1 Star 1 Fork 0

wwhio/KAIR

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main_train_drunet.py 9.17 KB
一键复制 编辑 原始数据 按行查看 历史
import os.path
import math
import argparse
import time
import random
import numpy as np
from collections import OrderedDict
import logging
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import torch
from utils import utils_logger
from utils import utils_image as util
from utils import utils_option as option
from utils.utils_dist import get_dist_info, init_dist
from data.select_dataset import define_Dataset
from models.select_model import define_Model
'''
# --------------------------------------------
# training code for DRUNet
# --------------------------------------------
# Kai Zhang (cskaizhang@gmail.com)
# github: https://github.com/cszn/KAIR
'''
def main(json_path='options/train_drunet.json'):
'''
# ----------------------------------------
# Step--1 (prepare opt)
# ----------------------------------------
'''
parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default=json_path, help='Path to option JSON file.')
parser.add_argument('--launcher', default='pytorch', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--dist', default=False)
opt = option.parse(parser.parse_args().opt, is_train=True)
opt['dist'] = parser.parse_args().dist
# ----------------------------------------
# distributed settings
# ----------------------------------------
if opt['dist']:
init_dist('pytorch')
opt['rank'], opt['world_size'] = get_dist_info()
if opt['rank'] == 0:
util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key))
# ----------------------------------------
# update opt
# ----------------------------------------
# -->-->-->-->-->-->-->-->-->-->-->-->-->-
init_iter_G, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G')
opt['path']['pretrained_netG'] = init_path_G
init_iter_optimizerG, init_path_optimizerG = option.find_last_checkpoint(opt['path']['models'], net_type='optimizerG')
opt['path']['pretrained_optimizerG'] = init_path_optimizerG
current_step = max(init_iter_G, init_iter_optimizerG)
border = opt['scale']
# --<--<--<--<--<--<--<--<--<--<--<--<--<-
# ----------------------------------------
# save opt to a '../option.json' file
# ----------------------------------------
if opt['rank'] == 0:
option.save(opt)
# ----------------------------------------
# return None for missing key
# ----------------------------------------
opt = option.dict_to_nonedict(opt)
# ----------------------------------------
# configure logger
# ----------------------------------------
if opt['rank'] == 0:
logger_name = 'train'
utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log'))
logger = logging.getLogger(logger_name)
logger.info(option.dict2str(opt))
# ----------------------------------------
# seed
# ----------------------------------------
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
'''
# ----------------------------------------
# Step--2 (creat dataloader)
# ----------------------------------------
'''
# ----------------------------------------
# 1) create_dataset
# 2) creat_dataloader for train and test
# ----------------------------------------
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = define_Dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size']))
if opt['rank'] == 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size))
if opt['dist']:
train_sampler = DistributedSampler(train_set, shuffle=dataset_opt['dataloader_shuffle'], drop_last=True, seed=seed)
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size']//opt['num_gpu'],
shuffle=False,
num_workers=dataset_opt['dataloader_num_workers']//opt['num_gpu'],
drop_last=True,
pin_memory=True,
sampler=train_sampler)
else:
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size'],
shuffle=dataset_opt['dataloader_shuffle'],
num_workers=dataset_opt['dataloader_num_workers'],
drop_last=True,
pin_memory=True)
elif phase == 'test':
test_set = define_Dataset(dataset_opt)
test_loader = DataLoader(test_set, batch_size=1,
shuffle=False, num_workers=1,
drop_last=False, pin_memory=True)
else:
raise NotImplementedError("Phase [%s] is not recognized." % phase)
'''
# ----------------------------------------
# Step--3 (initialize model)
# ----------------------------------------
'''
model = define_Model(opt)
model.init_train()
if opt['rank'] == 0:
logger.info(model.info_network())
logger.info(model.info_params())
'''
# ----------------------------------------
# Step--4 (main training)
# ----------------------------------------
'''
for epoch in range(1000000): # keep running
if opt['dist']:
train_sampler.set_epoch(epoch)
for i, train_data in enumerate(train_loader):
current_step += 1
# -------------------------------
# 1) update learning rate
# -------------------------------
model.update_learning_rate(current_step)
# -------------------------------
# 2) feed patch pairs
# -------------------------------
model.feed_data(train_data)
# -------------------------------
# 3) optimize parameters
# -------------------------------
model.optimize_parameters(current_step)
# -------------------------------
# 4) training information
# -------------------------------
if current_step % opt['train']['checkpoint_print'] == 0 and opt['rank'] == 0:
logs = model.current_log() # such as loss
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step, model.current_learning_rate())
for k, v in logs.items(): # merge log information into message
message += '{:s}: {:.3e} '.format(k, v)
logger.info(message)
# -------------------------------
# 5) save model
# -------------------------------
if current_step % opt['train']['checkpoint_save'] == 0 and opt['rank'] == 0:
logger.info('Saving the model.')
model.save(current_step)
# -------------------------------
# 6) testing
# -------------------------------
if current_step % opt['train']['checkpoint_test'] == 0 and opt['rank'] == 0:
avg_psnr = 0.0
idx = 0
for test_data in test_loader:
idx += 1
image_name_ext = os.path.basename(test_data['L_path'][0])
img_name, ext = os.path.splitext(image_name_ext)
img_dir = os.path.join(opt['path']['images'], img_name)
util.mkdir(img_dir)
model.feed_data(test_data)
model.test()
visuals = model.current_visuals()
E_img = util.tensor2uint(visuals['E'])
H_img = util.tensor2uint(visuals['H'])
# -----------------------
# save estimated image E
# -----------------------
save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step))
util.imsave(E_img, save_img_path)
# -----------------------
# calculate PSNR
# -----------------------
current_psnr = util.calculate_psnr(E_img, H_img, border=border)
logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr))
avg_psnr += current_psnr
avg_psnr = avg_psnr / idx
# testing log
logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr))
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zfr9b/KAIR.git
git@gitee.com:zfr9b/KAIR.git
zfr9b
KAIR
KAIR
master

搜索帮助