# Document_Layout_Analysis-MonkAI **Repository Path**: zetingh/Document_Layout_Analysis-MonkAI ## Basic Information - **Project Name**: Document_Layout_Analysis-MonkAI - **Description**: DL models that take a document image file as input, locate the position of paragraphs, lines, images, etc. with their labels and confidence scores. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-09 - **Last Updated**: 2021-03-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Document Layout Detection using MonkAI Object Detection Library Deep learning models that take a document image file as input, locate the position of paragraphs, lines, images, etc. with their labels and confidence scores. ## Choice of architecture -Inspiration from the blog- https://medium.com/@Intellica.AI/a-comparative-study-of-custom-object-detection-algorithms-9e7ddf6e765e Yolov3, FasterRCNN & SSD are broadly top 3 model architectures that are used for Object detection. So, for this task, prediction and confidence on inference images of these 3 architectures have been compared. # Tutorial Blog https://medium.com/@swapnil.ahlawat/object-detection-document-layout-analysis-using-monk-object-detection-toolkit-6c57200bde5