# Cycle-Dehaze **Repository Path**: yangchenghao9/Cycle-Dehaze ## Basic Information - **Project Name**: Cycle-Dehaze - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-01-19 - **Last Updated**: 2021-01-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing This reposotory is our project for NTIRE 2018 Challenge on Image Dehazing. Our paper published in CVPR 2018 Workshop (3rd NTIRE). Please cite our paper, if it is helpful for your research. ```sh @inproceedings{engin2018cycle, title={Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing}, author={Engin, Deniz and Gen{\c{c}}, An{\i}l and Ekenel, Haz{\i}m Kemal}, booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, year={2018} } ``` ## Model Architecture ## Prerequisites * TensorFlow 1.4.1 or later * Python 3 * MATLAB Our code is tested under Ubuntu 16.04 environment with Titan X GPUs. ## Demo * Test the model for Track 1: Indoor ```sh sh demo.sh data/indoor results/indoor models/Hazy2GT_indoor.pb ``` * Test the model for Track 2: Outdoor ```sh sh demo.sh data/outdoor results/outdoor models/Hazy2GT_outdoor.pb ``` * You can use this model for your own images. ```sh sh demo.sh input_folder output_folder model_name ``` ## License This project is licensed under the MIT License - see the LICENSE file for details. ## Acknowledgments The code is based on CycleGAN-TensorFlow implementation.