# timesNet
**Repository Path**: zhanghel20/times-net
## Basic Information
- **Project Name**: timesNet
- **Description**: Forked from https://github.com/thuml/Time-Series-Library.git
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2023-03-12
- **Last Updated**: 2023-03-14
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Time Series Library (TSlib)
TSlib is an open-source library for deep learning researchers, especially deep time series analysis.
We provide a neat code base to evaluate advanced deep time series models or develop your own model, which covers five mainstream tasks: **long- and short-term forecasting, imputation, anomaly detection, and classification.**
## Leaderboard for Time Series Analysis
Till February 2023, the top three models for five different tasks are:
| Model
Ranking | Long-term
Forecasting | Short-term
Forecasting | Imputation | Anomaly
Detection | Classification |
| ---------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | -------------------------------------------------- |
| 🥇 1st | [TimesNet](https://arxiv.org/abs/2210.02186) | [TimesNet](https://arxiv.org/abs/2210.02186) | [TimesNet](https://arxiv.org/abs/2210.02186) | [TimesNet](https://arxiv.org/abs/2210.02186) | [TimesNet](https://arxiv.org/abs/2210.02186) |
| 🥈 2nd | [DLinear](https://github.com/cure-lab/LTSF-Linear) | [Non-stationary
Transformer](https://github.com/thuml/Nonstationary_Transformers) | [Non-stationary
Transformer](https://github.com/thuml/Nonstationary_Transformers) | [Non-stationary
Transformer](https://github.com/thuml/Nonstationary_Transformers) | [FEDformer](https://github.com/MAZiqing/FEDformer) |
| 🥉 3rd | [Non-stationary
Transformer](https://github.com/thuml/Nonstationary_Transformers) | [FEDformer](https://github.com/MAZiqing/FEDformer) | [Autoformer](https://github.com/thuml/Autoformer) | [Informer](https://github.com/zhouhaoyi/Informer2020) | [Autoformer](https://github.com/thuml/Autoformer) |
**Note: We will keep updating this leaderborad.** If you have proposed advanced and awesome models, welcome to send your paper/code link to us or raise a pull request. We will add them to this repo and update the leaderborad as soon as possible.
**Compared models of this leaderboard.** ☑ means that their codes have already been included in this repo.
- [x] **TimesNet** - TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis [[ICLR 2023]](https://openreview.net/pdf?id=ju_Uqw384Oq) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/TimesNet.py)
- [x] **DLinear** - Are Transformers Effective for Time Series Forecasting? [[AAAI 2023]](https://arxiv.org/pdf/2205.13504.pdf) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/DLinear.py)
- [x] **LightTS** - Less Is More: Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP Structures [[arXiv 2022]](https://arxiv.org/abs/2207.01186) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/LightTS.py)
- [x] **ETSformer** - ETSformer: Exponential Smoothing Transformers for Time-series Forecasting [[arXiv 2022]](https://arxiv.org/abs/2202.01381) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/ETSformer.py)
- [x] **Non-stationary Transformer** - Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting [[NeurIPS 2022]](https://openreview.net/pdf?id=ucNDIDRNjjv) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Nonstationary_Transformer.py)
- [x] **FEDformer** - FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting [[ICML 2022]](https://proceedings.mlr.press/v162/zhou22g.html) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/FEDformer.py)
- [x] **Pyraformer** - Pyraformer: Low-complexity Pyramidal Attention for Long-range Time Series Modeling and Forecasting [[ICLR 2022]](https://openreview.net/pdf?id=0EXmFzUn5I) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Pyraformer.py)
- [x] **Autoformer** - Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting [[NeurIPS 2021]](https://openreview.net/pdf?id=I55UqU-M11y) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Autoformer.py)
- [x] **Informer** - Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting [[AAAI 2021]](https://ojs.aaai.org/index.php/AAAI/article/view/17325/17132) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Informer.py)
- [x] **Reformer** - Reformer: The Efficient Transformer [[ICLR 2020]](https://openreview.net/forum?id=rkgNKkHtvB) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Reformer.py)
- [x] **Transformer** - Attention is All You Need [[NeurIPS 2017]](https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Transformer.py)
See our latest paper [[TimesNet]](https://arxiv.org/abs/2210.02186) for the comprehensive benchmark. We will release a real-time updated online version in March.
**Newly added baselines.** We will add them into the leaderboard after a comprehensive evaluation.
- [x] **PatchTST** - A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. [[ICLR 2023]](https://openreview.net/pdf?id=Jbdc0vTOcol) [[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/PatchTST.py)
- [x] **MICN** - MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting [[ICLR2023]](https://openreview.net/pdf?id=zt53IDUR1U)[[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/MICN.py)
- [x] **Crossformer** - Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting [[ICLR2023]](https://openreview.net/pdf?id=vSVLM2j9eie)[[Code]](https://github.com/thuml/Time-Series-Library/blob/main/models/Crossformer.py)
## Usage
1. Install Python 3.8. For convenience, execute the following command.
```
pip install -r requirements.txt
```
2. Prepare Data. You can obtained the well pre-processed datasets from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing), [[Tsinghua Cloud]](https://cloud.tsinghua.edu.cn/f/84fbc752d0e94980a610/) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy). Then place the downloaded data under the folder `./dataset`. Here is a summary of supported datasets.