# ModelFeast **Repository Path**: ybot/ModelFeast ## Basic Information - **Project Name**: ModelFeast - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-24 - **Last Updated**: 2024-09-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ModelFeast 最全面的 pytorch 模型库(2D, 3D CNN)! 如果您觉得有用,请给一个star或fork! 现在很需要star!谢谢~ - [收录了时下最流行的 2D, 3D CNN 模型库](https://github.com/daili0015/ModelFeast/blob/master/tutorials/ModelZoo.md) - [简化pytorch训练,保护发际线!](https://github.com/daili0015/ModelFeast/blob/master/tutorials/Scaffold.md) - [可移植的pytorch项目模板](https://github.com/daili0015/ModelFeast/blob/master/tutorials/template.md) ## What is ModelFeast ? 假如说 model zoo 是这样的—
要想使用model zoo,还得做许多工作,数据预处理,创建dataloader,设置训练参数.... 最坑最坑的是—— 官方的model-zoo只能允许固定大小的输入!! 也就是说,如果我的图片是```32*32*1```的,必须变到```299*299*3```才能用inceptionV3训练!!! 丧尽天良啊! 太难受了吧! 相比之下,model-feast是这样的—
拆了包装就能吃! 不到3行代码,完成数据预处理、创建网络、训练、保存全部操作! 还支持resume,在原来的基础之上再训练! 任意图像尺寸都行! ## 已经实现的模型 ### 2D CNN - [Xception](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/xception.py) - [InceptionV3](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/inception.py) - [InceptionResnetV2](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/inceptionresnetv2.py) - [SqueezeNet1_0, SqueezeNet1_1](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/squeezenet.py) - [VGG11, VGG13, VGG16, VGG19](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/vgg.py) - [ResNet18, ResNet34, ResNet50, ResNet101, ResNet152](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/resnet.py) - [ResNext101_32x4d, ResNext101_64x4d](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/resnext.py) - [DenseNet121, DenseNet169, DenseNet201, DenseNet161](https://github.com/daili0015/ModelFeast/blob/master/models/classifiers/densenet.py) ### 3D CNN - [resnet18v2_3d, resnet34v2_3d, resnet50v2_3d, resnet101v2_3d, resnet152v2_3d, resnet200v2_3d](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/resnetv2.py) - [resnext50_3d, resnext101_3d, resnext152_3d](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/resnext.py) - [densenet121_3d, densenet169_3d, densenet201_3d, densenet264_3d](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/densenet.py) - [resnet10_3d, resnet18_3d, resnet34_3d, resnet101_3d, resnet152_3d, resnet200_3d](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/resnet.py) - [wideresnet50_3d](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/wideresnet.py) - [i3d50, i3d101, i3d152](https://github.com/daili0015/ModelFeast/blob/master/models/StereoCNN/i3d.py) ### CNN-RNN 还在做,但是框架已经写完了 [在这](https://github.com/daili0015/ModelFeast/blob/master/models/CRNN/CRNN_module.py). ## Features - 只要3行代码,世界清静,什么数据导入、创建模型、训练保存,都有了 ! - 经典的2D CNN, 3D CNN全部都有 ! - 任意大小的图像尺寸输入都OK ! - 帮助你横扫各种项目与竞赛,这是我用modelfeast[参加的一个竞赛](https://github.com/daili0015/ModelFeast/blob/master/tutorials/ModelZoo.md#2-3d-convolutional-neural-network),第三周周榜第9名!该比赛还在进行 - 更多集成学习、模型融合方法,comming soon!我已经与平台的小姐姐商量好了,上面的比赛结束后(3月底),我会写一个教程,介绍我是怎么用modelfeast跑出第9名的成绩的;还会有医学图像处理、集成学习大礼包,直接给源代码,还有详细的注释与讲解! ## 参考资源 [https://github.com/lanpa/tensorboardX](https://github.com/lanpa/tensorboardX) [https://github.com/pytorch/vision/tree/master/torchvision/models](https://github.com/pytorch/vision/tree/master/torchvision/models) [https://github.com/kenshohara/3D-ResNets-PyTorch](https://github.com/kenshohara/3D-ResNets-PyTorch) [https://github.com/victoresque/pytorch-template](https://github.com/victoresque/pytorch-template) [https://github.com/AlexHex7/Non-local_pytorch](https://github.com/AlexHex7/Non-local_pytorch) [https://github.com/Cadene/pretrained-models.pytorch](https://github.com/Cadene/pretrained-models.pytorch)