# Recommend-System-tf2.0 **Repository Path**: z21/Recommend-System-tf2.0 ## Basic Information - **Project Name**: Recommend-System-tf2.0 - **Description**: https://github.com/jc-LeeHub/Recommend-System-tf2.0 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2024-01-15 - **Last Updated**: 2024-04-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Recommend-System-TF2.0

此仓库用于记录在学习推荐系统过程中的知识产出,主要是对经典推荐算法的**原理解析**及**代码实现**。 算法包含但不仅限于下图中的算法,**持续更新中...**
## Models List | Model | Paper | | :----: | :------- | | [FM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/FM) | [ICDM 2010] [Fast Context-aware Recommendationswith Factorization Machines](https://www.ismll.uni-hildesheim.de/pub/pdfs/Rendle_et_al2011-Context_Aware.pdf) | | [CCPM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/CCPM) | [CIKM 2015] [A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) | | [FFM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/FFM) | [RecSys 2016] [Field-aware Factorization Machines for CTR Prediction](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) | | [FNN](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/FNN) | [ECIR 2016] [Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) | | [PNN](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/PNN) | [ICDM 2016] [Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) | | [Wide & Deep](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/WideDeep) | [DLRS 2016] [Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) | | [Deep Crossing](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/DeepCrossing) | [KDD 2016] [Deep Crossing: Web-Scale Modeling withoutManually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) | | [DeepFM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/DeepFM) | [IJCAI 2017] [DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) | | [Deep & Cross Network](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/DCN) | [ADKDD 2017] [Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) | | [AFM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/AFM) | [IJCAI 2017] [Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) | | [NFM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/NFM) | [SIGIR 2017] [Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | | Piece-wise Linear Model | [arxiv 2017] [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) | | [xDeepFM](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/xDeepFM) | [KDD 2018] [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) | | [DIN](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/DIN) | [KDD 2018] [Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) | [MMoE](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/MMOE) | [KDD 2018] [Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/pdf/10.1145/3219819.3220007) || | FwFM | [WWW 2018] [Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) | | [AutoInt](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/AutoInt) | [CIKM 2019] [AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) | | DIEN | [AAAI 2019] [Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) | | ONN | [arxiv 2019] [Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) | | [FGCNN](https://github.com/jc-LeeHub/Recommend-System-tf2.0/tree/master/FGCNN) | [WWW 2019] [Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) | | DSIN | [IJCAI 2019] [Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) | | FiBiNET| [RecSys 2019] [FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf)| | FLEN | [arxiv 2019] [FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) | | DCN V2 | [arxiv 2020] [DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) | ## Introduction - 原理结合代码食用更佳,掌握算法的最好方式就是用代码撸它 - 原理解析可参考知乎专栏 [推荐算法也可以很简单](https://www.zhihu.com/column/c_1330637706267734016) - 代码实践参考本仓库即可,每个模型都有对应README.md,对模型原理、代码结构、实验结果进行了介绍 **Tips:** 该仓库使用的代码均为TF2.0,如果你不熟悉该框架,可参考文档[**简单粗暴的Tensorflow2.0**](https://tf.wiki/zh_hans/basic/models.html) ## Citation - 论文列表引用于浅梦,并作了相应补充. Weichen Shen.(2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models. https://github.com/shenweichen/deepctr. 感谢整理! ## About - 知乎:[予以初始](https://www.zhihu.com/people/yu-yi-chu-shi) - CSDN: [予以初始](https://blog.csdn.net/weixin_45658131?spm=1000.2115.3001.5343) - Website: [HomePage](https://jc-leehub.github.io/) - E-mail: junchaoli@hnu.edu.cn - wechat ID: Liii00061333