# transformerCPI **Repository Path**: zhangshirui1/transformerCPI ## Basic Information - **Project Name**: transformerCPI - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments This repository contains the source code and the data. ## TransformerCPI ![](model.png) ## Setup and dependencies Dependencies: - python 3.6 - pytorch >= 1.2.0 - numpy - RDkit = 2019.03.3.0 - pandas - Gensim >=3.4.0 ## Data sets The data sets with train/test splits are provided as .7z file in a directory called 'data'. The test set is created specially for label reversal experiments. --- ## Using 1.`mol_featurizer.py` generates input for TransformerCPI model. 2.`main.py` trains TransformerCPI model. --- ## Author Lifan Chen (s18-chenlifan@simm.ac.cn) Mingyue Zheng(myzheng@simm.ac.cn) ## Citation Lifan Chen, Xiaoqin Tan, Dingyan Wang, Feisheng Zhong, Xiaohong Liu, Tianbiao Yang, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, Mingyue Zheng, TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments, Bioinformatics, , btaa524, https://doi.org/10.1093/bioinformatics/btaa524