
model = RandomForestClassifier(n_estimators=100)
model = model.fit(traindata, trainlabel)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelRF.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaRF.txt', proba)
# summarize the fit of the model
print("--------------------------------------RF--------------------------------------")
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("----------------------------------------------")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
model = svm.SVC(kernel='rbf',probability=True)
model = model.fit(traindata, trainlabel)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelSVM-rbf.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaSVM-rbf.txt', proba)
print("--------------------------------------SVMrbf--------------------------------------")
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
model = svm.SVC(kernel='linear', C=1000,probability=True)
model.fit(traindata, trainlabel)
print(model)
# make predictions
expected = testlabel
predicted = model.predict(testdata)
proba = model.predict_proba(testdata)
np.savetxt('classical/predictedlabelSVM-linear.txt', predicted, fmt='%01d')
np.savetxt('classical/predictedprobaSVM-linear.txt', proba)
# summarize the fit of the model
print("--------------------------------------SVM linear--------------------------------------")
y_train1 = expected
y_pred = predicted
accuracy = accuracy_score(y_train1, y_pred)
recall = recall_score(y_train1, y_pred , average="binary")
precision = precision_score(y_train1, y_pred , average="binary")
f1 = f1_score(y_train1, y_pred, average="binary")
print("accuracy")
print("%.3f" %accuracy)
print("precision")
print("%.3f" %precision)
print("racall")
print("%.3f" %recall)
print("f1score")
print("%.3f" %f1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。