1 Star 1 Fork 1

许文祥/GANs-for-1D-Signal

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
dcgan_train.py 3.07 KB
一键复制 编辑 原始数据 按行查看 历史
LixiangHan 提交于 2020-10-16 13:32 +08:00 . update
import torch
import torch.nn as nn
import torchvision.datasets as dataset
import torch.optim as optim
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from dcgan import Discriminator, Generator, weights_init
from preprocessing import Dataset
lr = 2e-4
beta1 = 0.5
epoch_num = 32
batch_size = 8
nz = 100 # length of noise
ngpu = 0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main():
# load training data
trainset = Dataset('./data/brilliant_blue')
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True
)
# init netD and netG
netD = Discriminator().to(device)
netD.apply(weights_init)
netG = Generator(nz).to(device)
netG.apply(weights_init)
criterion = nn.BCELoss()
# used for visualzing training process
fixed_noise = torch.randn(16, nz, 1, device=device)
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
for epoch in range(epoch_num):
for step, (data, _) in enumerate(trainloader):
real_cpu = data.to(device)
b_size = real_cpu.size(0)
# train netD
label = torch.full((b_size,), real_label,
dtype=torch.float, device=device)
netD.zero_grad()
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
# train netG
noise = torch.randn(b_size, nz, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
netG.zero_grad()
label.fill_(real_label)
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, epoch_num, step, len(trainloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
# save training process
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
f, a = plt.subplots(4, 4, figsize=(8, 8))
for i in range(4):
for j in range(4):
a[i][j].plot(fake[i * 4 + j].view(-1))
a[i][j].set_xticks(())
a[i][j].set_yticks(())
plt.savefig('./img/dcgan_epoch_%d.png' % epoch)
plt.close()
# save models
torch.save(netG, './nets/dcgan_netG.pkl')
torch.save(netD, './nets/dcgan_netD.pkl')
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/xuwenxiang/GANs-for-1D-Signal.git
git@gitee.com:xuwenxiang/GANs-for-1D-Signal.git
xuwenxiang
GANs-for-1D-Signal
GANs-for-1D-Signal
main

搜索帮助