代码拉取完成,页面将自动刷新
from __future__ import absolute_import
# though cupy is not used but without this line, it raise errors...
import cupy as cp
import os
import ipdb
import matplotlib
from tqdm import tqdm
from utils.config import opt
from data.dataset import Dataset, TestDataset, inverse_normalize
from model import FasterRCNNVGG16
from torch.utils import data as data_
from trainer import FasterRCNNTrainer
from utils import array_tool as at
from utils.vis_tool import visdom_bbox
from utils.eval_tool import eval_detection_voc
# fix for ulimit
# https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (20480, rlimit[1]))
matplotlib.use('agg')
def eval(dataloader, faster_rcnn, test_num=10000):
pred_bboxes, pred_labels, pred_scores = list(), list(), list()
gt_bboxes, gt_labels, gt_difficults = list(), list(), list()
for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_) in tqdm(enumerate(dataloader)):
sizes = [sizes[0][0].item(), sizes[1][0].item()]
pred_bboxes_, pred_labels_, pred_scores_ = faster_rcnn.predict(imgs, [sizes])
gt_bboxes += list(gt_bboxes_.numpy())
gt_labels += list(gt_labels_.numpy())
gt_difficults += list(gt_difficults_.numpy())
pred_bboxes += pred_bboxes_
pred_labels += pred_labels_
pred_scores += pred_scores_
if ii == test_num: break
result = eval_detection_voc(
pred_bboxes, pred_labels, pred_scores,
gt_bboxes, gt_labels, gt_difficults,
use_07_metric=True)
return result
def train(**kwargs):
opt._parse(kwargs)
dataset = Dataset(opt)
print('load data')
dataloader = data_.DataLoader(dataset, \
batch_size=1, \
shuffle=True, \
# pin_memory=True,
num_workers=opt.num_workers)
testset = TestDataset(opt)
test_dataloader = data_.DataLoader(testset,
batch_size=1,
num_workers=opt.test_num_workers,
shuffle=False, \
pin_memory=True
)
faster_rcnn = FasterRCNNVGG16()
print('model construct completed')
trainer = FasterRCNNTrainer(faster_rcnn).cuda()
if opt.load_path:
trainer.load(opt.load_path)
print('load pretrained model from %s' % opt.load_path)
trainer.vis.text(dataset.db.label_names, win='labels')
best_map = 0
lr_ = opt.lr
for epoch in range(opt.epoch):
trainer.reset_meters()
for ii, (img, bbox_, label_, scale) in tqdm(enumerate(dataloader)):
scale = at.scalar(scale)
img, bbox, label = img.cuda().float(), bbox_.cuda(), label_.cuda()
trainer.train_step(img, bbox, label, scale)
if (ii + 1) % opt.plot_every == 0:
if os.path.exists(opt.debug_file):
ipdb.set_trace()
# plot loss
trainer.vis.plot_many(trainer.get_meter_data())
# plot groud truth bboxes
ori_img_ = inverse_normalize(at.tonumpy(img[0]))
gt_img = visdom_bbox(ori_img_,
at.tonumpy(bbox_[0]),
at.tonumpy(label_[0]))
trainer.vis.img('gt_img', gt_img)
# plot predicti bboxes
_bboxes, _labels, _scores = trainer.faster_rcnn.predict([ori_img_], visualize=True)
pred_img = visdom_bbox(ori_img_,
at.tonumpy(_bboxes[0]),
at.tonumpy(_labels[0]).reshape(-1),
at.tonumpy(_scores[0]))
trainer.vis.img('pred_img', pred_img)
# rpn confusion matrix(meter)
trainer.vis.text(str(trainer.rpn_cm.value().tolist()), win='rpn_cm')
# roi confusion matrix
trainer.vis.img('roi_cm', at.totensor(trainer.roi_cm.conf, False).float())
eval_result = eval(test_dataloader, faster_rcnn, test_num=opt.test_num)
trainer.vis.plot('test_map', eval_result['map'])
lr_ = trainer.faster_rcnn.optimizer.param_groups[0]['lr']
log_info = 'lr:{}, map:{},loss:{}'.format(str(lr_),
str(eval_result['map']),
str(trainer.get_meter_data()))
trainer.vis.log(log_info)
if eval_result['map'] > best_map:
best_map = eval_result['map']
best_path = trainer.save(best_map=best_map)
if epoch == 9:
trainer.load(best_path)
trainer.faster_rcnn.scale_lr(opt.lr_decay)
lr_ = lr_ * opt.lr_decay
if epoch == 13:
break
if __name__ == '__main__':
import fire
fire.Fire()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。