代码拉取完成,页面将自动刷新
import torch
import torch.nn as nn
import torchvision.datasets as dataset
import torch.optim as optim
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from dcgan import Discriminator, Generator, weights_init
from preprocessing import Dataset
n_critic = 5
clip_value = 0.01
lr = 1e-4
epoch_num = 64
batch_size = 8
nz = 100 # length of noise
ngpu = 0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main():
# load training data
trainset = Dataset('./data/brilliant_blue')
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True
)
# init netD and netG
netD = Discriminator().to(device)
netD.apply(weights_init)
netG = Generator(nz).to(device)
netG.apply(weights_init)
# used for visualizing training process
fixed_noise = torch.randn(16, nz, 1, device=device)
# optimizers
optimizerD = optim.RMSprop(netD.parameters(), lr=lr)
optimizerG = optim.RMSprop(netG.parameters(), lr=lr)
for epoch in range(epoch_num):
for step, (data, _) in enumerate(trainloader):
# training netD
real_cpu = data.to(device)
b_size = real_cpu.size(0)
netD.zero_grad()
noise = torch.randn(b_size, nz, 1, device=device)
fake = netG(noise)
loss_D = -torch.mean(netD(real_cpu)) + torch.mean(netD(fake))
loss_D.backward()
optimizerD.step()
for p in netD.parameters():
p.data.clamp_(-clip_value, clip_value)
if step % n_critic == 0:
# training netG
noise = torch.randn(b_size, nz, 1, device=device)
netG.zero_grad()
fake = netG(noise)
loss_G = -torch.mean(netD(fake))
netD.zero_grad()
netG.zero_grad()
loss_G.backward()
optimizerG.step()
if step % 5 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f'
% (epoch, epoch_num, step, len(trainloader), loss_D.item(), loss_G.item()))
# save training process
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
f, a = plt.subplots(4, 4, figsize=(8, 8))
for i in range(4):
for j in range(4):
a[i][j].plot(fake[i * 4 + j].view(-1))
a[i][j].set_xticks(())
a[i][j].set_yticks(())
plt.savefig('./img/wgan_epoch_%d.png' % epoch)
plt.close()
# save model
torch.save(netG, './nets/wgan_netG.pkl')
torch.save(netD, './nets/wgan_netD.pkl')
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。