代码拉取完成,页面将自动刷新
同步操作将从 J-star/Cycle-Dehaze 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import tensorflow as tf
import ops
class Discriminator:
def __init__(self, name, is_training, norm='instance', use_sigmoid=False):
self.name = name
self.is_training = is_training
self.norm = norm
self.reuse = False
self.use_sigmoid = use_sigmoid
def __call__(self, input):
"""
Args:
input: batch_size x image_size x image_size x 3
Returns:
output: 4D tensor batch_size x out_size x out_size x 1 (default 1x5x5x1)
filled with 0.9 if real, 0.0 if fake
"""
with tf.variable_scope(self.name):
# convolution layers
C64 = ops.Ck(input, 64, reuse=self.reuse, norm=None,
is_training=self.is_training, name='C64') # (?, w/2, h/2, 64)
C128 = ops.Ck(C64, 128, reuse=self.reuse, norm=self.norm,
is_training=self.is_training, name='C128') # (?, w/4, h/4, 128)
C256 = ops.Ck(C128, 256, reuse=self.reuse, norm=self.norm,
is_training=self.is_training, name='C256') # (?, w/8, h/8, 256)
C512 = ops.Ck(C256, 512,reuse=self.reuse, norm=self.norm,
is_training=self.is_training, name='C512') # (?, w/16, h/16, 512)
# apply a convolution to produce a 1 dimensional output (1 channel?)
# use_sigmoid = False if use_lsgan = True
output = ops.last_conv(C512, reuse=self.reuse,
use_sigmoid=self.use_sigmoid, name='output') # (?, w/16, h/16, 1)
self.reuse = True
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
return output
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。