# DCMVC12 **Repository Path**: yu-jun-wang/DCMVC12 ## Basic Information - **Project Name**: DCMVC12 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-16 - **Last Updated**: 2025-03-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Dual Contrast-Driven Deep Multi-View Clustering This repo contains the code and data associated with our [DCMVC](https://ieeexplore.ieee.org/document/10648641) accepted by **IEEE Transactions on Image Processing 2024**. ## Framework ![Framework Diagram](fig/framework.png) The overall framework of the proposed DCMVC within an Expectation-Maximization framework. The framework includes: (a) View-specific Autoencoders and Adaptive Feature Fusion Module, which extracts high-level features and fuses them into consensus representations; (b) Dynamic Cluster Diffusion Module, enhancing inter-cluster separation by maximizing the distance between clusters; (c) Reliable Neighbor-guided Positive Alignment Module, improving within-cluster compactness using a pseudo-label and nearest neighbor structure-driven contrastive learning; (d) Clustering-friendly Structure, ensuring well-separated and compact clusters. ## Requirements hdf5storage==0.1.19 matplotlib==3.5.3 numpy==1.20.1 scikit_learn==0.23.2 scipy==1.7.1 torch==1.8.1+cu111 ## Datasets & trained models The Cora, ALOI-100, Hdigit, and Digit-Product datasets, along with the trained models for these datasets, can be downloaded from [Google Drive](https://drive.google.com/drive/folders/108M1L8fqFk4ZcViZWqQbDe3a2d-uGcXd?usp=drive_link) or [Baidu Cloud](https://pan.baidu.com/s/10vzfz623i4NMx-HslacObQ) password: data. ## Usage Train a new model: ````python python train.py ```` Test the trained model: ````python python test.py ```` ## Acknowledgments Work&Code takes inspiration from [MFLVC](https://github.com/SubmissionsIn/MFLVC), [ProPos](https://github.com/Hzzone/ProPos). ## Citation If you find our work beneficial to your research, please consider citing: ````latex @ARTICLE{10648641, author={Cui, Jinrong and Li, Yuting and Huang, Han and Wen, Jie}, journal={IEEE Transactions on Image Processing}, title={Dual Contrast-Driven Deep Multi-View Clustering}, year={2024}, volume={33}, number={}, pages={4753-4764}, keywords={Feature extraction;Contrastive learning;Reliability;Clustering methods;Task analysis;Data mining;Unsupervised learning;Multi-view clustering;deep clustering;representation learning;contrastive learning}, doi={10.1109/TIP.2024.3444269}} ````